Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

基因和血浆Tau蛋白对中国农村人群认知功能障碍的影响

卷 18, 期 1, 2021

发表于: 24 March, 2021

页: [56 - 66] 页: 11

弟呕挨: 10.2174/1567205018666210324122840

价格: $65

摘要

背景:微管相关蛋白tau (MAPT)和血浆tau蛋白对认知的影响尚未引起足够的重视。 目的:在中国农村共招募了3072人。向他们提供调查问卷,并采集血样。 方法:采用MMSE评分将人群分为认知障碍组和对照组。首先,采用logistic回归分析,探讨影响认知功能的可能因素。其次,采用分层抽样的方法,选取1837个样本进行SNP检测。第三,选取288个样本检测三种血浆生物标志物(Tau、磷酸化Tau和Aβ-42)。 结果:对于MAPT rs242557, AG基因型的人比AA基因型的人发生认知障碍的可能性高1.32倍,GG基因型的人比AG基因型的人发生认知障碍的可能性高1.47倍。G携带者的血浆Tau蛋白浓度也升高(P = 0.020)。血浆Tau蛋白与MMSE评分呈负相关(P = 0.004)。 结论:MAPT rs242557 (A >g)的突变增加了认知功能障碍的风险和血浆Tau蛋白的浓度。

关键词: 微管相关蛋白Tau,认知障碍,血浆Tau,基因多态性,中国农村,阿尔茨海默病

[1]
Nagumo R, Zhang Y, Ogawa Y, et al. Automatic detection of cognitive impairments through acoustic analysis of speech. Curr Alzheimer Res 2020; 17(1): 60-8.
[http://dx.doi.org/10.2174/1567205017666200213094513] [PMID: 32053074]
[2]
Yang H, Hong W, Chen L, Tao Y, Peng Z, Zhou H. Analysis of risk factors for depression in Alzheimer’s disease patients. Int J Neurosci 2020; 130(11): 1136-41.
[http://dx.doi.org/10.1080/00207454.2020.1730369] [PMID: 32053409]
[3]
Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol 2018; 25(1): 59-70.
[http://dx.doi.org/10.1111/ene.13439] [PMID: 28872215]
[4]
Alsunusi S, Kumosani TA, Glabe CG, Huwait EA, Moselhy SS. In vitro study of the mechanism of intraneuronal β-amyloid aggregation in Alzheimer’s disease. Arch Physiol Biochem 2020; 1-8.
[http://dx.doi.org/10.1080/13813455.2020.1722707] [PMID: 32046518]
[5]
Lange J, Lunde KA, Sletten C, et al. Association of a BACE1 gene polymorphism with Parkinson’s disease in a norwegian population. Parkinsons Dis 2015; 2015: 973298.
[http://dx.doi.org/10.1155/2015/973298] [PMID: 26788404]
[6]
Myrum C, Nikolaienko O, Bramham CR, Haavik J, Zayats T. Implication of the APP gene in intellectual abilities. J Alzheimers Dis 2017; 59(2): 723-35.
[http://dx.doi.org/10.3233/JAD-170049] [PMID: 28671113]
[7]
Davies G, Harris SE, Reynolds CA, et al. A genome-wide association study implicates the APOE locus in nonpathological cognitive ageing. Mol Psychiatry 2014; 19(1): 76-87.
[http://dx.doi.org/10.1038/mp.2012.159] [PMID: 23207651]
[8]
Ma C, Zhang Y, Li X, et al. Is there a significant interaction effect between apolipoprotein E rs405509 T/T and ε4 genotypes on cognitive impairment and gray matter volume? Eur J Neurol 2016; 23(9): 1415-25.
[http://dx.doi.org/10.1111/ene.13052] [PMID: 27259692]
[9]
Mun MJ, Kim JH, Choi JY, Jang WC. Genetic polymorphisms of interleukin genes and the risk of Alzheimer’s disease: An update meta-analysis. Meta Gene 2016; 8: 1-10.
[http://dx.doi.org/10.1016/j.mgene.2016.01.001] [PMID: 27014584]
[10]
Jia L, Fu Y, Shen L, et al. PSEN1, PSEN2, and APP mutations in 404 Chinese pedigrees with familial Alzheimer's disease. Alzheimer's Dementia: The J Alzheimer's Assoc 2020; 16(12): 178-91.
[11]
Liu QY, Yu JT, Miao D, et al. An exploratory study on STX6, MOBP, MAPT, and EIF2AK3 and late-onset Alzheimer’s disease. Neurobiol Aging 2013; 34(5): 1519.e13.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.10.004] [PMID: 23116876]
[12]
Santa-Maria I, Haggiagi A, Liu X, et al. The MAPT H1 haplotype is associated with tangle-predominant dementia. Acta Neuropathol 2012; 124(5): 693-704.
[http://dx.doi.org/10.1007/s00401-012-1017-1] [PMID: 22802095]
[13]
Heckman MG, Kasanuki K, Brennan RR, et al. Association of MAPT H1 subhaplotypes with neuropathology of lewy body disease. Mov Disord 2019; 34(9): 1325-32.
[http://dx.doi.org/10.1002/mds.27773] [PMID: 31234228]
[14]
Hsieh YC, Guo C, Yalamanchili HK, et al. Tau-mediated disruption of the spliceosome triggers cryptic RNA splicing and neurodegeneration in Alzheimer’s disease. Cell Rep 2019; 29(2): 301-316.e10.
[http://dx.doi.org/10.1016/j.celrep.2019.08.104] [PMID: 31597093]
[15]
Patnode ML, Beller ZW, Han ND, et al. Interspecies competition impacts targeted manipulation of human gut bacteria by fiber-derived glycans. Cell 2019; 179(1): 59-73.e13.
[http://dx.doi.org/10.1016/j.cell.2019.08.011] [PMID: 31539500]
[16]
Chen TB, Lai YH, Ke TL, Chen JP, Lee YJ, Lin SY, et al. Changes in plasma amyloid and tau in a longitudinal study of normal aging, mild cognitive impairment, and Alzheimer’s disease. Dement Geriatr Cogn Disord 2020; 48(3-4): 180-95.
[PMID: 31991443]
[17]
Tracy TE, Gan L. Tau-mediated synaptic and neuronal dysfunction in neurodegenerative disease. Curr Opin Neurobiol 2018; 51: 134-8.
[http://dx.doi.org/10.1016/j.conb.2018.04.027] [PMID: 29753269]
[18]
Jung NY, Kim ES, Kim HS, et al. Comparison of diagnostic performances between cerebrospinal fluid biomarkers and amyloid PET in a clinical setting. J Alzheimers Dis 2020; 74(2): 473-90.
[http://dx.doi.org/10.3233/JAD-191109] [PMID: 32039853]
[19]
Franzmeier N, Neitzel J, Rubinski A, et al. Functional brain architecture is associated with the rate of tau accumulation in Alzheimer’s disease. Nat Commun 2020; 11(1): 347.
[http://dx.doi.org/10.1038/s41467-019-14159-1] [PMID: 31953405]
[20]
Weigand AJ, Bangen KJ, Thomas KR, Delano-Wood L, Gilbert PE, Brickman AM, et al. Is tau in the absence of amyloid on the Alzheimer's continuum?: A study of discordant PET positivity. Brain communications 2020; 2(1): fcz046.
[21]
Ning K, Zhao L, Matloff W, Sun F, Toga AW. Association of relative brain age with tobacco smoking, alcohol consumption, and genetic variants. Sci Rep 2020; 10(1): 10.
[http://dx.doi.org/10.1038/s41598-019-56089-4] [PMID: 32001736]
[22]
Kim JW, Byun MS, Yi D, et al. Association of moderate alcohol intake with in vivo amyloid-beta deposition in human brain: A cross-sectional study. PLoS Med 2020; 17(2): e1003022.
[http://dx.doi.org/10.1371/journal.pmed.1003022] [PMID: 32097439]
[23]
Bohn L, McFall GP, Wiebe SA, Dixon RA. Body mass index predicts cognitive aging trajectories selectively for females: Evidence from the Victoria Longitudinal Study. Neuropsychology 2020; 34(4): 388-403.
[24]
Kang SW, Xiang X. The influence of cognitive impairment on health behaviors among older adults. Am J Health Behav 2020; 44(2): 159-68.
[http://dx.doi.org/10.5993/AJHB.44.2.4] [PMID: 32019649]
[25]
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12(3): 189-98.
[http://dx.doi.org/10.1016/0022-3956(75)90026-6] [PMID: 1202204]
[26]
Wang BR, Zheng HF, Xu C, Sun Y, Zhang YD, Shi JQ. Comparative diagnostic accuracy of ACE-III and MoCA for detecting mild cognitive impairment. Neuropsychiatr Dis Treat 2019; 15: 2647-53.
[http://dx.doi.org/10.2147/NDT.S212328] [PMID: 31571881]
[27]
Hilsabeck RC, Holdnack JA, Cullum CM, Drozdick LW, Edelstein B, Fiske A, et al. The Brief Cognitive Status Examination (BCSE): Comparing diagnostic utility and equating scores to the Mini-Mental State Examination (MMSE). Arch Clin Neuropsychol: The Off J Nat Acad Neuropsychol 2015; 30(5): 458-67.
[28]
Arevalo-Rodriguez I, Smailagic N, Roqué I Figuls M, et al. Mini-Mental State Examination (MMSE) for the detection of Alzheimer’s disease and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev 2015; (3): CD010783.
[PMID: 25740785]
[29]
Tombaugh TN. Test-retest reliable coefficients and 5-year change scores for the MMSE and 3MS. Arch Clin Neuropsychol: The Off J Nat Acad Neuropsychol 2005; 20(1): 485-503.
[30]
Kapusta J, Kidawa TM, Rynkowska-Kidawa M. Evaluation of frequency of occurrence of cognitive impairment in the course of arterial hypertension in an elderly population. Psychogeriatrics 2020; 20(4): 406-11.
[31]
Kaya D, Isik AT, Usarel C, Soysal P, Ellidokuz H, Grossberg GT. The saint louis university mental status examination is better than the mini-mental state examination to determine the cognitive impairment in Turkish elderly people. J Am Med Dir Assoc 2016; 17(4): 370.e11-5.
[http://dx.doi.org/10.1016/j.jamda.2015.12.093] [PMID: 26851199]
[32]
Sánchez-Juan P, Moreno S, de Rojas I, et al. The MAPT H1 haplotype is a risk factor for Alzheimer’s disease in APOE ε4 non-carriers. Front Aging Neurosci 2019; 11: 327.
[http://dx.doi.org/10.3389/fnagi.2019.00327] [PMID: 31866851]
[33]
Laws SM, Friedrich P, Diehl-Schmid J, et al. Fine mapping of the MAPT locus using quantitative trait analysis identifies possible causal variants in Alzheimer’s disease. Mol Psychiatry 2007; 12(5): 510-7.
[http://dx.doi.org/10.1038/sj.mp.4001935] [PMID: 17179995]
[34]
Chen J, Yu JT, Wojta K, et al. Genome-wide association study identifies MAPT locus influencing human plasma tau levels. Neurology 2017; 88(7): 669-76.
[http://dx.doi.org/10.1212/WNL.0000000000003615] [PMID: 28100725]
[35]
Kosik KS, Orecchio LD, Bakalis S, Neve RL. Developmentally regulated expression of specific tau sequences. Neuron 1989; 2(4): 1389-97.
[http://dx.doi.org/10.1016/0896-6273(89)90077-9] [PMID: 2560640]
[36]
Kellogg EH, Hejab NMA, Poepsel S, Downing KH, DiMaio F, Nogales E. Near-atomic model of microtubule-tau interactions. Science 2018; 360(6394): 1242-6.
[http://dx.doi.org/10.1126/science.aat1780] [PMID: 29748322]
[37]
Rubenstein R, Chang B, Petersen R, Chiu A, Davies P. T-Tau and P-Tau in brain and blood from natural and experimental prion diseases. PLoS One 2015; 10(12): e0143103.
[http://dx.doi.org/10.1371/journal.pone.0143103] [PMID: 26630676]
[38]
Gustke N, Steiner B, Mandelkow EM, et al. The Alzheimer-like phosphorylation of tau protein reduces microtubule binding and involves Ser-Pro and Thr-Pro motifs. FEBS Lett 1992; 307(2): 199-205.
[http://dx.doi.org/10.1016/0014-5793(92)80767-B] [PMID: 1644173]
[39]
Tollervey JR, Wang Z, Hortobágyi T, et al. Analysis of alternative splicing associated with aging and neurodegeneration in the human brain. Genome Res 2011; 21(10): 1572-82.
[http://dx.doi.org/10.1101/gr.122226.111] [PMID: 21846794]
[40]
Wade-Martins R. Genetics: The MAPT locus-a genetic paradigm in disease susceptibility. Nat Rev Neurol 2012; 8(9): 477-8.
[http://dx.doi.org/10.1038/nrneurol.2012.169] [PMID: 22940644]
[41]
Qiang L, Sun X, Austin TO, et al. Tau does not stabilize axonal microtubules but rather enables them to have long labile domains. Curr Biol 2018; 28(13): 2181-2189.e4.
[http://dx.doi.org/10.1016/j.cub.2018.05.045] [PMID: 30008334]
[42]
Criado-Marrero M, Sabbagh JJ, Jones MR, Chaput D, Dickey CA, Blair LJ. Hippocampal neurogenesis is enhanced in adult tau deficient mice. Cells 2020; 9(1): E210.
[http://dx.doi.org/10.3390/cells9010210] [PMID: 31947657]
[43]
Harrison TM, Maass A, Adams JN, Du R, Baker SL, Jagust WJ. Tau deposition is associated with functional isolation of the hippocampus in aging. Nat Commun 2019; 10(1): 4900.
[http://dx.doi.org/10.1038/s41467-019-12921-z] [PMID: 31653847]
[44]
Song JX, Malampati S, Zeng Y, et al. A small molecule transcription factor EB activator ameliorates beta-amyloid precursor protein and Tau pathology in Alzheimer’s disease models. Aging Cell 2020; 19(2): e13069.
[http://dx.doi.org/10.1111/acel.13069] [PMID: 31858697]
[45]
Kadavath H, Hofele RV, Biernat J, et al. Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proc Natl Acad Sci USA 2015; 112(24): 7501-6.
[http://dx.doi.org/10.1073/pnas.1504081112] [PMID: 26034266]
[46]
Zhang CC, Xing A, Tan MS, Tan L, Yu JT. The role of MAPT in neurodegenerative diseases: Genetics, mechanisms and therapy. Mol Neurobiol 2016; 53(7): 4893-904.
[http://dx.doi.org/10.1007/s12035-015-9415-8] [PMID: 26363795]
[47]
Welden JR, van Doorn J, Nelson PT, Stamm S. The human MAPT locus generates circular RNAs. Biochim Biophys Acta Mol Basis Dis 2018; 1864(9 Pt B): 2753-60.
[http://dx.doi.org/10.1016/j.bbadis.2018.04.023] [PMID: 29729314]
[48]
Maccioni RB, Farías G, Morales I, Navarrete L. The revitalized tau hypothesis on Alzheimer’s disease. Arch Med Res 2010; 41(3): 226-31.
[http://dx.doi.org/10.1016/j.arcmed.2010.03.007] [PMID: 20682182]
[49]
Shen XN, Miao D, Li JQ, et al. MAPT rs242557 variant is associated with hippocampus tau uptake on 18F-AV-1451 PET in non-demented elders. Aging (Albany NY) 2019; 11(3): 874-84.
[http://dx.doi.org/10.18632/aging.101783] [PMID: 30708351]
[50]
Liyanage SI, Weaver DF. Misfolded proteins as a therapeutic target in Alzheimer’s disease. Adv Protein Chem Struct Biol 2019; 118: 371-411.
[http://dx.doi.org/10.1016/bs.apcsb.2019.08.003] [PMID: 31928732]
[51]
Chen TB, Lai YH, Ke TL, et al. Changes in plasma amyloid and tau in a longitudinal study of normal aging, mild cognitive impairment, and Alzheimer’s disease. Dement Geriatr Cogn Disord 2019; 48(3-4): 180-95.
[http://dx.doi.org/10.1159/000505435] [PMID: 31991443]
[52]
Manzine PR, Vatanabe IP, Peron R, et al. Blood-based biomarkers of Alzheimer’s disease: The long and winding road. Curr Pharm Des 2020; 26(12): 1300-15.
[http://dx.doi.org/10.2174/1381612826666200114105515] [PMID: 31942855]
[53]
Yue JK, Upadhyayula PS, Avalos LN, Deng H, Wang KKW. The role of blood biomarkers for magnetic resonance imaging diagnosis of traumatic brain injury. Medicina (Kaunas) 2020; 56(2): E87.
[http://dx.doi.org/10.3390/medicina56020087] [PMID: 32098419]
[54]
Montagne A, Huuskonen MT, Rajagopal G, Sweeney MD, Nation DA, Sepehrband F, et al. Undetectable gadolinium brain retention in individuals with an age-dependent blood-brain barrier breakdown in the hippocampus and mild cognitive impairment. Alzheimer's Dementia 2019; 15(12): 1568-75.
[http://dx.doi.org/10.1016/j.jalz.2019.07.012]
[55]
Watanabe H, Bagarinao E, Yokoi T, et al. Tau accumulation and network breakdown in Alzheimer’s disease. Adv Exp Med Biol 2019; 1184: 231-40.
[http://dx.doi.org/10.1007/978-981-32-9358-8_19] [PMID: 32096042]
[56]
Stancu IC, Ferraiolo M, Terwel D, Dewachter I. Tau interacting proteins: Gaining insight into the roles of tau in health and disease. Adv Exp Med Biol 2019; 1184: 145-66.
[http://dx.doi.org/10.1007/978-981-32-9358-8_13] [PMID: 32096036]
[57]
Gallardo G, Holtzman DM. Amyloid-β and Tau at the crossroads of Alzheimer’s disease. Adv Exp Med Biol 2019; 1184: 187-203.
[http://dx.doi.org/10.1007/978-981-32-9358-8_16] [PMID: 32096039]
[58]
Park JC, Han SH, Yi D, et al. Plasma tau/amyloid-β1-42 ratio predicts brain tau deposition and neurodegeneration in Alzheimer’s disease. Brain 2019; 142(3): 771-86.
[http://dx.doi.org/10.1093/brain/awy347] [PMID: 30668647]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy