Generic placeholder image

Current Chinese Chemistry

Editor-in-Chief

ISSN (Print): 2666-0016
ISSN (Online): 2666-0008

Research Article

Biodegradation Study of Potato Starch-Based Bioplastic

Author(s): Rajen Kundu* and Priyanka Payal

Volume 2, Issue 2, 2022

Published on: 19 April, 2021

Article ID: e190421192895 Pages: 11

DOI: 10.2174/2666001601666210419110711

Price: $65

Abstract

Background: Plastics are indispensable for our society. The extensive use of petroleumbased plastic and dumping of the same in soil and water body greatly affects our environment and biodiversity. However, biodegradable plastics can reduce the volume of waste in packaging materials. Therefore, biomass-derived polymers are promising alternatives to the petroleum-based non-degradable polymer to address the environmental issues.

Objective: A large number of reports on the synthesis and characterization of starch-based bioplastic are available in the literature. However, a detailed biodegradation study of the starchbased bioplastic is rarely reported. We have prepared potato starch-based bioplastic with the combination of various plasticizers (glycerol, sorbitol, and xylitol) through hydrogel formation and carried out their biodegradation study.

Methods: Present study investigated the biodegradation of potato starch-based bioplastic in the natural environment, in cultured bacteria, and with fungal α-amylase.

Results: Starch-based plastic is completely degraded in the natural environment within two months. Bacteria culture in solid media resulted in various types of bacterial colonies. Among the various bacterial colonies, the white circular colony was the major bacteria that degrade starchbased plastic. Furthermore, we screened the starch-based plastic degrading bacteria and isolated the pure culture through the streak plate method.

Conclusion: In the presence of cultured bacteria and with fungal α-amylase, starch-based plastic is completely degraded within 96 h and 48 h, respectively.

Keywords: Biodegradation, bioplastic, biopolymer, bacteria, α-amylase, starch.

Graphical Abstract

[1]
Luckachan GE, Pillai CKS. Biodegradable Polymers - A Review on Recent Trends and Emerging Perspectives. J Polym Environ 2011; 19: 637-76.
[http://dx.doi.org/10.1007/s10924-011-0317-1]
[2]
Jambeck JR, Geyer R, Wilcox C, et al. Marine pollution. Plastic waste inputs from land into the ocean. Science 2015; 347(6223): 768-71.
[http://dx.doi.org/10.1126/science.1260352] [PMID: 25678662]
[3]
Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv 2017; 3(7): e1700782.
[http://dx.doi.org/10.1126/sciadv.1700782] [PMID: 28776036]
[4]
Haider TP, Völker C, Kramm J, Landfester K, Wurm FR. Plastics of the future? the impact of biodegradable polymers on the environment and on society. Angew Chem Int Ed Engl 2019; 58(1): 50-62.
[http://dx.doi.org/10.1002/anie.201805766] [PMID: 29972726]
[5]
Raphael I, Yang A. Plastics production from biomass: Assessing feedstock requirement. Biomass Conv Bioref 2013; 3: 319-26.
[http://dx.doi.org/10.1007/s13399-013-0094-2]
[6]
Jerez A, Partal P, Martinez I, Gallegos C, Guerrero A. Protein-based bioplastics: Effect of thermo-mechanical processing. Rheol Acta 2007; 46: 711-20.
[http://dx.doi.org/10.1007/s00397-007-0165-z]
[7]
Lee D-H. Bio-based economies in Asia: Economic analysis of development of bio-based industry in China, India, Japan, Korea, Malaysia and Taiwan. Int J Hydrogen Energy 2016; 41: 4333-46.
[http://dx.doi.org/10.1016/j.ijhydene.2015.10.048]
[8]
Altskar A, Andersson R, Boldizar A, et al. Some effects of processing on the molecular structure and morphology of thermoplastic starch. Carbohydr Polym 2016; 7: 591-7.
[9]
Nakajima H, Dijkstra P, Loos K. The recent developments in biobased polymers toward general and engineering applications: Polymers that are upgraded from biodegradable polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed. Polymers (Basel) 2017; 9(10): 523.
[http://dx.doi.org/10.3390/polym9100523] [PMID: 30965822]
[10]
Babu RP, O’Connor K, Seeram R. Current progress on bio-based polymers and their future trends. Prog Biomater 2013; 2(1): 8.
[http://dx.doi.org/10.1186/2194-0517-2-8] [PMID: 29470779]
[11]
Shaghaleh H, Xu X, Wang S. Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Advances 2018; 8: 825-42.
[http://dx.doi.org/10.1039/C7RA11157F]
[12]
Hyeon JE, Kim SW, Park C, Han SO. Efficient biological conversion of carbon monoxide (CO) to carbon dioxide (CO2) and for utilization in bioplastic production by Ralstonia eutropha through the display of an enzyme complex on the cell surface. Chem Commun 2015; 51(50): 10202-5.
[http://dx.doi.org/10.1039/C5CC00832H] [PMID: 26017299]
[13]
Ismaila NA, Tahirb SM, Yahyac N, et al. Synthesis and Characterization of Biodegradable Starch-based Bioplastics. Mater Sci Forum 2015; 846: 673-8.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.846.673]
[14]
White JL. Fourth in a Series: Pioneers of polymer processing alexander parkes. Int Polym Process 1998; 13: 326.
[http://dx.doi.org/10.3139/217.980326]
[15]
DiGregorio BE. Biobased performance bioplastic: Mirel. Chem Biol 2009; 16(1): 1-2.
[http://dx.doi.org/10.1016/j.chembiol.2009.01.001] [PMID: 19171300]
[16]
Shafqat A, Al-Zaqri N, Tahir A, Alsalme A. Synthesis and characterization of starch based bioplatics using varying plant-based ingredients, plasticizers and natural fillers. Saudi J Biol Sci 2021; 28(3): 1739-49.
[http://dx.doi.org/10.1016/j.sjbs.2020.12.015] [PMID: 33732057]
[17]
Larotonda F, Matsui K, Soldi V, Laurindo JV. Biodegradable films made from raw and acetylated cassava starch. Braz Arch Biol Technol 2004; 47: 477-84.
[http://dx.doi.org/10.1590/S1516-89132004000300019]
[18]
Teeraphatpornchai T, Nakajima-Kambe T, Shigeno-Akutsu Y, et al. Isolation and characterization of a bacterium that degrades various polyester-based biodegradable plastics. Biotechnol Lett 2003; 25(1): 23-8.
[http://dx.doi.org/10.1023/A:1021713711160] [PMID: 12882301]
[19]
Jarerat A, Pranamuda H, Tokiwa Y. Macromol Poly (L-lactide) degrading activity in various actinomycetes. Biosci 2002; 2: 420-8.
[20]
Sukkhum S, Tokuyama S, Tamura T, Kitpreechavanich V, Gen J. A novel poly (L-lactide) degrading actinomycetes isolated from Thai forest soil, phylogenic relationship and the enzyme characterization. J Gen Appl Microbiol 2009; 55(6): 459-67.
[http://dx.doi.org/10.2323/jgam.55.459] [PMID: 20118610]
[21]
Hoang K-C, Lee C-Y, Tseng M, Chu WS. Polyester-degrading actinomycetes isolated from the Touchien River of Taiwan. World J Microbiol Biotechnol 2006; 23: 201-5.
[http://dx.doi.org/10.1007/s11274-006-9212-7]
[22]
Accinelli C, Saccà ML, Mencarelli M, Vicari A. Deterioration of bioplastic carrier bags in the environment and assessment of a new recycling alternative. Chemosphere 2012; 89(2): 136-43.
[http://dx.doi.org/10.1016/j.chemosphere.2012.05.028] [PMID: 22717162]
[23]
Li M, Witt T, Xie F, Warren FJ, Halley PJ, Gilbert RG. Biodegradation of starch films: the roles of molecular and crystalline structure. Carbohydr Polym 2015; 122: 115-22.
[http://dx.doi.org/10.1016/j.carbpol.2015.01.011] [PMID: 25817650]
[24]
Yoshida N, Ye L, Liu F, Li Z, Katayama A. Evaluation of biodegradable plastics as solid hydrogen donors for the reductive dechlorination of fthalide by Dehalobacter species. Bioresour Technol 2013; 130: 478-85.
[http://dx.doi.org/10.1016/j.biortech.2012.11.139] [PMID: 23313696]
[25]
Garlotta D. A Literature Review of Poly(Lactic Acid). J Polym Environ 2001; 9: 63-84.
[http://dx.doi.org/10.1023/A:1020200822435]
[26]
Jem KJ, Tan B. The development and challenges of poly (lactic acid) and poly (glycolic acid). Adv Industr Eng Polymer Res 2020; 3: 60-70.
[http://dx.doi.org/10.1016/j.aiepr.2020.01.002]
[27]
Zhao X, Hu H, Wang X, Yu X, Zhou W, Peng S. Super tough poly(lactic acid) blends: A comprehensive review. RSC Advances 2020; 10: 13316-68.
[http://dx.doi.org/10.1039/D0RA01801E]
[28]
Siracusa V, Rocculi P, Romani S, Rosa MD. Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 2008; 19: 634-43.
[http://dx.doi.org/10.1016/j.tifs.2008.07.003]
[29]
Fakhouri FM, Martelli SM, Caon T, Velasco JI, Mei LHI. Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biol Technol 2015; 109: 57-64.
[http://dx.doi.org/10.1016/j.postharvbio.2015.05.015]
[30]
Bilo F, Pandini S, Sartore L, et al. A sustainable bioplastic obtained from rice straw. J Clean Prod 2018; 200: 357-68.
[31]
Perotto G, Ceseracciu L, Simonutti R, et al. Bioplastics from vegetable waste via an eco-friendly water-based process. Green Chem 2018; 20: 894-902.
[http://dx.doi.org/10.1039/C7GC03368K]
[32]
Saviello D, Cespi D, Sharma V, Miao S, Cucciniello R. The frontier of biobased polymers: synthesis, characterization, application, and sustainability assessment. Int J Polym Sci 2017.: 5638598.
[http://dx.doi.org/10.1155/2017/5638598]
[33]
Zárate-Ramírez LS, Romero A, Bengoechea C, Partal P, Guerrero A. Thermo-mechanical and hydrophilic properties of polysaccharide/gluten-based bioplastics. Carbohydr Polym 2014; 112: 24-31.
[http://dx.doi.org/10.1016/j.carbpol.2014.05.055] [PMID: 25129712]
[34]
Gonzalez-Gutierrez J, Partal P, Garcia-Morales M, Gallegos C. Development of highly-transparent protein/starch-based bioplastics. Bioresour Technol 2010; 101(6): 2007-13.
[http://dx.doi.org/10.1016/j.biortech.2009.10.025] [PMID: 19900806]
[35]
Mekonnen T, Mussone P, Khalilb H, Bressler D. Progress in bio-based plastics and plasticizing modifications. J Mater Chem A Mater Energy Sustain 2013; 1: 13379-98.
[http://dx.doi.org/10.1039/c3ta12555f]
[36]
Basiak E, Lenart A, Debeaufort F. How glycerol and water contents affect the structural and functional properties of starch-based edible films. Polymers 2018; 10(4): 412.
[http://dx.doi.org/10.3390/polym10040412] [PMID: 30966447]
[37]
Fakhouri FM, Costa D, Yamashita F, et al. Comparative study of processing methods for starch/gelatin films. Carbohydr Polym 2013; 95(2): 681-9.
[http://dx.doi.org/10.1016/j.carbpol.2013.03.027] [PMID: 23648030]
[38]
Krishnamurthy A, Amritkumar P. Synthesis and characterization of eco-friendly bioplastic from low-cost plant resources. SN Applied Sciences 2019; 1: 1432.
[http://dx.doi.org/10.1007/s42452-019-1460-x]
[39]
Winkler H, Vorwerg W, Rihm R. Thermal and mechanical properties of fatty acid starch esters. Carbohydr Polym 2014; 102: 941-9.
[http://dx.doi.org/10.1016/j.carbpol.2013.10.040] [PMID: 24507367]
[40]
Emadian SM, Onay TT, Demirel B. Biodegradation of bioplastics in natural environments. Waste Manag 2017; 59: 526-36.
[http://dx.doi.org/10.1016/j.wasman.2016.10.006] [PMID: 27742230]
[41]
Tachibana K, Hashimoto K, Yoshikawa M, Okawa H. Isolation and characterization of microorganisms degrading nylon 4 in the composted soil. Polym Degrad Stabil 2010; 95: 912-7.
[http://dx.doi.org/10.1016/j.polymdegradstab.2010.03.031]
[42]
Gudeangadi PG, Uchida K, Tateishi A, et al. Poly(alanine-nylon-alanine) as a bioplastic: chemoenzymatic synthesis, thermal properties and biological degradation effects. Polym Chem 2020; 11: 4920-7.
[http://dx.doi.org/10.1039/D0PY00137F]
[43]
Ismaila NA, Tahirb SM, Yahyac N, et al. Synthesis and characterization of biodegradable starch-based bioplastics. Mater Sci Forum 2016; 846: 673-8.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.846.673]
[44]
Balaguer MP, Gómez-Estaca J, Gavara R, Hernandez-Munoz P. Functional properties of bioplastics made from wheat gliadins modified with cinnamaldehyde. J Agric Food Chem 2011; 59(12): 6689-95.
[http://dx.doi.org/10.1021/jf200477a] [PMID: 21598964]
[45]
Chen M-J, Shi Q-S. Transforming sugarcane bagasse into bioplastics via homogeneous modification with phthalic anhydride in ionic liquid. ACS Sustain Chem & Eng 2015; 3: 2510-5.
[http://dx.doi.org/10.1021/acssuschemeng.5b00685]
[46]
Azevedo LCD, Rovani S, Santos JJ, et al. Biodegradable films derived from corn and potato starch and study of the effect of silicate extracted from sugarcane waste ash. ACS Appl Polym Mater 2020; 2: 2160-9.
[http://dx.doi.org/10.1021/acsapm.0c00124]
[47]
Basu S, Bose C, Ojha N, et al. Evolution of bacterial and fungal growth media. Bioinformation 2015; 11(4): 182-4.
[http://dx.doi.org/10.6026/97320630011182] [PMID: 26124557]
[48]
Taga ME, Xavier KB. Methods for analysis of bacterial autoinducer2 production. Curr Protoc Microbiol 2011; 23(1): 1C.
[http://dx.doi.org/10.1002/9780471729259.mc01c01s23]
[49]
Huq A, Haley BJ, Taviani E, Chen A, Hasan NA, Colwell RR. detection, isolation, and identification of vibrio cholerae from the environment. Curr Protoc Microbiol 2012; 26(1): 6a-5.
[50]
Moyes RB, Reynolds J, Breakwel DP. Differential staining of bacteria: Gram Stain. Curr Protoc Microbiol 2009; 15(1): A-3C.
[51]
Sanders ER. Aseptic laboratory techniques: Plating methods. J Vis Exp 2012; 63(63): e3064.
[PMID: 22617405]
[52]
Lederberg J, Lederberg EM. Replica plating and indirect selection of bacterial mutants. J Bacteriol 1952; 63(3): 399-406.
[http://dx.doi.org/10.1128/JB.63.3.399-406.1952] [PMID: 14927572]
[53]
Stevenson B. Common bacterial culture techniques and media. Curr Protoc Microbiol 2006; 1(1): A-4A.
[http://dx.doi.org/10.1002/9780471729259.mca04as00]
[54]
Mayer F, Hillebrandt JO. Potato pulp: microbiological characterization, physical modification, and application of this agricultural waste product. Appl Microbiol Biotechnol 1997; 48(4): 435-40.
[http://dx.doi.org/10.1007/s002530051076] [PMID: 9390450]
[55]
Taniguchi H, Odashima F, Igarashi M, Maruyama Y, Nakamura M. Characterization of a potato starch-digesting bacterium and its production of amylase. Agric Bioi Chem 1982; 46:2107-2115.56. McAllister TA, Cheng K-J, Rode LM, Forsber CW. Digestion of Barley, Maize, and Wheat by Selected Species of Ruminal Bacteria. Appl Environ Microbiol 1990; 56: 3146-53.
[56]
Bharathi V, Rekav K. Isolation and identification of microorganisms from goat intestine. J Chem Pharm 2015; 7: 117-23.
[57]
Woeste S. A template for the streak plate isolation technique for laboratory classrooms. J Biol Educ 2010; 30: 17-8.
[http://dx.doi.org/10.1080/00219266.1996.9655470]
[58]
Mot R, Andries K, Verachtert H. Comparative Study of Starch Degradation and Amylase Production by Ascomycetous Yeast Species. Syst Appl Microbiol 1984; 5: 106-18.
[http://dx.doi.org/10.1016/S0723-2020(84)80055-7]
[59]
Meereboer KW, Misra M, Mohanty AK. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem 2020; 22: 5519-58.
[http://dx.doi.org/10.1039/D0GC01647K]
[60]
Samantaray PK, Little A, Haddleton DM, et al. Poly(glycolic acid) (PGA): a versatile building block expanding high performance and sustainable bioplastic applications. Green Chem 2020; 22: 4055-81.
[http://dx.doi.org/10.1039/D0GC01394C]
[61]
Baker PJ, Numata K. Chemoenzymatic synthesis of poly(L-alanine) in aqueous environment. Biomacromolecules 2012; 13(4): 947-51.
[http://dx.doi.org/10.1021/bm201862z] [PMID: 22380731]
[62]
Goyal N, Gupta SJ, Soni K. A novel raw starch digesting thermostable α-amylase from Bacillus sp. I-3 and its use in the direct hydrolysis of raw potato starch. Enzyme Microb Technol 2005; 35: 723-34.
[http://dx.doi.org/10.1016/j.enzmictec.2005.04.017]
[63]
Catherine LM, William TK, Fogarty M. Production and properties of the raw starch-digesting α-amylase of Bacillus sp. IMD 435. Process Biochem 1999; 35: 27-31.
[http://dx.doi.org/10.1016/S0032-9592(99)00028-X]
[64]
Itkor P, Shida O, Tsukagoshi N, Udaka S. Screening for raw starch digesting bacteria. Agric Biol Chem 2014; 53: 1989.
[65]
Araújo MA, Cunha AM, Mota M. Enzymatic degradation of starch-based thermoplastic compounds used in protheses: identification of the degradation products in solution. Biomaterials 2004; 25(13): 2687-93.
[http://dx.doi.org/10.1016/j.biomaterials.2003.09.093] [PMID: 14751755]
[66]
Parandoosh S, Hudson SM. The acetylation and enzymatic degradation of starch films. Appl Polym 1993; 48: 787-9.
[http://dx.doi.org/10.1002/app.1993.070480504]
[67]
Franco CML, Preto SJ, Ciacco DCF. Factors that Affect the Enzymatic Degradation of Natural Starch Granules Effect of the Size of the Granules. Starch 1992; 44: 422-6.
[http://dx.doi.org/10.1002/star.19920441106]
[68]
Li M-C, Lee JK, Cho UR. Synthesis, characterization, and enzymatic degradation of starch-grafted poly(methyl methacrylate) copolymer films. Appl Polym 2012; 125: 405-14.
[http://dx.doi.org/10.1002/app.35620]
[69]
Vikman M, Hulleman SHD, Zee MVD, Myllarinen P, Feil H. Morphology and enzymatic degradation of thermoplastic starch-polycaprolactone blends. Appl Polym 1999; 74: 2594-604.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19991209)74:11<2594::AID-APP5>3.0.CO;2-R]
[70]
Sarian FD, van der Kaaij RM, Kralj S, et al. Enzymatic degradation of granular potato starch by Microbacterium aurum strain B8.A. Appl Microbiol Biotechnol 2012; 93(2): 645-54.
[http://dx.doi.org/10.1007/s00253-011-3436-7] [PMID: 21732245]
[71]
Tian Y, Mei X, Liang Q, Wu D, Ren N, Xing D. Biological degradation of potato pulp waste and microbial community structure in microbial fuel Cells. RSC Advances 2017; 7: 8376-80.
[http://dx.doi.org/10.1039/C6RA27385H]
[72]
Yerushalmi L, Volesky B. Culture conditions for growth and solvent biosynthesis by a modified Clostridium acetobutylicum. Appl Microbiol Biotechnol 1987; 25: 513-20.
[http://dx.doi.org/10.1007/BF00252009]
[73]
Bertani G. Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J Bacteriol 2004; 186(3): 595-600.
[http://dx.doi.org/10.1128/JB.186.3.595-600.2004] [PMID: 14729683]
[74]
Khoramnejadian S, Zavareh JJ, Khoramnejadian S. Effect of potato starch on thermal & mechanical properties of low density polyethylene. Curr World Environ 2013; 8: 215-20.
[http://dx.doi.org/10.12944/CWE.8.2.06]
[75]
Munegumi T, Inutsuka M, Hayafuji Y. Investigating the hydrolysis of starch using α-amylase contained in dishwashing detergent and human saliva. J Chem Educ 2016; 93: 1401-5.
[http://dx.doi.org/10.1021/acs.jchemed.5b00545]
[76]
da Luz JMR, Paes SA, Bazzolli DMS, Tótola MR, Demuner AJ, Kasuya MCM. Abiotic and biotic degradation of oxo-biodegradable plastic bags by Pleurotus ostreatus. PLoS One 2014; 9(11): e107438.
[http://dx.doi.org/10.1371/journal.pone.0107438] [PMID: 25419675]
[77]
Folino A, Karageorgiou A, Calabrò PS, Komilis D. Biodegradation of wasted bioplastics in natural and industrial environments: A Review. Sustainability 2020; 12: 6030.
[http://dx.doi.org/10.3390/su12156030]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy