Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

A Novel Quinoline Derivative for Selective and Sensitive Visual Detection of PPB Level Cu2+ in an Aqueous Solution

Author(s): Nilimesh Das, Tanmoy Khan, Aritra Das, Vipin Kumar Jain, Joydev Acharya, Md. Serajul Haque Faizi, Joseph Daniel and Pratik Sen*

Volume 18, Issue 2, 2022

Published on: 23 November, 2020

Page: [196 - 203] Pages: 8

DOI: 10.2174/1573411016999201123162027

Price: $65

Abstract

Aim: Selective and sensitive visual detection of Cu2+in aqueous solution at PPB level using an easily synthesized compound.

Background: The search for a chemosensor that can detect Cu2+ is very long owing to the fact that an optimum level of Cu2+ is required for human health and the recommended amount of Cu2+ in drinking water is set to be 1-2 mgL-1. Thus, it is very important to detect Cu2+ even at a very low concentration to assess the associated health risks.

Objective: We are still seeking the easiest, cheapest, fastest and greenest sensor that can selectively, sensitively and accurately detect Cu2+ with the lowest detection limit. Our objective of this work was to find one such Cu2+ sensor.

Methods: We have synthesized a quinoline derivative following very easy synthetic procedures and characterized the compound by standard methods. For the sensing study, we used steady state absorption and emission spectroscopy.

Results: Our sensor can detect Cu2+ selectively and sensitively in an aqueous solution instantaneously, even in the presence of an excess amount of other salts. The pale-yellow color of the sensor turns red on the addition of Cu2+. There is no interference from other cations and anions. A 2:1 binding mechanism of the ligand with Cu2+ is proposed using Jobs plot with binding constant in the order of 109 M-2. We calculated the LOD to be 18 ppb, which is quite low than what is permissible in drinking water.

Conclusion: We developed a new quinoline based chemosensor following a straightforward synthetic procedure from very cheap starting materials that can detect Cu2+ visually and instantaneously in an aqueous solution with ppb level sensitivity and zero interference from other ions.

Keywords: Chemosensor, copper detection, visual sensing, PPB sensitivity, health risks, aqueous solution.

Graphical Abstract

[1]
Yu, C.; Zhang, J.; Wang, R.; Chen, L. Highly sensitive and selective colorimetric and off-on fluorescent probe for Cu(2+) based on rhodamine derivative. Org. Biomol. Chem., 2010, 8(23), 5277-5279.
[http://dx.doi.org/10.1039/c0ob00553c] [PMID: 20927482]
[2]
Crabb, E.; Moore, E.; Smart, L. Concepts in transition metal chemistry; Royal Society of Chemistry, 2010, Vol. 1, .
[3]
Da Silva, J.F.; Williams, R.J.P. The biological chemistry of the elements: the inorganic chemistry of life; Oxford University Press, 2001.
[4]
Xie, R.; Yi, Y.; He, Y.; Liu, X.; Liu, Z.X.; Upadhyaya, K.; Ajay, A.; Mahar, R.; Pandey, R.; Kumar, B.; Shukla, S.K. A simple BODIPY e imidazole-based probe for the colorimetric and fluorescent sensing of Cu (II) and Hg (II). Tetrahedron, 2013, 69, 8535-8539.
[http://dx.doi.org/10.1016/j.tet.2013.07.059]
[5]
Karlin, K.D. Metalloenzymes, structural motifs, and inorganic models. Science, 1993, 261(5122), 701-708.
[http://dx.doi.org/10.1126/science.7688141] [PMID: 7688141]
[6]
Kumar, A.; Kumar, V.; Diwan, U.; Upadhyay, K.K. Highly sensitive and selective naked-eye detection of Cu2+ in aqueous medium by a ninhydrin–quinoxaline derivative. Sens. Actuators B Chem., 2013, 176, 420-427.
[http://dx.doi.org/10.1016/j.snb.2012.09.089]
[7]
Liu, J.J.; Diaz, D.E.; Quist, D.A.; Karlin, K.D. Copper(I)-Dioxygen Adducts and Copper Enzyme Mechanisms. Isr. J. Chem., 2016, 56, 9-10.
[http://dx.doi.org/10.1002/ijch.201600025] [PMID: 27909346]
[8]
Su, J.; Xu, J.; Chen, Y.; Xiang, Y.; Yuan, R.; Chai, Y. Sensitive detection of copper(II) by a commercial glucometer using click chemistry. Biosens. Bioelectron., 2013, 45, 219-222.
[http://dx.doi.org/10.1016/j.bios.2013.01.069] [PMID: 23500367]
[9]
Li, J.; Zeng, Y.; Hu, Q.; Yu, X.; Guo, J.; Pan, Z. A fluorescence “turn-on” chemodosimeter for Cu2+ in aqueous solution based on the ion promoted oxidation. Dalton Trans., 2012, 41(13), 3623-3626.
[http://dx.doi.org/10.1039/c2dt12497a] [PMID: 22358460]
[10]
Que, E.L.; Domaille, D.W.; Chang, C.J. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem. Rev., 2008, 108(5), 1517-1549.
[http://dx.doi.org/10.1021/cr078203u] [PMID: 18426241]
[11]
Georgopoulos, P.G.; Roy, A.; Yonone-Lioy, M.J.; Opiekun, R.E.; Lioy, P.J. Environmental copper: its dynamics and human exposure issues. J. Toxicol. Environ. Health B Crit. Rev., 2001, 4(4), 341-394.
[http://dx.doi.org/10.1080/109374001753146207] [PMID: 11695043]
[12]
Harless, W.; Crowell, E.; Abraham, J. Anemia and neutropenia associated with copper deficiency of unclear etiology. Am. J. Hematol., 2006, 81(7), 546-549.
[http://dx.doi.org/10.1002/ajh.20647] [PMID: 16755565]
[13]
Crisponi, G.; Nurchi, V.M.; Fanni, D.; Gerosa, C.; Nemolato, S.; Faa, G. Copper-related diseases : From chemistry to molecular pathology. Coord. Chem. Rev., 2010, 254, 876-889.
[http://dx.doi.org/10.1016/j.ccr.2009.12.018]
[14]
Turnlund, J.R.; Keyes, W.R.; Anderson, H.L.; Acord, L.L. Copper absorption and retention in young men at three levels of dietary copper by use of the stable isotope 65Cu. Am. J. Clin. Nutr., 1989, 49(5), 870-878.
[http://dx.doi.org/10.1093/ajcn/49.5.870] [PMID: 2718922]
[15]
Rae, T.D.; Schmidt, P.J.; Pufahl, R.A.; Culotta, V.C.; O’Halloran, T.V. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science, 1999, 284(5415), 805-808.
[http://dx.doi.org/10.1126/science.284.5415.805] [PMID: 10221913]
[16]
Strausak, D.; Mercer, J.F.; Dieter, H.H.; Stremmel, W.; Multhaup, G. Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases. Brain Res. Bull., 2001, 55(2), 175-185.
[http://dx.doi.org/10.1016/S0361-9230(01)00454-3] [PMID: 11470313]
[17]
Scheinberg, I.H.; Sternlieb, I. Wilson disease and idiopathic copper toxicosis. Am. J. Clin. Nutr., 1996, 63(5), 842S-845S.
[http://dx.doi.org/10.1093/ajcn/63.5.842] [PMID: 8615372]
[18]
Qian, Y.; Cao, L.; Jia, C.; Boamah, P.O.; Yang, Q.; Liu, C.; Huang, Y.; Zhang, Q. A highly selective chemosensor for naked-eye sensing of nanomolar Cu(II) in aqueous medium. RSC Advances, 2015, 5, 77965-77972.
[http://dx.doi.org/10.1039/C5RA12407G]
[19]
Jonas, R.B. Copper and Cupric Ion Toxicity in Microbial Community Estuarine. Appl. Environ. Microbiol., 1989, 55, 43-49.
[http://dx.doi.org/10.1128/AEM.55.1.43-49.1989] [PMID: 16347833]
[20]
Trace elements in human nutrition and health. World Health Organization, 1996, 1-360.
[21]
Goswami, S.; Sen, D.; Das, N.K. A new highly selective, ratiometric and colorimetric fluorescence sensor for Cu(2+) with a remarkable red shift in absorption and emission spectra based on internal charge transfer. Org. Lett., 2010, 12(4), 856-859.
[http://dx.doi.org/10.1021/ol9029066] [PMID: 20104900]
[22]
Chrastný, V.; Komárek, M. Copper determination using ICP-MS with hexapole collision cell. Chem. Pap., 2009, 63, 512-519.
[http://dx.doi.org/10.2478/s11696-009-0057-z]
[23]
Martin, C.R.; Freiser, H. Ion-selective electrodes based on an ionic polymer. Anal. Chem., 1981, 53, 902-904.
[http://dx.doi.org/10.1021/ac00229a037]
[24]
Fen, Y.W.; Yunus, W.M.; Yusof, N.A. Detection of mercury and copper ions using surface plasmon resonance optical sensor. Sens. Mater., 2011, 23, 325-334.
[25]
Hong, S.; Kang, T.; Moon, J.; Oh, S.; Yi, J. Surface plasmon resonance analysis of aqueous copper ions with amino-terminated self-assembled monolayers. Colloid. Surface. A., 2007, 292, 264-270.
[http://dx.doi.org/10.1016/j.colsurfa.2006.06.031]
[26]
Gattás-Asfura, K.M.; Leblanc, R.M. Peptide-coated CdS quantum dots for the optical detection of copper(II) and silver(I). Chem. Commun. (Camb.), 2003, 21(21), 2684-2685.
[http://dx.doi.org/10.1039/B308991F] [PMID: 14649810]
[27]
Yin, B.C.; Zuo, P.; Huo, H.; Zhong, X.; Ye, B.C. DNAzyme self-assembled gold nanoparticles for determination of metal ions using fluorescence anisotropy assay. Anal. Biochem., 2010, 401(1), 47-52.
[http://dx.doi.org/10.1016/j.ab.2010.02.014] [PMID: 20159005]
[28]
Xu, G.; Zhang, L.; Yu, W.; Sun, Z.; Guan, J.; Zhang, J.; Lin, J.; Zhou, J.; Fan, J.; Murugadoss, V.; Guo, Z. Low optical dosage heating-reduced viscosity for fast and large-scale cleanup of spilled crude oil by reduced graphene oxide melamine nanocomposite adsorbents. Nanotechnology, 2020, 31(22)225402
[http://dx.doi.org/10.1088/1361-6528/ab76eb] [PMID: 32066134]
[29]
Dayanidhi, K.; Vadivel, P.; Jothi, S.; Sheik Eusuff, N. White eggshells: A potential biowaste material for synergetic adsorption and naked-eye colorimetric detection of heavy metal ions from aqueous solution. ACS Appl. Mater. Interfaces, 2020, 12(1), 1746-1756.
[http://dx.doi.org/10.1021/acsami.9b14481] [PMID: 31834771]
[30]
Liao, S.; Zhao, J.; Qin, Y.; Zhao, S. A novel fluorescence polarization assay for copper ions based on DNA-templated click chemistry and amplification of nanoparticles. RSC. adv 2017, 7, 55668-72.
[31]
Chandrasekhar, V.; Das, S.; Yadav, R.; Hossain, S.; Parihar, R.; Subramaniam, G.; Sen, P. Novel chemosensor for the visual detection of copper(II) in aqueous solution at the ppm level. Inorg. Chem., 2012, 51(16), 8664-8666.
[http://dx.doi.org/10.1021/ic301399a] [PMID: 22867034]
[32]
Liu, Z.C.; Yang, Z.Y.; Li, T.R.; Wang, B.D.; Li, Y.; Qin, D.D.; Wang, M.F.; Yan, M.H. An effective Cu(II) quenching fluorescence sensor in aqueous solution and 1D chain coordination polymer framework. Dalton Trans., 2011, 40(37), 9370-9373.
[http://dx.doi.org/10.1039/c1dt10987a] [PMID: 21847485]
[33]
Yang, S.; Yin, B.; Xu, L.; Gao, B.; Sun, H.; Du, L.; Tang, Y.WJ. F, C. Analytical Methods highly sensitive and selective detection of copper. Anal. Methods, 2015, 7, 4546-4551.
[http://dx.doi.org/10.1039/C5AY00375J]
[34]
Long, L.; Wu, Y.; Wang, L.; Gong, A.; Hu, R.; Zhang, C. Complete suppression of the fluorophore fluorescence by combined effect of multiple fluorescence quenching groups: A fluorescent sensor for Cu2+ with zero background signals. Anal. Chim. Acta, 2016, 908, 1-7.
[http://dx.doi.org/10.1016/j.aca.2015.12.016] [PMID: 26826684]
[35]
Ghosh, S.; Khan, M.A.; Ganguly, A.; Masum, A.A.; Alam, M.A.; Guchhait, N. Binding mode dependent signaling for the detection of Cu2+: An experimental and theoretical approach with practical applications. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 190, 471-477.
[http://dx.doi.org/10.1016/j.saa.2017.09.049] [PMID: 28963971]
[36]
Ghosh, S.; Ganguly, A.; Bhattacharyya, A.; Alam, MA.; Guchhait, N. Selective chromo-fluorogenic molecular sensor for dual channel recognition of Cu 2+ and F−: effect of functional group on selectivity. RSC. adv. 2016, 6, 67693-700.
[37]
Bhattacharyya, A.; Ghosh, S.; Guchhait, N. Highly sensitive and selective “naked eye” sensing of Cu(II) by a novel amido–imine based receptor: a spectrophotometric and DFT study with practical application. RSC. adv. 2016, 6, 28194-199.
[38]
Ganguly, A.; Ghosh, S.; Kar, S.; Guchhait, N. Selective fluorescence sensing of Cu(II) and Zn(II) using a simple Schiff base ligand: naked eye detection and elucidation of photoinduced electron transfer (PET) mechanism. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 143, 72-80.
[http://dx.doi.org/10.1016/j.saa.2015.02.013] [PMID: 25721777]
[39]
Kundu, A.; Ganguly, A.; Dhara, K.; Patra, P.; Guchhait, N. An efficient solvent-free synthesis of bis (indolyl) methane-based naked eye chemosensor for Cu2+ ion from β-chloro-α, β-unsaturated aldehydes using PMA-Cellulose as a solid phase reusable catalyst. RSC Advances, 2015, 5, 53220-53229.
[http://dx.doi.org/10.1039/C5RA09802E]
[40]
Hrishikesan, E.; Saravanan, C.; Kannan, P. Bis-Triazole-Appended Azobenzene Chromophore for Selective Sensing of Copper (II). Ion. Ind. Eng. Chem. Res., 2011, 50, 8225-8229.
[http://dx.doi.org/10.1021/ie200548j]
[41]
Kaur, P.; Sareen, D.; Singh, K. Selective colorimetric sensing of Cu2+ using triazolyl monoazo derivative. Talanta, 2011, 83(5), 1695-1700.
[http://dx.doi.org/10.1016/j.talanta.2010.11.072] [PMID: 21238770]
[42]
Lu, C.H.; Wang, Y.W.; Ye, S.L.; Chen, G.N.; Yang, H.H. Ultrasensitive detection of Cu2 + with the naked eye and application in immunoassays. NPG Asia Mater., 2012, 4, 10-17.
[http://dx.doi.org/10.1038/am.2012.18]
[43]
Wang, S.; Chen, Z.; Chen, L.; Liu, R.; Chen, L. Label-free colorimetric sensing of copper(II) ions based on accelerating decomposition of H2O2 using gold nanorods as an indicator. Analyst (Lond.), 2013, 138(7), 2080-2084.
[http://dx.doi.org/10.1039/c3an36722c] [PMID: 23420019]
[44]
Gunnlaugsson, T.; Leonard, J.P.; Murray, N.S. Highly selective colorimetric naked-eye Cu(II) detection using an azobenzene chemosensor. Org. Lett., 2004, 6(10), 1557-1560.
[http://dx.doi.org/10.1021/ol0498951] [PMID: 15128235]
[45]
Liu, J.M.; Wang, H.F.; Yan, X.P. A gold nanorod based colorimetric probe for the rapid and selective detection of Cu2+ ions. Analyst (Lond.), 2011, 136(19), 3904-3910.
[http://dx.doi.org/10.1039/c1an15460e] [PMID: 21826298]
[46]
Tang, L.; Li, F.; Liu, M.; Nandhakumar, R. Single sensor for two metal ions: colorimetric recognition of Cu2+ and fluorescent recognition of Hg2+. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 78(3), 1168-1172.
[http://dx.doi.org/10.1016/j.saa.2010.12.072] [PMID: 21242100]
[47]
Kumar, A.; Chae, P.S.; Kumar, S. A dual-responsive anthrapyridne –triazole-based probe for selective detection of Ni2+ and Cu2+: A mimetic system for molecular logic gates based on color change; Dyes Pigm, 2020, p. 174108092.
[http://dx.doi.org/10.1016/j.dyepig.2019.108092]
[48]
Li, X.; Fan, K.; Zhang, X.; Wang, L.; Qu, B.; Lu, L. Highly selective sequential recognition of Cu2+ and cys based on large absorption band shift. Microchem. J., 2019, 146, 486-491.
[http://dx.doi.org/10.1016/j.microc.2019.01.045]
[49]
Nouri Moghadam, F.; Amirnasr, M.; Meghdadi, S.; Eskandari, K.; Buchholz, A.; Plass, W. A new fluorene derived Schiff-base as a dual selective fluorescent probe for Cu2+ and CN. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 207, 6-15.
[http://dx.doi.org/10.1016/j.saa.2018.08.058] [PMID: 30195186]
[50]
Ge, J-H.; Zou, Y.; Yan, Y-H.; Lin, S.; Zhao, X-F.; Cao, Q-Y. A new ferrocene–anthracene dyad for dual-signaling sensing of Cu(II) and Hg(II). J. Photochem. Photobiol. Chem., 2016, 315, 67-75.
[http://dx.doi.org/10.1016/j.jphotochem.2015.09.011]
[51]
Mohan, V.; Das, N.; Jain, V.K.; Khan, T.; Pandey, S.K.; Faizi, M.S.H.; Daniel, J.; Sen, P. Highly selective and sensitive (PPB level) quinolin‐based colorimetric chemosensor for Cu (II). ChemistrySelect, 2020, 5, 9435-9442.
[http://dx.doi.org/10.1002/slct.202001814]
[52]
Faizi, M.S.H.; Hussain, S. Dichlorido(N,N-diethyl-4-{[(quinolin-2 -yl)methylidene]amino-k2,N,N′}aniline)-mercury(II). Act. Crystall. E., 2014, 70, 197.
[http://dx.doi.org/10.1107/S160053681400957X]
[53]
Ding, Y.; Li, T.; Zhu, W.; Xie, Y. Highly selective colorimetric sensing of cyanide based on formation of dipyrrin adducts. Org. Biomol. Chem., 2012, 10(21), 4201-4207.
[http://dx.doi.org/10.1039/c2ob25297j] [PMID: 22522605]
[54]
Shortreed, M.; Kopelman, R.; Kuhn, M.; Hoyland, B. Fluorescent fiber-optic calcium sensor for physiological measurements. Anal. Chem., 1996, 68(8), 1414-1418.
[http://dx.doi.org/10.1021/ac950944k] [PMID: 8651501]
[55]
Das, A.; Dighe, S.U.; Das, N.; Batra, S.; Sen, P. β-carboline-based turn-on fluorescence chemosensor for quantitative detection of fluoride at PPB level. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019.220117099
[http://dx.doi.org/10.1016/j.saa.2019.05.004] [PMID: 31141766s]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy