Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

姜黄素类似物 EF24 对化疗耐药的黑色素瘤细胞具有高度活性

卷 21, 期 7, 2021

发表于: 03 March, 2021

页: [608 - 618] 页: 11

弟呕挨: 10.2174/1568009621666210303092921

价格: $65

摘要

背景:由于恶性黑色素瘤(MM) 细胞对化疗无反应,MM 是一种预后较差的侵袭性皮肤癌。 目的:在本研究中,我们评估了几种姜黄素类似物对四种 MM 细胞系(SK-MEL-28、MeWo、A-375 和 CHL-1)的有效性,并探讨了它们的潜在作用机制。 方法:通过基于四唑的 MTS 测定法测量细胞活力。通过流式细胞术检测细胞凋亡、活性氧 (ROS) 和细胞周期。通过蛋白质印迹分析蛋白质水平。 结果:MM细胞对常规化疗药物顺铂和达卡巴嗪以及靶向治疗药物威罗非尼具有很强的抗性。在姜黄素类似物中,EF24 是对抗耐药性 MM 细胞最有效的化合物。 EF24 剂量和时间依赖性地通过诱导细胞凋亡降低 MM 细胞的活力。虽然 EF24 没有增加活性氧 (ROS) 的产生,但它上调了内质网 (ER) 应激标记 BiP,但下调了未折叠蛋白反应 (UPR) 信号。此外,用 EF24 处理 MM 细胞会下调抗凋亡蛋白 Bcl-2 以及已知可保护 MM 细胞免于凋亡的凋亡蛋白抑制剂 (IAP) XIAP、cIAP1 和 Birc7 的表达。 EF24 下调 Bcl-2 和 IAP 表达与抑制 NF-κB 通路有关。 结论:这些发现表明 EF24 是一种有效的抗 MM 剂。 抗 MM 效应可能是由抑制 UPR 和 NF-κB 通路介导的。

关键词: Bcl-2、EF24、IAP、恶性黑色素瘤、NF-κB、未折叠蛋白反应。

图形摘要

[1]
MacKie, R.M.; Hauschild, A.; Eggermont, A.M.M. Epidemiology of invasive cutaneous melanoma. Ann. Oncol., 2009, 20(Suppl. 6), vi1-vi7.
[http://dx.doi.org/10.1093/annonc/mdp252] [PMID: 19617292]
[2]
Duncan, L.M. The classification of cutaneous melanoma. Hematol. Oncol. Clin. North Am., 2009, 23(3), 501-513, ix.
[http://dx.doi.org/10.1016/j.hoc.2009.03.013] [PMID: 19464599]
[3]
Markovic, S.N.; Erickson, L.A.; Rao, R.D.; Weenig, R.H.; Pockaj, B.A.; Bardia, A.; Vachon, C.M.; Schild, S.E.; McWilliams, R.R.; Hand, J.L.; Laman, S.D.; Kottschade, L.A.; Maples, W.J.; Pittelkow, M.R.; Pulido, J.S.; Cameron, J.D.; Creagan, E.T. Malignant melanoma in the 21st century, part 1: Epidemiology, risk factors, screening, prevention, and diagnosis. Mayo Clin. Proc., 2007, 82(3), 364-380.
[http://dx.doi.org/10.1016/S0025-6196(11)61033-1] [PMID: 17352373]
[4]
Sun, W.; Schuchter, L.M. Metastatic melanoma. Curr. Treat. Options Oncol., 2001, 2(3), 193-202.
[http://dx.doi.org/10.1007/s11864-001-0033-5] [PMID: 12057119]
[5]
Elder, D.E. Melanoma progression. Pathology, 2016, 48(2), 147-154.
[http://dx.doi.org/10.1016/j.pathol.2015.12.002] [PMID: 27020387]
[6]
Atkins, M.B.; Hsu, J.; Lee, S.; Cohen, G.I.; Flaherty, L.E.; Sosman, J.A.; Sondak, V.K.; Kirkwood, J.M. Phase III trial comparing concurrent biochemotherapy with cisplatin, vinblastine, dacarbazine, interleukin-2, and interferon alfa-2b with cisplatin, vinblastine, and dacarbazine alone in patients with metastatic malignant melanoma (E3695): A trial coordinated by the Eastern Cooperative Oncology Group. J. Clin. Oncol., 2008, 26(35), 5748-5754.
[http://dx.doi.org/10.1200/JCO.2008.17.5448] [PMID: 19001327]
[7]
Kim, A.; Cohen, M.S. The discovery of vemurafenib for the treatment of BRAF-mutated metastatic melanoma. Expert Opin. Drug Discov., 2016, 11(9), 907-916.
[http://dx.doi.org/10.1080/17460441.2016.1201057] [PMID: 27327499]
[8]
Long, G.V.; Hauschild, A.; Santinami, M.; Atkinson, V.; Mandalà, M.; Chiarion-Sileni, V.; Larkin, J.; Nyakas, M.; Dutriaux, C.; Haydon, A.; Robert, C.; Mortier, L.; Schachter, J.; Schadendorf, D.; Lesimple, T.; Plummer, R.; Ji, R.; Zhang, P.; Mookerjee, B.; Legos, J.; Kefford, R.; Dummer, R.; Kirkwood, J.M. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N. Engl. J. Med., 2017, 377(19), 1813-1823.
[http://dx.doi.org/10.1056/NEJMoa1708539] [PMID: 28891408]
[9]
Nevala, W.K.; Buhrow, S.A.; Knauer, D.J.; Reid, J.M.; Atanasova, E.A.; Markovic, S.N. Antibody-targeted chemotherapy for the treatment of melanoma. Cancer Res., 2016, 76(13), 3954-3964.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3131] [PMID: 27197186]
[10]
Weiss, S.A.; Wolchok, J.D.; Sznol, M. Immunotherapy of melanoma: Facts and hopes. Clin. Cancer Res., 2019, 25(17), 5191-5201.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1550] [PMID: 30923036]
[11]
Lim, S.Y.; Menzies, A.M.; Rizos, H. Mechanisms and strategies to overcome resistance to molecularly targeted therapy for melanoma. Cancer, 2017, 123(S11), 2118-2129.
[http://dx.doi.org/10.1002/cncr.30435] [PMID: 28543695]
[12]
Roesch, A.; Vultur, A.; Bogeski, I.; Wang, H.; Zimmermann, K.M.; Speicher, D.; Körbel, C.; Laschke, M.W.; Gimotty, P.A.; Philipp, S.E.; Krause, E.; Pätzold, S.; Villanueva, J.; Krepler, C.; Fukunaga-Kalabis, M.; Hoth, M.; Bastian, B.C.; Vogt, T.; Herlyn, M. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell, 2013, 23(6), 811-825.
[http://dx.doi.org/10.1016/j.ccr.2013.05.003] [PMID: 23764003]
[13]
Smalley, K.S.M.; Haass, N.K.; Brafford, P.A.; Lioni, M.; Flaherty, K.T.; Herlyn, M. Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Mol. Cancer Ther., 2006, 5(5), 1136-1144.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0084] [PMID: 16731745]
[14]
Soengas, M.S.; Lowe, S.W. Apoptosis and melanoma chemoresistance. Oncogene, 2003, 22(20), 3138-3151.
[http://dx.doi.org/10.1038/sj.onc.1206454] [PMID: 12789290]
[15]
Najem, A.; Krayem, M.; Salès, F.; Hussein, N.; Badran, B.; Robert, C.; Awada, A.; Journe, F.; Ghanem, G.E. P53 and MITF/Bcl-2 identified as key pathways in the acquired resistance of NRAS-mutant melanoma to MEK inhibition. Eur. J. Cancer, 2017, 83, 154-165.
[http://dx.doi.org/10.1016/j.ejca.2017.06.033] [PMID: 28738256]
[16]
Eberle, J.; Kurbanov, B.M.; Hossini, A.M.; Trefzer, U.; Fecker, L.F. Overcoming apoptosis deficiency of melanoma-hope for new therapeutic approaches. Drug Resist. Updat., 2007, 10(6), 218-234.
[http://dx.doi.org/10.1016/j.drup.2007.09.001] [PMID: 18054518]
[17]
Chang, H.; Schimmer, A.D. Livin/melanoma inhibitor of apoptosis protein as a potential therapeutic target for the treatment of malignancy. Mol. Cancer Ther., 2007, 6(1), 24-30.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0443] [PMID: 17237263]
[18]
Schmollinger, J.C.; Dranoff, G. Targeting melanoma inhibitor of apoptosis protein with cancer immunotherapy. Apoptosis, 2004, 9(3), 309-313.
[http://dx.doi.org/10.1023/B:APPT.0000025807.59668.5e] [PMID: 15258462]
[19]
Mirzaei, H.; Naseri, G.; Rezaee, R.; Mohammadi, M.; Banikazemi, Z.; Mirzaei, H.R.; Salehi, H.; Peyvandi, M.; Pawelek, J.M.; Sahebkar, A. Curcumin: A new candidate for melanoma therapy? Int. J. Cancer, 2016, 139(8), 1683-1695.
[http://dx.doi.org/10.1002/ijc.30224] [PMID: 27280688]
[20]
Song, X.; Gao, T.; Lei, Q.; Zhang, L.; Yao, Y.; Xiong, J. Piperlongumine induces apoptosis in human melanoma cells via reactive oxygen species mediated mitochondria disruption. Nutr. Cancer, 2018, 70(3), 502-511.
[http://dx.doi.org/10.1080/01635581.2018.1445769] [PMID: 29543494]
[21]
Caunii, A.; Oprean, C.; Cristea, M.; Ivan, A.; Danciu, C.; Tatu, C.; Paunescu, V.; Marti, D.; Tzanakakis, G.; Spandidos, D.A.; Tsatsakis, A.; Susan, R.; Soica, C.; Avram, S.; Dehelean, C. Effects of ursolic and oleanolic on SK-MEL-2 melanoma cells: In vitro and in vivo assays. Int. J. Oncol., 2017, 51(6), 1651-1660.
[http://dx.doi.org/10.3892/ijo.2017.4160] [PMID: 29039461]
[22]
Bindseil, K.U.; Jakupovic, J.; Wolf, D.; Lavayre, J.; Leboul, J.; van der Pyl, D. Pure compound libraries; a new perspective for natural product based drug discovery. Drug Discov. Today, 2001, 6(16), 840-847.
[http://dx.doi.org/10.1016/S1359-6446(01)01856-6] [PMID: 11495757]
[23]
Vuorelaa, P.; Leinonenb, M.; Saikkuc, P.; Tammelaa, P.; Rauhad, J-P.; Wennberge, T.; Vuorela, H. Natural products in the process of finding new drug candidates. Curr. Med. Chem., 2004, 11(11), 1375-1389.
[http://dx.doi.org/10.2174/0929867043365116] [PMID: 15180572]
[24]
Lam, K.S. New aspects of natural products in drug discovery. Trends Microbiol., 2007, 15(6), 279-289.
[http://dx.doi.org/10.1016/j.tim.2007.04.001] [PMID: 17433686]
[25]
Ouyang, L.; Luo, Y.; Tian, M.; Zhang, S-Y.; Lu, R.; Wang, J-H.; Kasimu, R.; Li, X. Plant natural products: from traditional compounds to new emerging drugs in cancer therapy. Cell Prolif., 2014, 47(6), 506-515.
[http://dx.doi.org/10.1111/cpr.12143] [PMID: 25377084]
[26]
Shanmugam, M.K.; Rane, G.; Kanchi, M.M.; Arfuso, F.; Chinnathambi, A.; Zayed, M.E.; Alharbi, S.A.; Tan, B.K.H.; Kumar, A.P.; Sethi, G. The multifaceted role of curcumin in cancer prevention and treatment. Molecules, 2015, 20(2), 2728-2769.
[http://dx.doi.org/10.3390/molecules20022728] [PMID: 25665066]
[27]
Ak, T.; Gülçin, I. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact., 2008, 174(1), 27-37.
[http://dx.doi.org/10.1016/j.cbi.2008.05.003] [PMID: 18547552]
[28]
Jurenka, J.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern. Med. Rev., 2009, 14(2), 141-153.
[PMID: 19594223]
[29]
Moghadamtousi, S.Z.; Kadir, H.A.; Hassandarvish, P.; Tajik, H.; Abubakar, S.; Zandi, K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Res. Int., 2014, 2014, 186864.
[http://dx.doi.org/10.1155/2014/186864] [PMID: 24877064]
[30]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[31]
Adams, B.K.; Cai, J.; Armstrong, J.; Herold, M.; Lu, Y.J.; Sun, A.; Snyder, J.P.; Liotta, D.C.; Jones, D.P.; Shoji, M. EF24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redox-dependent mechanism. Anticancer Drugs, 2005, 16(3), 263-275.
[http://dx.doi.org/10.1097/00001813-200503000-00005] [PMID: 15711178]
[32]
Madan, E.; Parker, T.M.; Bauer, M.R.; Dhiman, A.; Pelham, C.J.; Nagane, M.; Kuppusamy, M.L.; Holmes, M.; Holmes, T.R.; Shaik, K.; Shee, K.; Kiparoidze, S.; Smith, S.D.; Park, Y.A.; Gomm, J.J.; Jones, L.J.; Tomás, A.R.; Cunha, A.C.; Selvendiran, K.; Hansen, L.A.; Fersht, A.R.; Hideg, K.; Gogna, R.; Kuppusamy, P. The curcumin analog HO-3867 selectively kills cancer cells by converting mutant p53 protein to transcriptionally active wildtype p53. J. Biol. Chem., 2018, 293(12), 4262-4276.
[http://dx.doi.org/10.1074/jbc.RA117.000950] [PMID: 29382728]
[33]
Dinkova-Kostova, A.T.; Cory, A.H.; Bozak, R.E.; Hicks, R.J.; Cory, J.G. Bis(2-hydroxybenzylidene)acetone, a potent inducer of the phase 2 response, causes apoptosis in mouse leukemia cells through a p53-independent, caspase-mediated pathway. Cancer Lett., 2007, 245(1-2), 341-349.
[http://dx.doi.org/10.1016/j.canlet.2006.01.024] [PMID: 16517063]
[34]
Tamvakopoulos, C.; Dimas, K.; Sofianos, Z.D.; Hatziantoniou, S.; Han, Z.; Liu, Z-L.; Wyche, J.H.; Pantazis, P. Metabolism and anticancer activity of the curcumin analogue, dimethoxycurcumin. Clin. Cancer Res., 2007, 13(4), 1269-1277.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1839] [PMID: 17317839]
[35]
He, Y.; Li, W.; Hu, G.; Sun, H.; Kong, Q. Bioactivities of EF24, a novel curcumin analog: A review. Front. Oncol., 2018, 8, 614.
[http://dx.doi.org/10.3389/fonc.2018.00614] [PMID: 30619754]
[36]
Adams, B.K.; Ferstl, E.M.; Davis, M.C.; Herold, M.; Kurtkaya, S.; Camalier, R.F.; Hollingshead, M.G.; Kaur, G.; Sausville, E.A.; Rickles, F.R.; Snyder, J.P.; Liotta, D.C.; Shoji, M. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg. Med. Chem., 2004, 12(14), 3871-3883.
[http://dx.doi.org/10.1016/j.bmc.2004.05.006] [PMID: 15210154]
[37]
Li, W.; He, Y.; Zhang, R.; Zheng, G.; Zhou, D. The curcumin analog EF24 is a novel senolytic agent. Aging (Albany NY), 2019, 11(2), 771-782.
[http://dx.doi.org/10.18632/aging.101787] [PMID: 30694217]
[38]
Chen, W.; Zou, P.; Zhao, Z.; Chen, X.; Fan, X.; Vinothkumar, R.; Cui, R.; Wu, F.; Zhang, Q.; Liang, G.; Ji, J. Synergistic antitumor activity of rapamycin and EF24 via increasing ROS for the treatment of gastric cancer. Redox Biol., 2016, 10, 78-89.
[http://dx.doi.org/10.1016/j.redox.2016.09.006] [PMID: 27697670]
[39]
Chen, X.; Dai, X.; Zou, P.; Chen, W.; Rajamanickam, V.; Feng, C.; Zhuge, W.; Qiu, C.; Ye, Q.; Zhang, X.; Liang, G. Curcuminoid EF24 enhances the anti-tumour activity of Akt inhibitor MK-2206 through ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction in gastric cancer. Br. J. Pharmacol., 2017, 174(10), 1131-1146.
[http://dx.doi.org/10.1111/bph.13765] [PMID: 28255993]
[40]
Lee, A.S. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods, 2005, 35(4), 373-381.
[http://dx.doi.org/10.1016/j.ymeth.2004.10.010] [PMID: 15804610]
[41]
Hetz, C.; Papa, F.R. The unfolded protein response and cell fate control. Mol. Cell, 2018, 69(2), 169-181.
[http://dx.doi.org/10.1016/j.molcel.2017.06.017] [PMID: 29107536]
[42]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[43]
Singh, R.; Letai, A.; Sarosiek, K. Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol., 2019, 20(3), 175-193.
[http://dx.doi.org/10.1038/s41580-018-0089-8] [PMID: 30655609]
[44]
Igney, F.H.; Krammer, P.H. Death and anti-death: tumour resistance to apoptosis. Nat. Rev. Cancer, 2002, 2(4), 277-288.
[http://dx.doi.org/10.1038/nrc776] [PMID: 12001989]
[45]
Lee, E.F.; Harris, T.J.; Tran, S.; Evangelista, M.; Arulananda, S.; John, T.; Ramnac, C.; Hobbs, C.; Zhu, H.; Gunasingh, G.; Segal, D.; Behren, A.; Cebon, J.; Dobrovic, A.; Mariadason, J.M.; Strasser, A.; Rohrbeck, L.; Haass, N.K.; Herold, M.J.; Fairlie, W.D. BCL-XL and MCL-1 are the key BCL-2 family proteins in melanoma cell survival. Cell Death Dis., 2019, 10(5), 342.
[http://dx.doi.org/10.1038/s41419-019-1568-3] [PMID: 31019203]
[46]
Deveraux, Q.L.; Reed, J.C. IAP family proteins- suppressors of apoptosis. Genes Dev., 1999, 13(3), 239-252.
[http://dx.doi.org/10.1101/gad.13.3.239] [PMID: 9990849]
[47]
Engesæter, B.O.; Sathermugathevan, M.; Hellenes, T.; Engebråten, O.; Holm, R.; Flørenes, V.A.; Mælandsmo, G.M. Targeting inhibitor of apoptosis proteins in combination with dacarbazine or TRAIL in melanoma cells. Cancer Biol. Ther., 2011, 12(1), 47-58.
[http://dx.doi.org/10.4161/cbt.12.1.15714] [PMID: 21508672]
[48]
Vucic, D.; Stennicke, H.R.; Pisabarro, M.T.; Salvesen, G.S.; Dixit, V.M. ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr. Biol., 2000, 10(21), 1359-1366.
[http://dx.doi.org/10.1016/S0960-9822(00)00781-8] [PMID: 11084335]
[49]
Wang, H.; Tan, S.S.; Wang, X.Y.; Liu, D.H.; Yu, C.S.; Bai, Z.L.; He, D.L.; Zhao, J. Silencing livin gene by siRNA leads to apoptosis induction, cell cycle arrest, and proliferation inhibition in malignant melanoma LiBr cells. Acta Pharmacol. Sin., 2007, 28(12), 1968-1974.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00724.x] [PMID: 18031611]
[50]
Catz, S.D.; Johnson, J.L. Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene, 2001, 20(50), 7342-7351.
[http://dx.doi.org/10.1038/sj.onc.1204926] [PMID: 11704864]
[51]
Oeckinghaus, A.; Ghosh, S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol., 2009, 1(4), a000034.
[http://dx.doi.org/10.1101/cshperspect.a000034] [PMID: 20066092]
[52]
Tentori, L.; Lacal, P.M.; Graziani, G. Challenging resistance mechanisms to therapies for metastatic melanoma. Trends Pharmacol. Sci., 2013, 34(12), 656-666.
[http://dx.doi.org/10.1016/j.tips.2013.10.003] [PMID: 24210882]
[53]
Chinembiri, T.N.; du Plessis, L.H.; Gerber, M.; Hamman, J.H.; du Plessis, J. Review of natural compounds for potential skin cancer treatment. Molecules, 2014, 19(8), 11679-11721.
[http://dx.doi.org/10.3390/molecules190811679] [PMID: 25102117]
[54]
Anand, P.; Thomas, S.G.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Sung, B.; Tharakan, S.T.; Misra, K.; Priyadarsini, I.K.; Rajasekharan, K.N.; Aggarwal, B.B. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem. Pharmacol., 2008, 76(11), 1590-1611.
[http://dx.doi.org/10.1016/j.bcp.2008.08.008] [PMID: 18775680]
[55]
Maheshwari, R.K.; Singh, A.K.; Gaddipati, J.; Srimal, R.C. Multiple biological activities of curcumin: A short review. Life Sci., 2006, 78(18), 2081-2087.
[http://dx.doi.org/10.1016/j.lfs.2005.12.007] [PMID: 16413584]
[56]
Kasinski, A.L.; Du, Y.; Thomas, S.L.; Zhao, J.; Sun, S-Y.; Khuri, F.R.; Wang, C-Y.; Shoji, M.; Sun, A.; Snyder, J.P.; Liotta, D.; Fu, H. Inhibition of IkappaB kinase-nuclear factor-kappaB signaling pathway by 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24), a novel monoketone analog of curcumin. Mol. Pharmacol., 2008, 74(3), 654-661.
[http://dx.doi.org/10.1124/mol.108.046201] [PMID: 18577686]
[57]
Sun, S-C. The non-canonical NF-κB pathway in immunity and inflammation. Nat. Rev. Immunol., 2017, 17(9), 545-558.
[http://dx.doi.org/10.1038/nri.2017.52] [PMID: 28580957]
[58]
Viatour, P.; Bentires-Alj, M.; Chariot, A.; Deregowski, V.; de Leval, L.; Merville, M-P.; Bours, V. NF- kappa B2/p100 induces Bcl-2 expression. Leukemia, 2003, 17(7), 1349-1356.
[http://dx.doi.org/10.1038/sj.leu.2402982] [PMID: 12835724]
[59]
Zou, T.; Rao, J.N.; Guo, X.; Liu, L.; Zhang, H.M.; Strauch, E.D.; Bass, B.L.; Wang, J-Y. NF-kappaB-mediated IAP expression induces resistance of intestinal epithelial cells to apoptosis after polyamine depletion. Am. J. Physiol. Cell Physiol., 2004, 286(5), C1009-C1018.
[http://dx.doi.org/10.1152/ajpcell.00480.2003] [PMID: 15075199]
[60]
Yang, C.H.; Yue, J.; Sims, M.; Pfeffer, L.M. The curcumin analog EF24 targets NF-κB and miRNA-21, and has potent anticancer activity in vitro and in vivo. PLoS One, 2013, 8(8), e71130.
[http://dx.doi.org/10.1371/journal.pone.0071130] [PMID: 23940701]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy