Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

A Fluorene based Fluorogenic ''Turn-off'' Chemosensor for the Recognition of Cu2+ and Fe2+: Computational Modeling and Living-cell Application

Author(s): Sukriye Nihan Karuk Elmas, Duygu Aydin, Tahir Savran, Eray Caliskan, Kenan Koran, Fatma Nur Arslan, Gokhan Sadi, Ahmet Orhan Gorgulu and Ibrahim Yilmaz*

Volume 18, Issue 2, 2022

Published on: 22 March, 2021

Page: [204 - 216] Pages: 13

DOI: 10.2174/1871520621666210322112005

Price: $65

Abstract

Background: The traditional methods for the detection and quantification of Cu2+ and Fe3+ heavy metal ions are usually troublesome in terms of high-cost, non-portable, time-consuming, specialized personnel and complicated tools, so their applications in practical analyses is limited. Therefore, the development of cheap, fast and simple-use techniques/instruments with high sensitivity/selectivity for the detection of heavy metal ions is highly demanded and studied.

Methods: In this study, a fluorene-based fluorescent ''turn-off'' sensor, methyl 2-(2-((((9H-fluoren-9- yl)methoxy)carbonyl)amino)-3- phenylpropanamido) acetate (probe FLPG) was synthesized via onepot reaction and characterized by 1H-NMR, 13C-APT-NMR, HETCOR, ATR-FTIR and elemental analysis in detailed. All emission spectral studies of the probe FLPG have been performed in CH3CN/HEPES (9/1, v/v, pH=7.4) media at rt. The quantum (Φ) yield of probe FLPG decreased considerably in the presence of Cu2+ and Fe3+. The theoretical computation of probe FLPG and its complexes were also performed using density functional theory (DFT). Furthermore, bio-imaging experiments of the probe FLPG was successfully carried out for Cu2+ and Fe3+ monitoring in living-cells.

Results: The probe FLPG could sense Cu2+ and Fe3+ with high selectivity and sensitivity, and quantitative correlations (R2>0.9000) between the Cu2+/Fe3+ concentrations (0.0−10.0 equiv). The limits of detection for Cu2+ and Fe3+ were found as 25.07 nM and 37.80 nM, respectively. The fluorescence quenching in the sensor is managed by ligand-to-metal charge transfer (LMCT) mechanism. Job’s plot was used to determine the binding stoichiometry (1:2) of the probe FLPG towards Cu2+ and Fe3+. The binding constants with strongly interacting Cu2+ and Fe3+ were determined as 4.56×108 M-2 and 2.02×103+ M-2, respectively, via the fluorescence titration experiments. The outcomes of the computational study supported the fluorescence data. Moreover, the practical application of the probe FLPG was successfully performed for living cells.

Conclusion: This simple chemosensor system offers a highly selective and sensitive sensing platform for the routine detection of Cu2+ and Fe3+, and it keeps away from the usage of costly and sophisticated analysis systems.

Keywords: Fluorescence sensor, fluorene, iron, copper, DFT, bio-imaging.

Graphical Abstract

[1]
Li, D.; Sun, Y.; Shen, Q.; Zhang, Q.; Huang, W.; Kang, Q.; Shen, D. Smartphone-based three-channel ratiometric fluorescent device and application in filed analysis of Hg2+, Fe3+ and Cu2+ in water samples. Microchem. J., 2020, 152104423
[http://dx.doi.org/10.1016/j.microc.2019.104423]
[2]
Wang, S.; Cong, T.; Liang, Q.; Li, Z.; Xu, S. Dual colorimetric and fluorescent chemosensor of Fe3+ and Cu2+ croconine. Tetrahedron, 2015, 71, 5478-5483.
[http://dx.doi.org/10.1016/j.tet.2015.06.081]
[3]
Weerasinghe, A.J.; Abebe, F.A.; Sinn, E. Rhodamine based turn-on dual sensor for Fe3+ and Cu2+. Tetrahedron Lett., 2011, 52, 5648-5651.
[http://dx.doi.org/10.1016/j.tetlet.2011.08.092]
[4]
Elif, Ş.; Bingul, M.; Saglam, M.F.; Kandemir, H.; Sengul, I.F. Synthesis of a novel N,N′,N′-tetraacetyl-4,6-dimethoxyindole-based dual chemosensor for the recognition of Fe3+ and Cu2+ ions. Inorg. Chim. Acta, 2019, 495118947
[http://dx.doi.org/10.1016/j.ica.2019.05.046]
[5]
Chen, Z.E.; Zang, X.F.; Yang, M.; Zhang, H. A simple indolo[2,3-a]carbazole based colorimetric chemosensor for simultaneous detection of Cu2+ and Fe3+ ions. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 234118236
[http://dx.doi.org/10.1016/j.saa.2020.118236] [PMID: 32179460]
[6]
Erdemir, S.; Malkondu, S.; Kocyigit, O.A. Blue/red dual-emitting multi-responsive fluorescent Probe for Fe3+, Cu2+ and cysteine based on isophorone-antharecene. Microchem. J., 2020, 157105075
[http://dx.doi.org/10.1016/j.microc.2020.105075]
[7]
Wang, J.; Wei, T.; Ma, F.; Li, T.; Niu, Q. A novel fluorescent and colorimetric dual-channel sensor for the fast, reversible and simultaneous detection of Fe3+ and Cu2+ based on terthiophene derivative with high sensitivity and selectivity. J. Photochem. Photobiol. Chem., 2019, 383111982
[http://dx.doi.org/10.1016/j.jphotochem.2019.111982]
[8]
Joshi, S.; Kumari, S.; Sarmah, A.; Sakhuja, R.; Pant, D.D. Solvatochromic shift and estimation of dipole moment of synthesized coumarin derivative: Application as sensor for fluorogenic recognition of Fe3+ and Cu2+ ions in aqueous solution. J. Mol. Liq., 2016, 222, 253-262.
[http://dx.doi.org/10.1016/j.molliq.2016.07.047]
[9]
Guo, Y.; Wang, L.; Zhuo, J.; Xu, B.; Li, X.; Zhang, J.; Zhang, Z.; Chi, H.; Dong, Y.; Lu, G. A pyrene-based dual chemosensor for colorimetric detection of Cu2+ and fluorescent detection of Fe3+. Tetrahedron Lett., 2017, 58, 3951-3956.
[http://dx.doi.org/10.1016/j.tetlet.2017.08.078]
[10]
Desai, V.; Kaler, S.G. Role of copper in human neurological disorders. Am. J. Clin. Nutr., 2008, 88(3), 855S-858S.
[http://dx.doi.org/10.1093/ajcn/88.3.855S] [PMID: 18779308]
[11]
Brewer, G.J. Iron and copper toxicity in diseases of aging, particularly atherosclerosis and Alzheimer’s disease. Exp. Biol. Med. (Maywood), 2007, 232(2), 323-335.
[PMID: 17259340]
[12]
Lal, S.; Kumar, S.; Hooda, S.; Kumar, P. A highly selective sensor for Cu2+ and Fe3+ ions in aqueous medium: Spectroscopic, computational and cell imaging studies. J. Photochem. Photobiol. Chem., 2018, 364, 811-818.
[http://dx.doi.org/10.1016/j.jphotochem.2018.07.021]
[13]
Myint, Z.W.; Oo, T.H.; Thein, K.Z.; Tun, A.M.; Saeed, H. Copper deficiency anemia: review article. Ann. Hematol., 2018, 97(9), 1527-1534.
[http://dx.doi.org/10.1007/s00277-018-3407-5] [PMID: 29959467]
[14]
Klevay, L.M. Trace element nutrition and human health cardiovascular disease from copper deficiency-a history. J. Nutr., 2000, 130, 489-492.
[http://dx.doi.org/10.1093/jn/130.2.489S]
[15]
Şenkuytu, E. A high selective turn-off aminopyrene based cyclotriphosphazene fluorescent chemosensors for Fe3+ Cu2+ ions. Inorg. Chim. Acta, 2018, 479, 58-65.
[http://dx.doi.org/10.1016/j.ica.2018.04.028]
[16]
Li, S.; Zhang, D.; Xie, X.; Ma, S.; Liu, Y.; Xu, Z.; Gao, Y. A novel solvent-dependently bifunctional NIR absorptive and fluorescent ratiometric probe for detecting Fe3+/Cu2+ and its application in bioimaging. Sens. Actuators B Chem., 2016, 224, 661-667.
[http://dx.doi.org/10.1016/j.snb.2015.10.086]
[17]
Yang, Y.; Gao, C.; Zhang, N.; Dong, D. Tetraphenylethene functionalized rhodamine chemosensor for Fe3+ and Cu2+ ions in aqueous media. Sens. Actuators B Chem., 2016, 222, 741-746.
[http://dx.doi.org/10.1016/j.snb.2015.08.125]
[18]
Altamura, S.; Muckenthaler, M.U. Iron toxicity in diseases of aging: Alzheimer’s disease, Parkinson’s disease and atherosclerosis. J. Alzheimers Dis., 2009, 16(4), 879-895.
[http://dx.doi.org/10.3233/JAD-2009-1010] [PMID: 19387120]
[19]
Wood, J.C.; Ghugre, N. Magnetic resonance imaging assessment of excess iron in thalassemia, sickle cell disease and other iron overload diseases. Hemoglobin, 2008, 32(1-2), 85-96.
[http://dx.doi.org/10.1080/03630260701699912] [PMID: 18274986]
[20]
Qian, Z.M.; Wang, Q. Expression of iron transport proteins and excessive iron accumulation in the brain in neurodegenerative disorders. Brain Res. Brain Res. Rev., 1998, 27(3), 257-267.
[http://dx.doi.org/10.1016/S0165-0173(98)00012-5] [PMID: 9729418]
[21]
Çukurovali, A.; Yilmaz, I.; Özmen, H. Antimicrobial Activity Studies of the Metal Complexes Derived from Substituted Cyclobutane Substituted Thiazole Schiff Base Ligands. Transit. Met. Chem., 2001, 26, 619-624.
[http://dx.doi.org/10.1023/A:1012006404144]
[22]
Cukurovali, A.; Yilmaz, I. Synthesis and characterization of a new cyclobutane substituted schiff base ligand and its Cd(II), Co(II), Ni(II) and Zn(II) complexes‎. Pol. J. Chem., 2000, 74, 147-151.
[http://dx.doi.org/10.1002/chin.200023130]
[23]
Aksuner, N.; Henden, E.; Yilmaz, I.; Cukurovali, A. Development of a highly sensitive and selective optical chemical sensor for the determination of zinc based on fluorescence quenching of a novel schiff base ligand. Sens. Lett., 2010, 8, 684-689.
[http://dx.doi.org/10.1166/sl.2010.1330]
[24]
Aksuner, N.; Henden, E.; Yenigul, B.; Yilmaz, I.; Cukurovali, A. Highly sensitive sensing of zinc(II) by development and characterization of a PVC-based fluorescent chemical sensor. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 78(3), 1133-1138.
[http://dx.doi.org/10.1016/j.saa.2010.12.065] [PMID: 21257342]
[25]
Karuk Elmas, Ş.N.; Ozen, F.; Koran, K.; Yilmaz, I.; Gorgulu, A.O.; Erdemir, S. Coumarin Based Highly Selective “off-on-off” Type Novel Fluorescent Sensor for Cu2+ and S2- in Aqueous Solution. J. Fluoresc., 2017, 27(2), 463-471.
[http://dx.doi.org/10.1007/s10895-016-1972-3] [PMID: 27995460]
[26]
Wang, J.; Wei, T.; Ma, F.; Li, T.; Niu, Q. A novel fluorescent and colorimetric dual-channel sensor for the fast, reversible and simultaneous detection of Fe3+ and Cu2+ based on terthiophene derivative with high sensitivity and selectivity. J. Photochem. Photobiol. Chem., 2019, 383.
[http://dx.doi.org/10.1016/j.jphotochem.2019.111982]
[27]
Kawakami, J.; Sasaki, Y.; Yanase, K.; Ito, S. Benzo-fused BODIPY derivative as a fluorescent chemosensor for Fe3+, Cu2+, and Al3+. Trans. Mater. Res. Soc. Jpn., 2019, 73, 3-7.
[http://dx.doi.org/10.14723/tmrsj.44.69]
[28]
Zhang, B.; Liu, H.; Wu, F.; Hao, G.F.; Chen, Y.; Tan, C.; Tan, Y.; Jiang, Y. A dual-response quinoline-based fluorescent sensor for the detection of copper (II) and iron(III) ions in aqueous medium. Sens. Actuators B Chem., 2017, 243, 765-774.
[http://dx.doi.org/10.1016/j.snb.2016.12.067]
[29]
Zhu, X.; Duan, Y.; Li, P.; Fan, H.; Han, T.; Huang, X. A highly selective and instantaneously responsive schiff base fluorescent sensor for the “turn-off” detection of iron(III), iron(II), and copper(II) ions. Anal. Methods, 2019, 11, 642-647.
[http://dx.doi.org/10.1039/C8AY02526F]
[30]
Hay, P.J.; Wadt, W.R.; Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. potentials for the transition metal atoms Sc to Hg Ab initio effective core potentials for molecular calculations. potentials for the transition metal atoms Sc to Hg. J. Chem. Phys., 1985, 82(1), 270-283.
[http://dx.doi.org/10.1063/1.448799]
[31]
Lee, C.; Hill, C.; Carolina, N. Development of the colic-salvetti correlation-energy formula into a functional of the electron density. Phys. rewiev B, 1988, 37, 785-789.
[32]
Becke, A.D. Becke’s three parameter hybrid method using the LYP correlation functional. J. Chem. Phys., 1993, 98, 5648-5652.
[http://dx.doi.org/10.1063/1.464913]
[33]
Frisch, A.M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V. 09 Revision D.01 2014.
[34]
Dennington, R.; Keith, T.A.; Millam, J.M. GaussView Version 5, 2009.
[35]
Garrett, C.E.; Jiang, X.; Prasad, K.; Repic, O. New Observations on Peptide Bond Formation Using CDMT. Tetrahedron Lett., 2002, 43, 4161-4165.
[http://dx.doi.org/10.1016/S0040-4039(02)00754-2]
[36]
Percec, V.; Dulcey, A.E.; Peterca, M.; Adelman, P.; Samant, R.; Balagurusamy, V.S.K.; Heiney, P.A.; Uni, V.; Pennsyl, V. Helical pores self-assembled from homochiral dendritic dipeptides based on L-Tyr and nonpolar alpha-amino acids. J. Am. Chem. Soc., 2007, 129(18), 5992-6002.
[http://dx.doi.org/10.1021/ja071088k] [PMID: 17429976]
[37]
Shi, Y.; Ye, J.; Qi, Y.; Akram, M.A.; Rauf, A.; Ning, G. An anionic layered europium(iii) coordination polymer for solvent-dependent selective luminescence sensing of Fe3+ and Cu2+ ions and latent fingerprint detection. Dalton Trans., 2018, 47(48), 17479-17485.
[http://dx.doi.org/10.1039/C8DT04042G] [PMID: 30511078]
[38]
Qiu, S.; Cui, S.; Shi, F.; Pu, S. Novel diarylethene-based fluorescent switching for the detection of Al3+ and construction of logic circuit. ACS Omega, 2019, 4(12), 14841-14848.
[http://dx.doi.org/10.1021/acsomega.9b01432] [PMID: 31552323]
[39]
Aydin, D. A novel turn on fluorescent probe for the determination of Al3+ and Zn2+ ions and its cells applications. Talanta, 2020, 210120615
[http://dx.doi.org/10.1016/j.talanta.2019.120615] [PMID: 31987182]
[40]
Phapale, D.; Gaikwad, A.; Das, D. Selective recognition of Cu (II) and Fe (III) using a pyrene based chemosensor. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 178, 160-165.
[http://dx.doi.org/10.1016/j.saa.2017.01.064] [PMID: 28182986]
[41]
Dos Santos Carlos, F.; Monteiro, R.F.; da Silva, L.A.; Zanlorenzi, C.; Nunes, F.S. A highly selective acridine-based fluorescent probe for detection of Al3+ in alcoholic beverage samples. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 231118119
[http://dx.doi.org/10.1016/j.saa.2020.118119] [PMID: 32032858]
[42]
Nunes, M.C.; Carlos, F. dos S.; Fuganti, O.; Galindo, D.D.; De Boni, L.; Abate, G.; Nunes, F.S. Turn-on fluorescence study of a highly selective acridine-based chemosensor for Zn2+ in aqueous solutions. Inorg. Chim. Acta, 2020, 499119191
[http://dx.doi.org/10.1016/j.ica.2019.119191]
[43]
Jiang, Z.; Tang, L.; Shao, F.; Zheng, G.; Lu, P. Synthesis and characterization of 9-(cycloheptatrienylidene)fluorene derivatives: New fluorescent chemosensors for detection of Fe3+ and Cu2+. Sens. Actuators B Chem., 2008, 134, 414-418.
[http://dx.doi.org/10.1016/j.snb.2008.05.019]
[44]
Cheng, P.; Xu, K.; Yao, W.; Xie, E.; Liu, J. Novel fluorescent chemosensors based on carbazole for Cu2+ and Fe3+ in aqueous media. J. Lumin., 2013, 143, 583-586.
[http://dx.doi.org/10.1016/j.jlumin.2013.06.013]
[45]
Wang, L.; Ye, D.; Li, W.; Liu, Y.; Li, L.; Zhang, W.; Ni, L. Fluorescent and colorimetric detection of Fe(III) and Cu(II) by a difunctional rhodamine-based probe. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 183, 291-297.
[http://dx.doi.org/10.1016/j.saa.2017.04.056] [PMID: 28456087]
[46]
Huang, C.Y. Determination of binding stoichiometry by the continuous variation method: the Job plot. Methods Enzymol., 1982, 87, 509-525.
[http://dx.doi.org/10.1016/S0076-6879(82)87029-8] [PMID: 7176926]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy