Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

体内/体外EPR研究5xFAD小鼠阿尔茨海默病模型的脑氧化还原状态和血脑屏障完整性

卷 18, 期 1, 2021

发表于: 24 March, 2021

页: [25 - 34] 页: 10

弟呕挨: 10.2174/1567205018666210324121156

价格: $65

摘要

背景:阿尔茨海默病(AD)是最常见的神经退行性疾病,其特征是认知能力下降和完全脑萎缩。尽管付出了大量的科学努力,阿尔茨海默病神经退行性变的病理机制目前尚不清楚。在大多数研究中,淀粉样β肽被认为是AD的关键病理改变。然而,许多Aβ靶向治疗在临床试验中都失败了。这意味着需要将研究重点从Aβ转移到该病的其他病理特征上。 目的:本研究的目的是通过电子顺磁共振(EPR)光谱的应用,研究AD病理过程中线粒体功能障碍、氧化应激和血脑屏障(BBB)破坏之间的相互作用。 方法:采用两种具有不同细胞膜和血脑屏障通透性的自旋探针(氨基氧自由基)进行体内和体外EPR波谱分析,评估5xFAD小鼠模型的血脑屏障完整性和脑组织氧化还原状态。体内自旋探针还原衰减采用双室药代动力学模型进行分析。采用15K电子顺磁共振(EPR)技术检测脑金属含量。 结果:本研究揭示了5xFAD模型中大脑氧化还原状态的改变、血脑屏障的破坏、ROS介导的线粒体铁硫簇损伤以及MnSOD的上调。 结论:EPR自旋探针在5xFAD神经元组织氧化还原状态和血脑屏障完整性方面具有良好的体内报告功能,表明EPR光谱在神经退行性疾病的临床前研究中具有重要的应用价值。

关键词: 阿尔茨海默病,血脑屏障,EPR,线粒体,旋转探针,5xFAD

[1]
Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers 2015; 1: 15056.
[http://dx.doi.org/10.1038/nrdp.2015.56] [PMID: 27188934]
[2]
DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 2019; 14(1): 32.
[http://dx.doi.org/10.1186/s13024-019-0333-5] [PMID: 31375134]
[3]
Alzheimer association Alzheimer’s disease facts and figures. Alzheimers Dement 2019; 1-88.
[4]
Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet 2011; 377(9770): 1019-31.
[http://dx.doi.org/10.1016/S0140-6736(10)61349-9] [PMID: 21371747]
[5]
Iqbal K, Liu F, Gong C-X, Grundke-Iqbal I. Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 2010; 7(8): 656-64.
[http://dx.doi.org/10.2174/156720510793611592] [PMID: 20678074]
[6]
Weggen S, Beher D. Molecular consequences of amyloid precursor protein and presenilin mutations causing autosomal-dominant Alzheimer’s disease. Alzheimers Res Ther 2012; 4(2): 9.
[http://dx.doi.org/10.1186/alzrt107] [PMID: 22494386]
[7]
Chow VW, Mattson MP, Wong PC, Gleichmann M. An overview of APP processing enzymes and products. Neuromolecular Med 2010; 12(1): 1-12.
[http://dx.doi.org/10.1007/s12017-009-8104-z] [PMID: 20232515]
[8]
Sun X, Chen WD, Wang YD. β-Amyloid: The key peptide in the pathogenesis of Alzheimer’s disease. Front Pharmacol 2015; 6: 221.
[http://dx.doi.org/10.3389/fphar.2015.00221] [PMID: 26483691]
[9]
Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics. Nat Rev Drug Discov 2011; 10(9): 698-712.
[http://dx.doi.org/10.1038/nrd3505] [PMID: 21852788]
[10]
Sanz-Blasco S, Calvo-Rodríguez M, Caballero E, García-Durillo M, Núñez L, Villalobos C. Is it all said for NSAIDs in Alzheimer’s disease? Role of mitochondrial calcium uptake. Curr Alzheimer Res 2018; 15(6): 504-10.
[http://dx.doi.org/10.2174/1567205015666171227154016] [PMID: 29283047]
[11]
Beason-Held LL, Goh JO, An Y, et al. Changes in brain function occur years before the onset of cognitive impairment. J Neurosci 2013; 33(46): 18008-14.
[http://dx.doi.org/10.1523/JNEUROSCI.1402-13.2013] [PMID: 24227712]
[12]
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 263-9.
[http://dx.doi.org/10.1016/j.jalz.2011.03.005] [PMID: 21514250]
[13]
Sabbagh MN, Lue LF, Fayard D, Shi J. Increasing precision of clinical diagnosis of Alzheimer’s disease using a combined algorithm incorporating clinical and novel biomarker data. Neurol Ther 2017; 6(Suppl. 1): 83-95.
[http://dx.doi.org/10.1007/s40120-017-0069-5] [PMID: 28733959]
[14]
Márquez F, Yassa MA. Neuroimaging biomarkers for Alzheimer’s disease. Mol Neurodegener 2019; 14(1): 21.
[http://dx.doi.org/10.1186/s13024-019-0325-5] [PMID: 31174557]
[15]
Khan TK. An algorithm for preclinical diagnosis of Alzheimer’s disease. Front Neurosci 2018; 12: 275.
[http://dx.doi.org/10.3389/fnins.2018.00275] [PMID: 29760644]
[16]
Panza F, Lozupone M, Logroscino G, Imbimbo BP. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol 2019; 15(2): 73-88.
[http://dx.doi.org/10.1038/s41582-018-0116-6] [PMID: 30610216]
[17]
Perez Ortiz JM, Swerdlow RH. Mitochondrial dysfunction in Alzheimer’s disease: Role in pathogenesis and novel therapeutic opportunities. Br J Pharmacol 2019; 176(18): 3489-507.
[http://dx.doi.org/10.1111/bph.14585] [PMID: 30675901]
[18]
Moreira PI. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Eur Neurol Rev 2010; 5(1): 17-21.
[http://dx.doi.org/10.17925/ENR.2010.05.01.17]
[19]
Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (N Y) 2018; 4: 575-90.
[http://dx.doi.org/10.1016/j.trci.2018.06.014] [PMID: 30406177]
[20]
Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 2018; 14(3): 133-50.
[http://dx.doi.org/10.1038/nrneurol.2017.188] [PMID: 29377008]
[21]
Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. The role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun 2017; 482(3): 426-31.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.088] [PMID: 28212726]
[22]
Marchi S, Giorgi C, Suski JM, et al. Mitochondria-ros crosstalk in the control of cell death and aging. J Signal Transduct 2012; 2012: 329635.
[http://dx.doi.org/10.1155/2012/329635] [PMID: 22175013]
[23]
Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006; 443(7113): 787-95.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[24]
Brand MD, Affourtit C, Esteves TC, et al. Mitochondrial superoxide: Production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 2004; 37(6): 755-67.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.05.034] [PMID: 15304252]
[25]
Vásquez-Vivar J, Kalyanaraman B, Kennedy MC. Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation. J Biol Chem 2000; 275(19): 14064-9.
[http://dx.doi.org/10.1074/jbc.275.19.14064] [PMID: 10799480]
[26]
Kausar S, Wang F, Cui H. The role of mitochondria in reactive oxygen species generation and its implications for neurodegenerative diseases. Cells 2018; 7(12): 274.
[http://dx.doi.org/10.3390/cells7120274] [PMID: 30563029]
[27]
Cenini G, Lloret A, Cascella R. Oxidative stress in neurodegenerative diseases: From a mitochondrial point of view. Oxid Med Cell Longev 2019; 2019: 2105607.
[http://dx.doi.org/10.1155/2019/2105607] [PMID: 31210837]
[28]
Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther 2017; 360(1): 201-5.
[http://dx.doi.org/10.1124/jpet.116.237503] [PMID: 27754930]
[29]
Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G. Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology. Biochim Biophys Acta – Mol Bas Dis 2010; 1802(1): 2-10.
[http://dx.doi.org/10.1016/j.bbadis.2009.10.006]
[30]
Mosconi L. Glucose metabolism in normal aging and Alzheimer’s disease: Methodological and physiological considerations for PET studies. Clin Transl Imaging 2013; 1(4): 217-33.
[http://dx.doi.org/10.1007/s40336-013-0026-y] [PMID: 24409422]
[31]
Wojsiat J, Zoltowska KM, Laskowska-Kaszub K, Wojda U. Oxidant/antioxidant imbalance in Alzheimer’s disease: Therapeutic and diagnostic prospects. Oxid Med Cell Longev 2018; 2018: 6435861.
[http://dx.doi.org/10.1155/2018/6435861] [PMID: 29636850]
[32]
Wee M, Chegini F, Power JHT, Majd S. Tau positive neurons show marked mitochondrial loss and nuclear degradation in Alzheimer’s disease. Curr Alzheimer Res 2018; 15(10): 928-37.
[http://dx.doi.org/10.2174/1567205015666180613115644] [PMID: 29895248]
[33]
Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008; 57(2): 178-201.
[http://dx.doi.org/10.1016/j.neuron.2008.01.003] [PMID: 18215617]
[34]
Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006; 7(1): 41-53.
[http://dx.doi.org/10.1038/nrn1824] [PMID: 16371949]
[35]
Weiss N, Miller F, Cazaubon S, Couraud PO. The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta 2009; 1788(4): 842-57.
[http://dx.doi.org/10.1016/j.bbamem.2008.10.022] [PMID: 19061857]
[36]
Tohidpour A, Morgun AV, Boitsova EB, et al. Neuroinflammation and infection: Molecular mechanisms associated with dysfunction of neurovascular unit. Front Cell Infect Microbiol 2017; 7: 276.
[http://dx.doi.org/10.3389/fcimb.2017.00276] [PMID: 28676848]
[37]
Montagne A, Zhao Z, Zlokovic BV. Alzheimer’s disease: A matter of blood-brain barrier dysfunction? J Exp Med 2017; 214(11): 3151-69.
[http://dx.doi.org/10.1084/jem.20171406] [PMID: 29061693]
[38]
Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV. Establishment and dysfunction of the blood-brain barrier. Cell 2015; 163(5): 1064-78.
[http://dx.doi.org/10.1016/j.cell.2015.10.067] [PMID: 26590417]
[39]
Nelson AR, Sweeney MD, Sagare AP, Zlokovic BV. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease. Biochim Biophys Acta 2016; 1862(5): 887-900.
[http://dx.doi.org/10.1016/j.bbadis.2015.12.016] [PMID: 26705676]
[40]
Nation DA, Sweeney MD, Montagne A, et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med 2019; 25(2): 270-6.
[http://dx.doi.org/10.1038/s41591-018-0297-y] [PMID: 30643288]
[41]
Carvalho C, Moreira PI. Oxidative stress: A major player in cerebrovascular alterations associated to neurodegenerative events. Front Physiol 2018; 9: 806.
[http://dx.doi.org/10.3389/fphys.2018.00806] [PMID: 30018565]
[42]
Dikalov SI, Polienko YF, Kirilyuk I. Electron paramagnetic resonance measurements of reactive oxygen species by cyclic hydroxylamine spin probes. Antioxid Redox Signal 2018; 28(15): 1433-43.
[http://dx.doi.org/10.1089/ars.2017.7396] [PMID: 29037084]
[43]
Valgimigli L, Pedulli GF, Paolini M. Measurement of oxidative stress by EPR radical-probe technique. Free Radic Biol Med 2001; 31(6): 708-16.
[http://dx.doi.org/10.1016/S0891-5849(01)00490-7] [PMID: 11557308]
[44]
Bačić G, Pavićević A, Peyrot F. In vivo evaluation of different alterations of redox status by studying pharmacokinetics of nitroxides using magnetic resonance techniques. Redox Biol 2016; 8: 226-42.
[http://dx.doi.org/10.1016/j.redox.2015.10.007] [PMID: 26827126]
[45]
Babić N, Peyrot F. Molecular probes for evaluation of oxidative stress by in vivo EPR spectroscopy and imaging: State-of-the-art and limitations. Magnetochemistry 2019; 5(13): 1-21.
[46]
Stamenković S, Pavićević A, Mojović M, et al. In vivo EPR pharmacokinetic evaluation of the redox status and the blood brain barrier permeability in the SOD1G93A ALS rat model. Free Radic Biol Med 2017; 108: 258-69.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.03.034] [PMID: 28366802]
[47]
Popović-Bijelić A, Mojović M, Stamenković S, et al. Iron-sulfur cluster damage by the superoxide radical in neural tissues of the SOD1(G93A) ALS rat model. Free Radic Biol Med 2016; 96: 313-22.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.04.028] [PMID: 27130034]
[48]
Oakley H, Cole SL, Logan S, et al. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 2006; 26(40): 10129-40.
[http://dx.doi.org/10.1523/JNEUROSCI.1202-06.2006] [PMID: 17021169]
[49]
Jaskova K, Pavlovicova M, Jurkovicova D. Electrophysiological variability in the SH-SY5Y cellular line. Gen Physiol Biophys 2014; 31(4): 375-82.
[http://dx.doi.org/10.4149/gpb_2012_053] [PMID: 23255663]
[50]
Iannone A, Hu HP, Tomasi A, Vannini V, Swartz HM. Metabolism of aqueous soluble nitroxides in hepatocytes: Effects of cell integrity, oxygen, and structure of nitroxides. Biochim Biophys Acta 1989; 991(1): 90-6.
[http://dx.doi.org/10.1016/0304-4165(89)90033-0] [PMID: 2540844]
[51]
Zhelev Z, Gadjeva V, Aoki I, Bakalova R, Saga T. Cell-penetrating nitroxides as molecular sensors for imaging of cancer in vivo, based on tissue redox activity. Mol Biosyst 2012; 8(10): 2733-40.
[http://dx.doi.org/10.1039/c2mb25128k] [PMID: 22832934]
[52]
Hyodo F, Matsumoto K, Matsumoto A, Mitchell JB, Krishna MC. Probing the intracellular redox status of tumors with magnetic resonance imaging and redox-sensitive contrast agents. Cancer Res 2006; 66(20): 9921-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0879] [PMID: 17047054]
[53]
Fujii HG, Emoto MC, Sato-akaba H. Brain redox imaging using in vivo electron paramagnetic resonance imaging and nitroxide imaging probes. Magnetochemistry 2019; 5(11): 1-12.
[http://dx.doi.org/10.3390/magnetochemistry5010011]
[54]
Nishino N, Yasui H, Sakurai H. In vivo L-band ESR and quantitative pharmacokinetic analysis of stable spin probes in rats and mice. Free Radic Res 1999; 31(1): 35-51.
[http://dx.doi.org/10.1080/10715769900300581] [PMID: 10489118]
[55]
Storck SE, Meister S, Nahrath J, et al. Endothelial LRP1 transports amyloid-β(1-42) across the blood-brain barrier. J Clin Invest 2016; 126(1): 123-36.
[http://dx.doi.org/10.1172/JCI81108] [PMID: 26619118]
[56]
Park R, Kook SY, Park JC, Mook-Jung I. Aβ1-42 reduces P-glycoprotein in the blood-brain barrier through RAGE-NF-κB signaling. Cell Death Dis 2014; 5(6): 1-11.
[http://dx.doi.org/10.1038/cddis.2014.258]
[57]
Kook SY, Hong HS, Moon M, Ha CM, Chang S, Mook-Jung I. Aβ1-42-RAGE interaction disrupts tight junctions of the blood-brain barrier via Ca2+-calcineurin signaling. J Neurosci 2012; 32(26): 8845-54.
[http://dx.doi.org/10.1523/JNEUROSCI.6102-11.2012] [PMID: 22745485]
[58]
Park JC, Baik SH, Han SH, et al. Annexin A1 restores Aβ1-42 -induced blood-brain barrier disruption through the inhibition of RhoA-ROCK signaling pathway. Aging Cell 2017; 16(1): 149-61.
[http://dx.doi.org/10.1111/acel.12530] [PMID: 27633771]
[59]
Uchida T, Togashi H, Kuroda Y, Haga K, Sadahiro M, Kayama T. In vivo visualization of redox status by high-resolution whole body magnetic resonance imaging using nitroxide radicals. J Clin Biochem Nutr 2018; 63(3): 192-6.
[http://dx.doi.org/10.3164/jcbn.18-18] [PMID: 30487668]
[60]
Kosem N, Naganuma T, Ichikawa K, et al. Whole-body kinetic image of a redox probe in mice using Overhauser-enhanced MRI. Free Radic Biol Med 2012; 53(2): 328-36.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.04.026] [PMID: 22579576]
[61]
Yamato M, Egashira T, Utsumi H. Application of in vivo ESR spectroscopy to measurement of cerebrovascular ROS generation in stroke. Free Radic Biol Med 2003; 35(12): 1619-31.
[http://dx.doi.org/10.1016/j.freeradbiomed.2003.09.013] [PMID: 14680685]
[62]
Sano H, Naruse M, Matsumoto K, Oi T, Utsumi H. A new nitroxyl-probe with high retention in the brain and its application for brain imaging. Free Radic Biol Med 2000; 28(6): 959-69.
[http://dx.doi.org/10.1016/S0891-5849(00)00184-2] [PMID: 10802228]
[63]
Ichikawa K, Sato Y, Kondo H, Utsumi H. An ESR contrast agent is transported to rat liver through organic anion transporter. Free Radic Res 2006; 40(4): 403-8.
[http://dx.doi.org/10.1080/10715760600563542] [PMID: 16517505]
[64]
Samuni A, Goldstein S, Russo A, Mitchell JB, Krishna MC, Neta P. Kinetics and mechanism of hydroxyl radical and OH-adduct radical reactions with nitroxides and with their hydroxylamines. J Am Chem Soc 2002; 124(29): 8719-24.
[http://dx.doi.org/10.1021/ja017587h] [PMID: 12121116]
[65]
Goldstein S, Samuni A. Kinetics and mechanism of peroxyl radical reactions with nitroxides. J Phys Chem A 2007; 111(6): 1066-72.
[http://dx.doi.org/10.1021/jp0655975] [PMID: 17286360]
[66]
Goldstein S, Samuni A, Hideg K, Merenyi G. Structure-activity relationship of cyclic nitroxides as SOD mimics and scavengers of nitrogen dioxide and carbonate radicals. J Phys Chem A 2006; 110(10): 3679-85.
[http://dx.doi.org/10.1021/jp056869r] [PMID: 16526651]
[67]
Bar-On P, Mohsen M, Zhang R, Feigin E, Chevion M, Samuni A. Kinetics of nitroxide reaction with iron(II). J Am Chem Soc 1999; 121(35): 8070-3.
[http://dx.doi.org/10.1021/ja990623g]
[68]
Park L, Anrather J, Zhou P, et al. NADPH-oxidase-derived reactive oxygen species mediate the cerebrovascular dysfunction induced by the amyloid β peptide. J Neurosci 2005; 25(7): 1769-77.
[http://dx.doi.org/10.1523/JNEUROSCI.5207-04.2005] [PMID: 15716413]
[69]
Block ML. NADPH oxidase as a therapeutic target in Alzheimer’s disease. BMC Neurosci 2008; 9(Suppl. 2): S8.
[http://dx.doi.org/10.1186/1471-2202-9-S2-S8] [PMID: 19090996]
[70]
Sumi N, Nishioku T, Takata F, et al. Lipopolysaccharide-activated microglia induce dysfunction of the blood-brain barrier in rat microvascular endothelial cells co-cultured with microglia. Cell Mol Neurobiol 2010; 30(2): 247-53.
[http://dx.doi.org/10.1007/s10571-009-9446-7] [PMID: 19728078]
[71]
Cullen KM, Kócsi Z, Stone J. Pericapillary haem-rich deposits: evidence for microhaemorrhages in aging human cerebral cortex. J Cereb Blood Flow Metab 2005; 25(12): 1656-67.
[http://dx.doi.org/10.1038/sj.jcbfm.9600155] [PMID: 15917745]
[72]
Zenaro E, Pietronigro E, Della Bianca V, et al. Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med 2015; 21(8): 880-6.
[http://dx.doi.org/10.1038/nm.3913] [PMID: 26214837]
[73]
Zenaro E, Piacentino G, Constantin G. The blood-brain barrier in Alzheimer’s disease. Neurobiol Dis 2017; 107: 41-56.
[http://dx.doi.org/10.1016/j.nbd.2016.07.007] [PMID: 27425887]
[74]
Lull ME, Levesque S, Surace MJ, Block ML. Chronic apocynin treatment attenuates beta amyloid plaque size and microglial number in hAPP(751)(SL) mice. PLoS One 2011; 6(5): e20153.
[http://dx.doi.org/10.1371/journal.pone.0020153] [PMID: 21655287]
[75]
Bobko AA, Eubank TD, Voorhees JL, et al. In vivo monitoring of pH, redox status, and glutathione using L-band EPR for assessment of therapeutic effectiveness in solid tumors. Magn Reson Med 2012; 67(6): 1827-36.
[http://dx.doi.org/10.1002/mrm.23196] [PMID: 22113626]
[76]
Doussière J, Gaillard J, Vignais PV. Electron transfer across the O2- generating flavocytochrome b of neutrophils. Evidence for a transition from a low-spin state to a high-spin state of the heme iron component. Biochemistry 1996; 35(41): 13400-10.
[http://dx.doi.org/10.1021/bi960916b] [PMID: 8873608]
[77]
Chandran K, Aggarwal D, Migrino RQ, et al. Doxorubicin inactivates myocardial cytochrome c oxidase in rats: Cardioprotection by Mito-Q. Biophys J 2009; 96(4): 1388-98.
[http://dx.doi.org/10.1016/j.bpj.2008.10.042] [PMID: 19217856]
[78]
Zoppellaro G, Teschner T, Harbitz E, et al. Low-temperature EPR and Mössbauer spectroscopy of two cytochromes with His-Met axial coordination exhibiting HALS signals. ChemPhysChem 2006; 7(6): 1258-67.
[http://dx.doi.org/10.1002/cphc.200500693] [PMID: 16688708]
[79]
Meinhardt SW, Kula T, Yagi T, Lillich T, Ohnishi T. EPR characterization of the iron-sulfur clusters in the NADH: Ubiquinone oxidoreductase segment of the respiratory chain in Paracoccus denitrificans. J Biol Chem 1987; 262(19): 9147-53.
[http://dx.doi.org/10.1016/S0021-9258(18)48060-X] [PMID: 3036849]
[80]
Antholine WE, Vasquez-Vivar J, Quirk BJ, et al. Treatment of cells and tissues with chromate maximizes mitochondrial 2Fe2S EPR signals. Int J Mol Sci 2019; 20(5): E1143.
[http://dx.doi.org/10.3390/ijms20051143] [PMID: 30845710]
[81]
De Leo ME, Borrello S, Passantino M, et al. Oxidative stress and overexpression of manganese superoxide dismutase in patients with Alzheimer’s disease. Neurosci Lett 1998; 250(3): 173-6.
[http://dx.doi.org/10.1016/S0304-3940(98)00469-8] [PMID: 9708860]
[82]
Sompol P, Ittarat W, Tangpong J, et al. A neuronal model of Alzheimer’s disease: An insight into the mechanisms of oxidative stress-mediated mitochondrial injury. Neuroscience 2008; 153(1): 120-30.
[http://dx.doi.org/10.1016/j.neuroscience.2008.01.044] [PMID: 18353561]
[83]
Flynn JM, Melov S. SOD2 in mitochondrial dysfunction and neurodegeneration. Free Radic Biol Med 2013; 62: 4-12.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.05.027] [PMID: 23727323]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy