Mini-Review Article

白血病感染诊断与肠道菌群紊乱

卷 22, 期 1, 2022

发表于: 02 March, 2021

页: [2 - 7] 页: 6

弟呕挨: 10.2174/1566524021666210302144720

价格: $65

摘要

白血病是儿童最常见的恶性肿瘤,可通过化疗治愈。感染是儿童白血病治疗相关死亡和治疗失败的一个重要原因。近年来的研究表明,白血病感染的发生与肠道菌群的相关性越来越受到关注。肠道菌群可以影响人体的生理防御和免疫功能。当肠道菌群失调发生时,与肠道菌群改变甚至可能与上皮屏障形态功能改变相关的代谢产物/微生物可能是早期诊断白血病感染的有希望的诊断生物标志物。本文就白血病感染与肠道菌群的相互作用以及肠道菌群在白血病感染发生发展中的影响作一综述。

关键词: 肠道菌群失调,儿童,白血病,感染,诊断,治疗。

[1]
Madhusoodhan PP, Carroll WL, Bhatla T. Progress and Prospects in Pediatric Leukemia. Curr Probl Pediatr Adolesc Health Care 2016; 46(7): 229-41.
[http://dx.doi.org/10.1016/j.cppeds.2016.04.003] [PMID: 27283082]
[2]
Jundt F, Schwarzer R, Dörken B. Notch signaling in leukemias and lymphomas. Curr Mol Med 2008; 8(1): 51-9.
[http://dx.doi.org/10.2174/156652408783565540] [PMID: 18289013]
[3]
Wu C, Li W. Genomics and pharmacogenomics of pediatric acute lymphoblastic leukemia. Crit Rev Oncol Hematol 2018; 126: 100-11.
[http://dx.doi.org/10.1016/j.critrevonc.2018.04.002] [PMID: 29759551]
[4]
Abdelmabood S, Fouda AE, Boujettif F, Mansour A. Treatment outcomes of children with acute lymphoblastic leukemia in a middle-income developing country: high mortalities, early relapses, and poor survival. J Pediatr (Rio J) 2020; 96(1): 108-16.
[http://dx.doi.org/10.1016/j.jped.2018.07.013] [PMID: 30240631]
[5]
Kiem Hao T, Nhu Hiep P, Kim Hoa NT, Van Ha C. Causes of Death in Childhood Acute Lymphoblastic leukemia at Hue Central Hospital for 10 Years (2008-2018). Glob Pediatr Health 2020.
[6]
Murphy K, Curley D, O’Callaghan TF, et al. The Composition of Human Milk and Infant Faecal Microbiota Over the First Three Months of Life: A Pilot Study. Sci Rep 2017; 7: 40597.
[http://dx.doi.org/10.1038/srep40597] [PMID: 28094284]
[7]
Soares MB, Martinez RCR, Pereira EPR, et al. The resistance of Bacillus, Bifidobacterium, and Lactobacillus strains with claimed probiotic properties in different food matrices exposed to simulated gastrointestinal tract conditions. Food Res Int 2019; 125108542
[http://dx.doi.org/10.1016/j.foodres.2019.108542] [PMID: 31554104]
[8]
Kayama H, Okumura R, Takeda K. Interaction Between the Microbiota, Epithelia, and Immune Cells in the Intestine. Annu Rev Immunol 2020; 38: 23-48.
[http://dx.doi.org/10.1146/annurev-immunol-070119-115104] [PMID: 32340570]
[9]
Chastagner P, Michel D, Contet A, et al. Effectiveness of antibacterial prophylaxis in children with acute leukemia: A report from a single institution over a 20-year period. Arch Pediatr 2018; 25(8): 464-8.
[http://dx.doi.org/10.1016/j.arcped.2018.09.012] [PMID: 30340941]
[10]
Zhu Y, Yang R, Cai J, et al. Septicemia after chemotherapy for childhood acute lymphoblastic leukemia in China: A multicenter study CCCG-ALL-2015. Cancer Med 2020; 9(6): 2113-21.
[http://dx.doi.org/10.1002/cam4.2889] [PMID: 31994344]
[11]
Sung L, Lange BJ, Gerbing RB, Alonzo TA, Feusner J. Microbiologically documented infections and infection-related mortality in children with acute myeloid leukemia. Blood 2007; 110(10): 3532-9.
[http://dx.doi.org/10.1182/blood-2007-05-091942] [PMID: 17660380]
[12]
Pelland-Marcotte MC, Hwee J, Pole JD, Nathan PC, Sung L. Incidence of infections after therapy completion in children with acute lymphoblastic leukemia or acute myeloid leukemia: A systematic review of the literature. Leuk Lymphoma 2019; 60(9): 2104-14.
[http://dx.doi.org/10.1080/10428194.2019.1573369] [PMID: 30774019]
[13]
Kolonen A, Sinisalo M, Huttunen R, et al. Bloodstream infections in acute myeloid leukemia patients treated according to the Finnish Leukemia Group AML-2003 protocol - a prospective nationwide study. Infect Dis (Lond) 2017; 49(11-12): 799-808.
[http://dx.doi.org/10.1080/23744235.2017.1347814] [PMID: 28683646]
[14]
Inaba H, Pei D, Wolf J, et al. Infection-related complications during treatment for childhood acute lymphoblastic leukemia. Ann Oncol 2017; 28(2): 386-92.
[http://dx.doi.org/10.1093/annonc/mdw557] [PMID: 28426102]
[15]
Lyman GH, Michels SL, Reynolds MW, Barron R, Tomic KS, Yu J. Risk of mortality in patients with cancer who experience febrile neutropenia. Cancer 2010; 116(23): 5555-63.
[http://dx.doi.org/10.1002/cncr.25332] [PMID: 20715160]
[16]
Ecker DJ, Sampath R, Li H, et al. New technology for rapid molecular diagnosis of bloodstream infections. Expert Rev Mol Diagn 2010; 10(4): 399-415.
[http://dx.doi.org/10.1586/erm.10.24] [PMID: 20465496]
[17]
Kimura SI, Gomyo A, Hayakawa J, et al. Clinical significance of repeat blood cultures during febrile neutropenia in adult acute myeloid leukaemia patients undergoing intensive chemotherapy. Infect Dis (Lond) 2017; 49(10): 748-57.
[http://dx.doi.org/10.1080/23744235.2017.1340665] [PMID: 28631944]
[18]
Opota O, Jaton K. Molecular and mass spectrometry detection and identification of causative agents of bloodstream infections 2016.
[19]
Forbes JD, Knox NC, Ronholm J, Pagotto F, Reimer A. Metagenomics: The Next Culture-Independent Game Changer. Front Microbiol 2017; 8: 1069.
[http://dx.doi.org/10.3389/fmicb.2017.01069] [PMID: 28725217]
[20]
Gyarmati P, Kjellander C, Aust C, Song Y, Öhrmalm L, Giske CG. Metagenomic analysis of bloodstream infections in patients with acute leukemia and therapy-induced neutropenia. Sci Rep 2016; 6: 23532.
[http://dx.doi.org/10.1038/srep23532] [PMID: 26996149]
[21]
Long Y, Zhang Y, Gong Y, et al. Diagnosis of sepsis with cell-free DNA by next-generation sequencing technology in ICU patients. Arch Med Res 2016; 47(5): 365-71.
[http://dx.doi.org/10.1016/j.arcmed.2016.08.004] [PMID: 27751370]
[22]
Hugon P, Lagier JC, Colson P, Bittar F, Raoult D. Repertoire of human gut microbes. Microb Pathog 2017; 106: 103-12.
[http://dx.doi.org/10.1016/j.micpath.2016.06.020] [PMID: 27317857]
[23]
Marín M, Muñoz P, Sánchez M, et al. Molecular diagnosis of infective endocarditis by real-time broad-range polymerase chain reaction (PCR) and sequencing directly from heart valve tissue. Medicine (Baltimore) 2007; 86(4): 195-202.
[http://dx.doi.org/10.1097/MD.0b013e31811f44ec] [PMID: 17632260]
[24]
Hansen WL, Beuving J, Bruggeman CA, Wolffs PF. Molecular probes for diagnosis of clinically relevant bacterial infections in blood cultures. J Clin Microbiol 2010; 48(12): 4432-8.
[http://dx.doi.org/10.1128/JCM.00562-10] [PMID: 20962139]
[25]
Milani C, Duranti S, Bottacini F, et al. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol Mol Biol Rev 2017; 81(4): e00036-17.
[http://dx.doi.org/10.1128/MMBR.00036-17] [PMID: 29118049]
[26]
Ramanan D, Sefik E, Galvan-Pena S, Wu M, Yang L, Yang Z, et al. An Immunologic Mode of Multigenerational Transmission Governs a Gut Treg Setpoint. Cell 2020; 181(6): 1276-90.
[27]
Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009; 9(5): 313-23.
[http://dx.doi.org/10.1038/nri2515] [PMID: 19343057]
[28]
Samuelson DR, Welsh DA, Shellito JE. Regulation of lung immunity and host defense by the intestinal microbiota. Front Microbiol 2015; 6: 1085.
[http://dx.doi.org/10.3389/fmicb.2015.01085] [PMID: 26500629]
[29]
Jarret A, Jackson R, Duizer C, Healy ME, Zhao J, Rone JM, et al. Enteric Nervous System-Derived IL-18 Orchestrates Mucosal Barrier Immunity. Cell 2020; 180(1): 50-63.
[30]
Chua LL, Rajasuriar R, Azanan MS, et al. Reduced microbial diversity in adult survivors of childhood acute lymphoblastic leukemia and microbial associations with increased immune activation. Microbiome 2017; 5(1): 35.
[http://dx.doi.org/10.1186/s40168-017-0250-1] [PMID: 28320465]
[31]
Macpherson AJ, Yilmaz B, Limenitakis JP, Ganal-Vonarburg SC. IgA Function in Relation to the Intestinal Microbiota. Annu Rev Immunol 2018; 36: 359-81.
[http://dx.doi.org/10.1146/annurev-immunol-042617-053238] [PMID: 29400985]
[32]
Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature 2016; 535(7610): 65-74.
[http://dx.doi.org/10.1038/nature18847] [PMID: 27383981]
[33]
Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature 2016; 535(7610): 75-84.
[http://dx.doi.org/10.1038/nature18848] [PMID: 27383982]
[34]
Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol 2017; 17(4): 219-32.
[http://dx.doi.org/10.1038/nri.2017.7] [PMID: 28260787]
[35]
Hodgkinson AJ, Cakebread J, Callaghan M, et al. Comparative innate immune interactions of human and bovine secretory IgA with pathogenic and non-pathogenic bacteria. Dev Comp Immunol 2017; 68: 21-5.
[http://dx.doi.org/10.1016/j.dci.2016.11.012] [PMID: 27845173]
[36]
Montalban-Arques A, Chaparro M, Gisbert JP, Bernardo D. The Innate Immune System in the Gastrointestinal Tract: Role of Intraepithelial Lymphocytes and Lamina Propria Innate Lymphoid Cells in Intestinal Inflammation. Inflamm Bowel Dis 2018; 24(8): 1649-59.
[http://dx.doi.org/10.1093/ibd/izy177] [PMID: 29788271]
[37]
Tamburini FB, Andermann TM, Tkachenko E, Senchyna F, Banaei N, Bhatt AS. Precision identification of diverse bloodstream pathogens in the gut microbiome. Nat Med 2018; 24(12): 1809-14.
[http://dx.doi.org/10.1038/s41591-018-0202-8] [PMID: 30323331]
[38]
Rajagopala SV, Yooseph S, Harkins DM, et al. Gastrointestinal microbial populations can distinguish pediatric and adolescent Acute Lymphoblastic Leukemia (ALL) at the time of disease diagnosis. BMC Genomics 2016; 17(1): 635.
[http://dx.doi.org/10.1186/s12864-016-2965-y] [PMID: 27527070]
[39]
Hakim H, Dallas R, Wolf J, et al. Gut Microbiome Composition Predicts Infection Risk During Chemotherapy in Children With Acute Lymphoblastic Leukemia. Clin Infect Dis 2018; 67(4): 541-8.
[http://dx.doi.org/10.1093/cid/ciy153] [PMID: 29518185]
[40]
Galloway-Peña JR, Smith DP, Sahasrabhojane P, et al. The role of the gastrointestinal microbiome in infectious complications during induction chemotherapy for acute myeloid leukemia. Cancer 2016; 122(14): 2186-96.
[http://dx.doi.org/10.1002/cncr.30039] [PMID: 27142181]
[41]
Montassier E, Gastinne T, Vangay P, et al. Chemotherapy-driven dysbiosis in the intestinal microbiome. Aliment Pharmacol Ther 2015; 42(5): 515-28.
[http://dx.doi.org/10.1111/apt.13302] [PMID: 26147207]
[42]
Calcinotto A, Brevi A, Chesi M, et al. Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression. Nat Commun 2018; 9(1): 4832.
[http://dx.doi.org/10.1038/s41467-018-07305-8] [PMID: 30510245]
[43]
Zhang B, Gu J, Liu J, Huang B, Li J. Fecal Microbiota Taxonomic Shifts in Chinese Multiple Myeloma Patients Analyzed by Quantitative Polimerase Chain Reaction (QPCR) and 16S rRNA High-Throughput Sequencing. Med Sci Monit 2019; 25: 8269-80.
[http://dx.doi.org/10.12659/MSM.919988] [PMID: 31678982]
[44]
Zuccaro V, Lombardi A, Asperges E, et al. The possible role of gut microbiota and microbial translocation profiling during chemo-free treatment of lymphoid malignancies. Int J Mol Sci 2019; 20(7)E1748
[http://dx.doi.org/10.3390/ijms20071748] [PMID: 30970593]
[45]
Montassier E, Al-Ghalith GA, Ward T, et al. Pretreatment gut microbiome predicts chemotherapy-related bloodstream infection. Genome Med 2016; 8(1): 49.
[http://dx.doi.org/10.1186/s13073-016-0301-4] [PMID: 27121964]
[46]
Maharshak N, Huh EY, Paiboonrungruang C, et al. Enterococcus faecalis Gelatinase Mediates Intestinal Permeability via Protease-Activated Receptor 2. Infect Immun 2015; 83(7): 2762-70.
[http://dx.doi.org/10.1128/IAI.00425-15] [PMID: 25916983]
[47]
Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses. Nat Immunol 2011; 12(1): 5-9.
[http://dx.doi.org/10.1038/ni0111-5] [PMID: 21169997]
[48]
Taur Y, Jenq RR, Perales MA, et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood 2014; 124(7): 1174-82.
[http://dx.doi.org/10.1182/blood-2014-02-554725] [PMID: 24939656]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy