Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

COVID-19: Potential Repurposing Drugs

Author(s): Wattana Leowattana*

Volume 22, Issue 1, 2022

Published on: 01 March, 2021

Article ID: e110122191924 Pages: 12

DOI: 10.2174/1871526521666210301143441

Price: $65

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the most infectious diseases which has been caused by coronavirus in 2019 (COVID-19). It has widely spread worldwide and infected more than 28 million people in 215 countries, and more than 920,000 have now died from COVID-19. To date, no effective antiviral drugs or specific vaccines have been discovered yet. Considering this situation, the potential therapeutic antiviral drug targets for the COVID-19 are being repurposed to speed up the discovery of effective treatment. The most potential drug targets that are continuously being recommended include Favipiravir, Chloroquine, Hydroxychloroquine, and Remdesivir. Moreover, the antiviral target proteins and anti-host target proteins are being reported continuously. This review has summarized the current research studies on potential therapeutic drug targets that are being tested against the SARS-CoV-2. It will provide information related to potential repurposing drugs for overcoming COVID-19.

Keywords: COVID-19, SARS-CoV-2, repurposing drugs, chloroquine, hydroxychloroquine, favipiravir, remdesivir.

Graphical Abstract

[1]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[2]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[3]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[4]
Worldometer for COVID-19 coronavirus pandemic. 2020. Available from: https://www.worldometers.info/coronavirus/Cited
[5]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[6]
Paraskevis, D.; Kostaki, E.G.; Magiorkinis, G.; Panayiotakopoulos, G.; Sourvinos, G.; Tsiodras, S. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect. Genet. Evol., 2020, 79104212
[http://dx.doi.org/10.1016/j.meegid.2020.104212] [PMID: 32004758]
[7]
Chan, J.F.; Kok, K.H.; Zhu, Z.; Chu, H.; To, K.K.; Yuan, S.; Yuen, K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, 9(1), 221-236.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[8]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[9]
Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J. Virol., 2020, 94(7), e00127-e20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[10]
Tai, W.; He, L.; Zhang, X.; Pu, J.; Voronin, D.; Jiang, S.; Zhou, Y.; Du, L. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol., 2020, 17(6), 613-620.
[http://dx.doi.org/10.1038/s41423-020-0400-4] [PMID: 32203189]
[11]
Ashour, H.M.; Elkhatib, W.F.; Rahman, M.M.; Elshabrawy, H.A.; Elkhatib, W.F.; Rahman, M.M.; Elshabrawy, H.A. Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens, 2020, 9(3), 186.
[http://dx.doi.org/10.3390/pathogens9030186] [PMID: 32143502]
[12]
Kadam, R.U.; Wilson, I.A. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proc. Natl. Acad. Sci. USA, 2017, 114(2), 206-214.
[http://dx.doi.org/10.1073/pnas.1617020114] [PMID: 28003465]
[13]
Blaising, J.; Polyak, S.J.; Pécheur, E.I. Arbidol as a broad-spectrum antiviral: an update. Antiviral Res., 2014, 107, 84-94.
[http://dx.doi.org/10.1016/j.antiviral.2014.04.006] [PMID: 24769245]
[14]
Teissier, E.; Zandomeneghi, G.; Loquet, A.; Lavillette, D.; Lavergne, J.P.; Montserret, R.; Cosset, F.L.; Böckmann, A.; Meier, B.H.; Penin, F.; Pécheur, E.I. Mechanism of inhibition of enveloped virus membrane fusion by the antiviral drug arbidol. PLoS One, 2011, 6(1)e15874
[http://dx.doi.org/10.1371/journal.pone.0015874] [PMID: 21283579]
[15]
Zeng, L.Y.; Yang, J.; Liu, S. Investigational hemagglutinin-targeted influenza virus inhibitors. Expert Opin. Investig. Drugs, 2017, 26(1), 63-73.
[http://dx.doi.org/10.1080/13543784.2017.1269170] [PMID: 27918208]
[16]
Lian, N.; Xie, H.; Lin, S.; Huang, J.; Zhao, J.; Lin, Q. Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: a retrospective study. Clin. Microbiol. Infect., 2020, 26(7), 917-921.
[http://dx.doi.org/10.1016/j.cmi.2020.04.026] [PMID: 32344167]
[17]
Huang, Y.; Cai, C.; Zang, J.; Xie, J.; Xu, D.; Zheng, F.; Zhan, T.; Huang, K.; Wang, Y.; Wang, X.; Hu, Z.Y.; Deng, Y.; Xie, Y. Treatment strategies of hospitalized patients with coronavirus disease-19. Aging (Albany NY), 2020, 12(12), 11224-11237.
[http://dx.doi.org/10.18632/aging.103370] [PMID: 32554861]
[18]
Chen, W.; Yao, M.; Fang, Z.; Lv, X.; Deng, M.; Wu, Z. A study on clinical effect of Arbidol combined with adjuvant therapy on COVID-19. J. Med. Virol., 2020, 92(11), 2702-2708.
[http://dx.doi.org/10.1002/jmv.26142] [PMID: 32510169] [http://dx.doi.org/10.1002/jmv.26142] [PMID: 32510169]
[19]
Valk, S.J.; Piechotta, V.; Chai, K.L.; Doree, C.; Monsef, I.; Wood, E.M.; Lamikanra, A.; Kimber, C.; McQuilten, Z.; So-Osman, C.; Estcourt, L.J.; Skoetz, N. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a rapid review. Cochrane Database Syst. Rev., 2020, 5CD013600
[PMID: 32406927]
[20]
Ni, L.; Ye, F.; Cheng, M.L.; Feng, Y.; Deng, Y.Q.; Zhao, H.; Wei, P.; Ge, J.; Gou, M.; Li, X.; Sun, L.; Cao, T.; Wang, P.; Zhou, C.; Zhang, R.; Liang, P.; Guo, H.; Wang, X.; Qin, C.F.; Chen, F.; Dong, C. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity, 2020, 52(6), 971-977.e3.
[http://dx.doi.org/10.1016/j.immuni.2020.04.023] [PMID: 32413330]
[21]
Shen, C.; Wang, Z.; Zhao, F.; Yang, Y.; Li, J.; Yuan, J.; Wang, F.; Li, D.; Yang, M.; Xing, L.; Wei, J.; Xiao, H.; Yang, Y.; Qu, J.; Qing, L.; Chen, L.; Xu, Z.; Peng, L.; Li, Y.; Zheng, H.; Chen, F.; Huang, K.; Jiang, Y.; Liu, D.; Zhang, Z.; Liu, Y.; Liu, L. Treatment of 5 critically Ill patients with COVID-19 with convalescent plasma. JAMA, 2020, 323(16), 1582-1589.
[http://dx.doi.org/10.1001/jama.2020.4783] [PMID: 32219428]
[22]
Joyner, M.; Wright, R.S.; Fairweather, D.; Senefeld, J.; Bruno, K.; Klassen, S.; Carter, R.; Klompas, A.; Wiggins, C.; Shepherd, J.R.; Rea, R.; Whelan, E.; Clayburn, A.; Spiegel, M.; Johnson, P.; Lesser, E.; Baker, S.; Larson, K.; Ripoll Sanz, J.; Andersen, K.; Hodge, D.; Kunze, K.; Buras, M.; Vogt, M.; Herasevich, V.; Dennis, J.; Regimbal, R.; Bauer, P.; Blair, J.; van Buskirk, C.; Winters, J.; Stubbs, J.; Paneth, N.; Casadevall, A. Early safety indicators of COVID-19 convalescent plasma in 5,000 patients. medRxiv, 2020, 140200.
[PMID: 32525844] [http://dx.doi.org/ 10.1172/JCI140200] [PMID: 32511566]
[23]
Li, L.; Zhang, W.; Hu, Y.; Tong, X.; Zheng, S.; Yang, J.; Kong, Y.; Ren, L.; Wei, Q.; Mei, H.; Hu, C.; Tao, C.; Yang, R.; Wang, J.; Yu, Y.; Guo, Y.; Wu, X.; Xu, Z.; Zeng, L.; Xiong, N.; Chen, L.; Wang, J.; Man, N.; Liu, Y.; Xu, H.; Deng, E.; Zhang, X.; Li, C.; Wang, C.; Su, S.; Zhang, L.; Wang, J.; Wu, Y.; Liu, Z. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: A randomized clinical trial. JAMA, 2020, 324(5), 460-470. Erratum in:
[PMID: 32492084] [http://dx.doi.org/ 10.1001/jama.2020.10044.] [http://dx.doi.org/ 10.1001/jama.2020.13216] [http://dx.doi.org/ 10.1001/jama.2020.10044] [PMID: 32492084]
[24]
Olivares-Gazca, J.C.; Priesca-Marín, J.M.; Ojeda-Laguna, M.; Garces-Eisele, J.; Soto-Olvera, S.; Palacios-Alonso, A.; Izquierdo-Vega, J.; Chacon-Cano, R.; Arizpe-Bravo, D.; López-Trujillo, M.A.; Cantero-Fortiz, Y.; Fernandez-Lara, D.; Ruiz-Delgado, G.J.; Ruiz-Argüelles, G.J. Infusion of convalescent plasma is associated with clinical improvement in critically ill patients with COVID-19: A pilot study. Rev. Invest. Clin., 2020, 72(3), 159-164.
[http://dx.doi.org/10.24875/RIC.20000237] [PMID: 32584322]
[25]
Abolghasemi, H.; Eshghi, P.; Cheraghali, A.M.; Imani Fooladi, A.A.; Bolouki Moghaddam, F.; Imanizadeh, S.; Moeini Maleki, M.; Ranjkesh, M.; Rezapour, M.; Bahramifar, A.; Einollahi, B. Clinical efficacy of convalescent plasma for treatment of COVID-19 infections: Results of a multicenter clinical study; Transfus. Apher. Sci, 2020, p. 102875.
[26]
Raj, G.; Priyadarshini, R.; Murugesan, S.; Adhimoolam, M.; Priyadarshini, R.; Murugesan, S.; Adhimoolam, M. Monoclonal antibodies against infectious microbes: so long and too little! Infect. Disord. Drug Targets, 2021, 21(1), 4-27.
[http://dx.doi.org/10.2174/1871526520666200312154649] [PMID: 32164518]
[27]
Kulkarni, S.; Fisk, M.; Kostapanos, M.; Banham-Hall, E.; Bond, S.; Hernan-Sancho, E.; Norton, S.; Cheriyan, J.; Cope, A.; Galloway, J.; Hall, F.; Jayne, D.; Wilkinson, I.B. Repurposed immunomodulatory drugs for Covid-19 in pre-ICu patients - mulTi-Arm Therapeutic study in pre-ICu patients admitted with Covid-19 - Repurposed Drugs (TACTIC-R): A structured summary of a study protocol for a randomised controlled trial. Trials, 2020, 21(1), 626.
[http://dx.doi.org/10.1186/s13063-020-04535-4] [PMID: 32641154]
[28]
Baum, A.; Fulton, B.O.; Wloga, E.; Copin, R.; Pascal, K.E.; Russo, V.; Giordano, S.; Lanza, K.; Negron, N.; Ni, M.; Wei, Y.; Atwal, G.S.; Murphy, A.J.; Stahl, N.; Yancopoulos, G.D.; Kyratsous, C.A. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science, 2020, 369(6506), 1014-1018.
[http://dx.doi.org/10.1126/science.abd0831] [PMID: 32540904]
[29]
Cao, W.; Liu, X.; Bai, T.; Fan, H.; Hong, K.; Song, H.; Han, Y.; Lin, L.; Ruan, L.; Li, T. .High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019. Open. Forum. Infect. Dis., 2020, 7, ofaa102.
[30]
Xie, Y.; Cao, S.; Dong, H.; Li, Q.; Chen, E.; Zhang, W.; Yang, L.; Fu, S.; Wang, R. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J. Infect., 2020, 81(2), 318-356.
[http://dx.doi.org/10.1016/j.jinf.2020.03.044] [PMID: 32283154]
[31]
Gheblawi, M.; Wang, K.; Viveiros, A.; Nguyen, Q.; Zhong, J.C.; Turner, A.J.; Raizada, M.K.; Grant, M.B.; Oudit, G.Y.; Wang, K. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: Celebrating the 20th anniversary of the discovery of ACE2. Circ. Res., 2020, 126(10), 1456-1474.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317015] [PMID: 32264791]
[32]
Monteil, V.; Kwon, H.; Prado, P.; Hagelkrüys, A.; Wimmer, R.A.; Stahl, M.; Leopoldi, A.; Garreta, E.; Hurtado Del Pozo, C.; Prosper, F.; Romero, J.P.; Wirnsberger, G.; Zhang, H.; Slutsky, A.S.; Conder, R.; Montserrat, N.; Mirazimi, A.; Penninger, J.M. Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell, 2020, 181(4), 905-913.e7.
[http://dx.doi.org/10.1016/j.cell.2020.04.004] [PMID: 32333836]
[33]
Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med., 2020, 46(4), 586-590.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[34]
Haschke, M.; Schuster, M.; Poglitsch, M.; Loibner, H.; Salzberg, M.; Bruggisser, M.; Penninger, J.; Krähenbühl, S. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin. Pharmacokinet., 2013, 52(9), 783-792.
[http://dx.doi.org/10.1007/s40262-013-0072-7] [PMID: 23681967]
[35]
Kam, Y.W.; Okumura, Y.; Kido, H.; Ng, L.F.; Bruzzone, R.; Altmeyer, R. Cleavage of the SARS coronavirus spike glycoprotein by airway proteases enhances virus entry into human bronchial epithelial cells in vitro. PLoS One, 2009, 4(11)e7870
[http://dx.doi.org/10.1371/journal.pone.0007870] [PMID: 19924243]
[36]
Gibo, J.; Ito, T.; Kawabe, K.; Hisano, T.; Inoue, M.; Fujimori, N.; Oono, T.; Arita, Y.; Nawata, H. Camostat mesilate attenuates pancreatic fibrosis via inhibition of monocytes and pancreatic stellate cells activity. Lab. Invest., 2005, 85(1), 75-89.
[http://dx.doi.org/10.1038/labinvest.3700203] [PMID: 15531908]
[37]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[38]
Hoffmann, M.; Schroeder, S.; Kleine-Weber, H.; Müller, M.A.; Drosten, C.; Pöhlmann, S. Nafamostat Mesylate Blocks Activation of SARS-CoV-2: New Treatment Option for COVID-19. Antimicrob. Agents Chemother., 2020, 64(6), e00754-e20.
[http://dx.doi.org/10.1128/AAC.00754-20] [PMID: 32312781]
[39]
Doi, K.; Ikeda, M.; Hayase, N.; Moriya, K.; Morimura, N. Nafamostat mesylate treatment in combination with favipiravir for patients critically ill with Covid-19: a case series. Crit. Care, 2020, 24(1), 392.
[http://dx.doi.org/10.1186/s13054-020-03078-z] [PMID: 32620147]
[40]
Masters, P.S. The molecular biology of coronaviruses. Adv. Virus Res., 2006, 66, 193-292.
[http://dx.doi.org/10.1016/S0065-3527(06)66005-3] [PMID: 16877062]
[41]
Ziebuhr, J.; Snijder, E.J.; Gorbalenya, A.E. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J. Gen. Virol., 2000, 81(Pt 4), 853-879.
[http://dx.doi.org/10.1099/0022-1317-81-4-853] [PMID: 10725411]
[42]
Savarino, A.; Boelaert, J.R.; Cassone, A.; Majori, G.; Cauda, R. Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect. Dis., 2003, 3(11), 722-727.
[http://dx.doi.org/10.1016/S1473-3099(03)00806-5] [PMID: 14592603]
[43]
Ducharme, J.; Farinotti, R. Clinical pharmacokinetics and metabolism of chloroquine. Focus on recent advancements. Clin. Pharmacokinet., 1996, 31(4), 257-274.
[http://dx.doi.org/10.2165/00003088-199631040-00003] [PMID: 8896943]
[44]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[45]
Borba, M.G.S.; Val, F.F.A.; Sampaio, V.S.; Alexandre, M.A.A.; Melo, G.C.; Brito, M.; Mourão, M.P.G.; Brito-Sousa, J.D.; Baía-da-Silva, D.; Guerra, M.V.F.; Hajjar, L.A.; Pinto, R.C.; Balieiro, A.A.S.; Pacheco, A.G.F.; Santos, J.D.O., Jr; Naveca, F.G.; Xavier, M.S.; Siqueira, A.M.; Schwarzbold, A.; Croda, J.; Nogueira, M.L.; Romero, G.A.S.; Bassat, Q.; Fontes, C.J.; Albuquerque, B.C.; Daniel-Ribeiro, C.T.; Monteiro, W.M.; Lacerda, M.V.G. CloroCovid-19 Team. Effect of high vs. low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: A randomized clinical trial. JAMA Netw. Open, 2020, 3(4)e208857
[http://dx.doi.org/10.1001/jamanetworkopen.2020.8857] [PMID: 32330277]
[46]
Huang, M.; Tang, T.; Pang, P.; Li, M.; Ma, R.; Lu, J.; Shu, J.; You, Y.; Chen, B.; Liang, J.; Hong, Z.; Chen, H.; Kong, L.; Qin, D.; Pei, D.; Xia, J.; Jiang, S.; Shan, H. Treating COVID-19 with Chloroquine. J. Mol. Cell Biol., 2020, 12(4), 322-325.
[http://dx.doi.org/10.1093/jmcb/mjaa014] [PMID: 32236562]
[47]
Clementi, N.; Criscuolo, E.; Diotti, R.A.; Ferrarese, R.; Castelli, M.; Dagna, L.; Burioni, R.; Clementi, M.; Mancini, N. Combined Prophylactic and Therapeutic Use Maximizes Hydroxychloroquine Anti-SARS-CoV-2 Effects in vitro. Front. Microbiol., 2020, 11, 1704.
[http://dx.doi.org/10.3389/fmicb.2020.01704] [PMID: 32754147]
[48]
Tripathy, S.; Dassarma, B.; Roy, S.; Chabalala, H.; Matsabisa, M.G. A review on possible modes of action of chloroquine/hydroxychloroquine: repurposing against SAR-CoV-2 (COVID-19) pandemic. Int. J. Antimicrob. Agents, 2020, 56(2)106028
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106028] [PMID: 32450198]
[49]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot Dupont, H.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1)105949
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[50]
Tang, W.; Cao, Z.; Han, M.; Wang, Z.; Chen, J.; Sun, W.; Wu, Y.; Xiao, W.; Liu, S.; Chen, E.; Chen, W.; Wang, X.; Yang, J.; Lin, J.; Zhao, Q.; Yan, Y.; Xie, Z.; Li, D.; Yang, Y.; Liu, L.; Qu, J.; Ning, G.; Shi, G.; Xie, Q. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ, 2020, 369, m1849.
[http://dx.doi.org/10.1136/bmj.m1849] [PMID: 32409561]
[51]
Molina, J.M.; Delaugerre, C.; Le Goff, J.; Mela-Lima, B.; Ponscarme, D.; Goldwirt, L.; de Castro, N. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med. Mal. Infect., 2020, 50(4), 384.
[http://dx.doi.org/10.1016/j.medmal.2020.03.006] [PMID: 32240719]
[52]
Million, M.; Lagier, J.C.; Gautret, P.; Colson, P.; Fournier, P.E.; Amrane, S.; Hocquart, M.; Mailhe, M.; Esteves-Vieira, V.; Doudier, B.; Aubry, C.; Correard, F.; Giraud-Gatineau, A.; Roussel, Y.; Berenger, C.; Cassir, N.; Seng, P.; Zandotti, C.; Dhiver, C.; Ravaux, I.; Tomei, C.; Eldin, C.; Tissot-Dupont, H.; Honoré, S.; Stein, A.; Jacquier, A.; Deharo, J.C.; Chabrière, E.; Levasseur, A.; Fenollar, F.; Rolain, J.M.; Obadia, Y.; Brouqui, P.; Drancourt, M.; La Scola, B.; Parola, P.; Raoult, D. Early treatment of COVID-19 patients with hydroxychloroquine and azithromycin: A retrospective analysis of 1061 cases in Marseille, France. Travel Med. Infect. Dis., 2020, 35101738
[http://dx.doi.org/10.1016/j.tmaid.2020.101738] [PMID: 32387409]
[53]
Croxtall, J.D.; Perry, C.M. Lopinavir/Ritonavir: a review of its use in the management of HIV-1 infection. Drugs, 2010, 70(14), 1885-1915.
[http://dx.doi.org/10.2165/11204950-000000000-00000] [PMID: 20836579]
[54]
Chu, C.M.; Cheng, V.C.; Hung, I.F.; Wong, M.M.; Chan, K.H.; Chan, K.S.; Kao, R.Y.; Poon, L.L.; Wong, C.L.; Guan, Y.; Peiris, J.S.; Yuen, K.Y. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax, 2004, 59(3), 252-256.
[http://dx.doi.org/10.1136/thorax.2003.012658] [PMID: 14985565]
[55]
Nutho, B.; Mahalapbutr, P.; Hengphasatporn, K. Why are lopinavir and ritonavir effective against the newly emerged coronavirus 2019? Atomistic insights into the inhibitory mechanisms. Biochemistry, 2020, 59, 1769-1779.
[56]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N. Engl. J. Med., 2020, 382(19), 1787-1799.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[57]
Huang, Y.Q.; Tang, S.Q.; Xu, X.L.; Zeng, Y.M.; He, X.Q.; Li, Y.; Harypursat, V.; Lu, Y.Q.; Wan, Y.; Zhang, L.; Sun, Q.Z.; Sun, N.N.; Wang, G.X.; Yang, Z.P.; Chen, Y.K. No statistically apparent difference in antiviral effectiveness observed among Ribavirin plus interferon-alpha, Lopinavir/Ritonavir plus Interferon-alpha, and Ribavirin plus Lopinavir/Ritonavir plus Interferon-alpha in patients with mild to moderate coronavirus disease 2019: results of a randomized, open-labeled prospective study. Front. Pharmacol., 2020, 11, 1071.
[http://dx.doi.org/10.3389/fphar.2020.01071] [PMID: 32765274]
[58]
Jorgensen, S.C.J.; Kebriaei, R.; Dresser, L.D.; Kebriaei, R.; Dresser, L.D. Remdesivir: review of pharmacology, preclinical data, and emerging clinical experience for COVID-19. Pharmacotherapy, 2020, 40(7), 659-671.
[http://dx.doi.org/10.1002/phar.2429] [PMID: 32446287]
[59]
Madelain, V.; Baize, S.; Jacquot, F.; Reynard, S.; Fizet, A.; Barron, S.; Solas, C.; Lacarelle, B.; Carbonnelle, C.; Mentré, F.; Raoul, H.; de Lamballerie, X.; Guedj, J. Ebola viral dynamics in nonhuman primates provides insights into virus immuno-pathogenesis and antiviral strategies. Nat. Commun., 2018, 9(1), 4013.
[http://dx.doi.org/10.1038/s41467-018-06215-z] [PMID: 30275474]
[60]
Agostini, M.L.; Andres, E.L.; Sims, A.C.; Graham, R.L.; Sheahan, T.P.; Lu, X.; Smith, E.C.; Case, J.B.; Feng, J.Y.; Jordan, R.; Ray, A.S.; Cihlar, T.; Siegel, D.; Mackman, R.L.; Clarke, M.O.; Baric, R.S.; Denison, M.R. Coronavirus susceptibility to the antiviral Remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio, 2018, 9(2), e00221-e18.
[http://dx.doi.org/10.1128/mBio.00221-18] [PMID: 29511076]
[61]
Gordon, C.J.; Tchesnokov, E.P.; Woolner, E.; Perry, J.K.; Feng, J.Y.; Porter, D.P.; Götte, M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem., 2020, 295(20), 6785-6797.
[http://dx.doi.org/10.1074/jbc.RA120.013679] [PMID: 32284326]
[62]
Choy, K.T.; Wong, A.Y.; Kaewpreedee, P.; Sia, S.F.; Chen, D.; Hui, K.P.Y.; Chu, D.K.W.; Chan, M.C.W.; Cheung, P.P.; Huang, X.; Peiris, M.; Yen, H.L. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res., 2020, 178104786
[http://dx.doi.org/10.1016/j.antiviral.2020.104786] [PMID: 32251767]
[63]
Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; Hu, Y.; Luo, G.; Wang, K.; Lu, Y.; Li, H.; Wang, S.; Ruan, S.; Yang, C.; Mei, C.; Wang, Y.; Ding, D.; Wu, F.; Tang, X.; Ye, X.; Ye, Y.; Liu, B.; Yang, J.; Yin, W.; Wang, A.; Fan, G.; Zhou, F.; Liu, Z.; Gu, X.; Xu, J.; Shang, L.; Zhang, Y.; Cao, L.; Guo, T.; Wan, Y.; Qin, H.; Jiang, Y.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Cao, B.; Wang, C. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 2020, 395(10236), 1569-1578.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[64]
Antinori, S.; Cossu, M.V.; Ridolfo, A.L.; Rech, R.; Bonazzetti, C.; Pagani, G.; Gubertini, G.; Coen, M.; Magni, C.; Castelli, A.; Borghi, B.; Colombo, R.; Giorgi, R.; Angeli, E.; Mileto, D.; Milazzo, L.; Vimercati, S.; Pellicciotta, M.; Corbellino, M.; Torre, A.; Rusconi, S.; Oreni, L.; Gismondo, M.R.; Giacomelli, A.; Meroni, L.; Rizzardini, G.; Galli, M. Compassionate remdesivir treatment of severe Covid-19 pneumonia in intensive care unit (ICU) and Non-ICU patients: Clinical outcome and differences in post-treatment hospitalisation status. Pharmacol. Res., 2020, 158104899
[http://dx.doi.org/10.1016/j.phrs.2020.104899] [PMID: 32407959]
[65]
Olender, S.A.; Perez, K.K.; Go, A.S.; Balani, B.; Price-Haywood, E.G.; Shah, N.S.; Wang, S.; Walunas, T.L.; Swaminathan, S.; Slim, J.; Chin, B.; De Wit, S.; Ali, S.M.; Soriano Viladomiu, A.; Robinson, P.; Gottlieb, R.L.; Tsang, T.Y.O.; Lee, I.H.; Haubrich, R.H.; Chokkalingam, A.P.; Lin, L.; Zhong, L.; Bekele, B.N.; Mera-Giler, R.; Gallant, J.; Smith, L.E.; Osinusi, A.O.; Brainard, D.M.; Hu, H.; Phulpin, C.; Edgar, H.; Diaz-Cuervo, H.; Bernardino, J.I. Remdesivir for Severe COVID-19 versus a Cohort Receiving Standard of Care. Clin. Infect. Dis., 2021, 73(11), e4166-e4174.
[http://dx.doi.org/10.1093/cid/ciaa1041] [PMID: 32706859]
[66]
Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S. ACTT-1 Study Group Members. Remdesivir for the treatment of COVID-19 - preliminary report. N. Engl. J. Med., 2020, 383(19), 1813-1826.
[http://dx.doi.org/10.1056/NEJMoa2007764]
[67]
Furuta, Y.; Komeno, T.; Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2017, 93(7), 449-463.
[http://dx.doi.org/10.2183/pjab.93.027] [PMID: 28769016]
[68]
Furuta, Y.; Takahashi, K.; Fukuda, Y.; Kuno, M.; Kamiyama, T.; Kozaki, K.; Nomura, N.; Egawa, H.; Minami, S.; Watanabe, Y.; Narita, H.; Shiraki, K. In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrob. Agents Chemother., 2002, 46(4), 977-981.
[http://dx.doi.org/10.1128/AAC.46.4.977-981.2002] [PMID: 11897578]
[69]
Cai, Q.; Yang, M.; Liu, D.; Chen, J.; Shu, D.; Xia, J.; Liao, X.; Gu, Y.; Cai, Q.; Yang, Y. Experimental treatment with Favipiravir for COVID-19: An open-label control study. Engineering (Beijing), 2020, 6(10), 1192-8.
[70]
Ivashchenko, A.A.; Dmitriev, K.A.; Vostokova, N.V.; Azarova, V.N.; Blinow, A.A.; Egorova, A.N.; Gordeev, I.G.; Ilin, A.P.; Karapetian, R.N.; Kravchenko, D.V.; Lomakin, N.V.; Merkulova, E.A.; Papazova, N.A.; Pavlikova, E.P.; Savchuk, N.P.; Simakina, E.N.; Sitdekov, T.A.; Smolyarchuk, E.A.; Tikhomolova, E.G.; Yakubova, E.V.; Ivachtchenko, A.V. AVIFAVIR for Treatment of Patients with Moderate COVID-19: Interim Results of a Phase II/III Multicenter Randomized Clinical Trial. Clin. Infect. Dis., 2020, 73(3), 531-534.
[http://dx.doi.org/10.1093/cid/ciaa1176] [PMID: 32770240]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy