Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Dye-Sensitized Solar Cells Based on a New Type of Non-Volatile Co(II)/Co(III) Electrolyte Delivering Higher Power Conversion Efficiency for Indoor Applications

Author(s): Soorya Sasi*, Arya Sajeev, Sunish K. Sugunan, Pankajakshan Radhakrishnan Nair and Suresh Mathew*

Volume 14, Issue 1, 2022

Published on: 19 February, 2021

Page: [77 - 82] Pages: 6

DOI: 10.2174/1876402913666210219153948

Price: $65

Abstract

Background: Electrolyte is an essential constituent of a dye-sensitized solar cell (DSSC) as it mediates charge transport and regenerates the oxidized dye. Iodide/triiodide (I-/I3-) based electrolytes are the ones widely being used in DSSCs. These types of electrolytes are usually made by dissolving high concentrations of triiodide and polyiodide species in solvents, such as acetonitrile and methoxypropionitrile. These solvents face evaporation issues and lead to stability problems, which reduces the life span of the DSSC. For solving these issues, various types of electrolytes, such as ionic liquids and gelated liquid electrolytes, have been used to replace conventional volatile electrolytes.

Objective: To solve the solvent evaporation issue and the electrical resistance rise, we aim to synthesis a non-volatile electrolyte with excellent open-circuit voltage and stability.

Methods: A new genre of nonvolatile Co(II)/Co(III) redox electrolyte was synthesized by the reaction of tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(II) and tris(2-(1H-pyrazol-1-yl)pyridine) cobalt(III) with 2,4,6-tris(dodecyloxy)benzaldehyde. As a proof-of-principle experiment, a DSSC was fabricated using the as-synthesized electrolyte, N-719 dye as the light harvester, and TiO2 as the photoanode, and their performances were analyzed in room light conditions.

Results: The DSSCs deliver a remarkable power conversion efficiency of 22.1%, an open circuit voltage of 1 V, and a power output of 88.5 μW cm–2 at 1000 lux, under illumination from a Deltron LED light.

Conclusion: Cobalt-based non-volatile electrolytes are efficient candidates that can replace the conventional volatile electrolytes in DSSCs. Further research into this new type of electrolyte could pave ways to deliver high open-circuit voltage as well as good current density with high stability.

Keywords: DSSC, solar cells, cobalt electrolyte, indoor, nonvolatile, redox reaction.

Graphical Abstract

[1]
Grätzel, M. Dye-sensitized solar cells. J. Photochem. Photobiol. Photochem. Rev., 2003, 4(3), 145-153.
[http://dx.doi.org/10.1016/S1389-5567(03)00026-1]
[2]
O'regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO 2 films. nature, 1991, 353(6346), 737.
[3]
Gong, J.; Liang, J.; Sumathy, K. Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renew. Sustain. Energy Rev., 2012, 16(8), 5848-5860.
[http://dx.doi.org/10.1016/j.rser.2012.04.044]
[4]
Ye, M.; Wen, X.; Wang, M.; Iocozzia, J.; Zhang, N.; Lin, C.; Lin, Z. Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today, 2015, 18(3), 155-162.
[http://dx.doi.org/10.1016/j.mattod.2014.09.001]
[5]
Boschloo, G.; Hagfeldt, A. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc. Chem. Res., 2009, 42(11), 1819-1826.
[http://dx.doi.org/10.1021/ar900138m] [PMID: 19845388]
[6]
Lue, S.; Lo, P.; Huang, F.; Cheng, K.; Tung, Y. Correlation between dye-sensitized solar cell performance and internal resistance using electrochemical impedance spectroscopy. J. Phys. Chem. Biophys., 2015, 5(3), 1.
[7]
Wang, P.; Zakeeruddin, S.M.; Exnar, I.; Grätzel, M. High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquidpolymer gel electrolyte. Chem. Commun. , 2002, (24), 2972-2973.
[http://dx.doi.org/10.1039/B209322G]
[8]
Kawano, R.; Matsui, H.; Matsuyama, C.; Sato, A.; Susan, M.A.B.H.; Tanabe, N.; Watanabe, M. High performance dye-sensitized solar cells using ionic liquids as their electrolytes. J. Photochem. Photobiol. Chem., 2004, 164(1-3), 87-92.
[http://dx.doi.org/10.1016/j.jphotochem.2003.12.019]
[9]
Wu, J.; Hao, S.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fang, L.; Yin, S.; Sato, T. A thermoplastic gel electrolyte for stable quasi-solid-state dye-sensitized solar cells. Adv. Funct. Mater., 2007, 17, 2645-2652.
[http://dx.doi.org/10.1002/adfm.200600621]
[10]
Kang, M-S.; Ahn, K-S.; Lee, J-W. Quasi-solid-state dye-sensitized solar cells employing ternary component polymer-gel electrolytes. J. Power Sources, 2008, 180(2), 896-901.
[http://dx.doi.org/10.1016/j.jpowsour.2008.02.087]
[11]
Sauvage, F. A review on current status of stability and knowledge on liquid electrolyte-based dye-sensitized solar cells. Adv. Chem., 2014, 2014(939525), 1-23.
[12]
Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B.F.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M.K.; Grätzel, M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem., 2014, 6(3), 242-247.
[http://dx.doi.org/10.1038/nchem.1861] [PMID: 24557140]
[13]
Yum, J-H.; Baranoff, E.; Kessler, F.; Moehl, T.; Ahmad, S.; Bessho, T.; Marchioro, A.; Ghadiri, E.; Moser, J-E.; Yi, C.; Nazeeruddin, M.K.; Grätzel, M. A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nat. Commun., 2012, 3, 631.
[http://dx.doi.org/10.1038/ncomms1655] [PMID: 22252555]
[14]
Babu, S.S. Paradigms shift when solvent-less fluids come into play. Phys. Chem. Chem. Phys., 2015, 17(6), 3950-3953.
[http://dx.doi.org/10.1039/C4CP05481D] [PMID: 25575122]
[15]
Kramer, T.J.; Babu, S.S.; Saeki, A.; Seki, S.; Aimi, J.; Nakanishi, T. CdSe nanocrystal/C 60-liquid composite material with enhanced photoelectrochemical performance. J. Mater. Chem., 2012, 22(42), 22370-22373.
[http://dx.doi.org/10.1039/c2jm35294j]
[16]
Santhosh Babu, S.; Aimi, J.; Ozawa, H.; Shirahata, N.; Saeki, A.; Seki, S.; Ajayaghosh, A.; Möhwald, H.; Nakanishi, T. Solvent‐free luminescent organic liquids. Angew. Chem., 2012, 124(14), 3447-3451.
[http://dx.doi.org/10.1002/ange.201108853]
[17]
Babu, S.S.; Hollamby, M.J.; Aimi, J.; Ozawa, H.; Saeki, A.; Seki, S.; Kobayashi, K.; Hagiwara, K.; Yoshizawa, M.; Möhwald, H.; Nakanishi, T. Nonvolatile liquid anthracenes for facile full-colour luminescence tuning at single blue-light excitation. Nat. Commun., 2013, 4, 1969.
[http://dx.doi.org/10.1038/ncomms2969] [PMID: 23736114]
[18]
Dissanayake, M.; Thotawatthage, C.; Senadeera, G.; Bandara, T.; Jayasundara, W.; Mellander, B-E. Efficiency enhancement in dye sensitized solar cells based on PAN gel electrolyte with Pr 4 NI+ MgI 2 binary iodide salt mixture. J. Appl. Electrochem., 2013, 43(9), 891-901.
[http://dx.doi.org/10.1007/s10800-013-0582-x]
[19]
Singh, R.; Singh, P.K.; Tomar, S.; Bhattacharya, B. Synthesis, characterization, and dye-sensitized solar cell fabrication using solid biopolymer electrolyte membranes. High Perform. Polym., 2016, 28(1), 47-54.
[http://dx.doi.org/10.1177/0954008315569252]
[20]
Sasi, S.; Sugunan, S.K.; Radhakrishnan Nair, P.; Subramanian, K.R.V.; Mathew, S. Scope of surface-modified molecular and nanomaterials in gel/liquid forms for developing mechanically flexible DSSCs/QDSSCs. Photochem. Photobiol. Sci., 2019, 18(1), 15-29.
[http://dx.doi.org/10.1039/C8PP00293B] [PMID: 30398278]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy