Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

RAGE Isoforms, its Ligands and their Role in Pathophysiology of Alzheimer’s Disease

Author(s): Rani C. Chellappa, Rani Palanisamy* and Karthikeyan Swaminathan

Volume 17, Issue 14, 2020

Page: [1262 - 1279] Pages: 18

DOI: 10.2174/1567205018666210218164246

Price: $65

Abstract

Receptor for Advanced Glycation End product (RAGE) plays a crucial role in a variety of physiological and pathological processes due to its ability to bind a broad repertory of ligands. There are also multiple forms of RAGE that exist; some work on promoting feed-forward pathways while others perform inhibitory actions. This review focuses on the RAGE isoforms expression, its intracellular pathways activation via RAGE- ligand interaction, and its importance in the physiological and pathological process of the brain. Many studies have suggested that RAGE induces the pathophysiological changes in Alzheimer’s disease (AD) by being an intermediator of inflammation and inducer of oxidative stress. The critical roles played by RAGE in AD include its involvement in amyloid-beta (Aβ) production, clearance, synaptic impairment, and neuronal circuit dysfunction. RAGE-Aβ interaction also mediates the bi-directional crosstalk between peripheral and central systems. This interaction underlies a potential molecular pathway that disrupts the material structure and physiology of the brain. This review highlights the structure-function relation for RAGEAβ interaction and the role of RAGE as a potential target in the development of treatments for AD.

Keywords: Receptor for advanced glycation end product, RAGE isoforms, ligands, amyloid beta, inflammation, Alzheimer's disease, reactive oxygen species, therapeutic target.

[1]
Lee EJ, Park JH. Receptor for advanced glycation end products (RAGE), its ligands, and soluble RAGE: Potential biomarkers for diagnosis and therapeutic targets for human renal diseases. Genomics Inform 2013; 11(4): 224-9.
[http://dx.doi.org/10.5808/GI.2013.11.4.224] [PMID: 24465234]
[2]
Stern D, Yan SD, Yan SF, Schmidt AM. Receptor for advanced glycation endproducts: A multiligand receptor magnifying cell stress in diverse pathologic settings. Adv Drug Deliv Rev 2002; 54(12): 1615-25.
[http://dx.doi.org/10.1016/S0169-409X(02)00160-6] [PMID: 12453678]
[3]
Piras S, Furfaro AL, Domenicotti C, et al. RAGE expression and ROS generation in neurons: differentiation versus damage. Oxid Med Cell Longev 2016; 20169348651
[http://dx.doi.org/10.1155/2016/9348651] [PMID: 27313835]
[4]
Ott C, Jacobs K, Haucke E, et al. Role of advanced glycation end products in cellular signaling. Redox Biol 2014; 2: 411-29.
[http://dx.doi.org/10.1016/j.redox.2013.12.016] [PMID: 24624331]
[5]
Choi BR, Cho WH, Kim J, et al. Increased expression of the receptor for advanced glycation end products in neurons and astrocytes in a triple transgenic mouse model of Alzheimer’s disease. Exp Mol Med 2014; 46(2)e75
[http://dx.doi.org/10.1038/emm.2013.147] [PMID: 24503708]
[6]
Sochocka M, Diniz BS, Leszek J. Inflammatory response in the CNS: Friend or foe? Mol Neurobiol 2017; 54(10): 8071-89.
[http://dx.doi.org/10.1007/s12035-016-0297-1] [PMID: 27889895]
[7]
Basta G, Schmidt AM, De Caterina R. Advanced glycation end products and vascular inflammation: Implications for accelerated atherosclerosis in diabetes. Cardiovasc Res 2004; 63(4): 582-92.
[http://dx.doi.org/10.1016/j.cardiores.2004.05.001] [PMID: 15306213]
[8]
Scivittaro V, Ganz MB, Weiss MF. AGEs induce oxidative stress and activate protein kinase C-β(II) in neonatal mesangial cells. Am J Physiol Renal Physiol 2000; 278(4): F676-83.
[http://dx.doi.org/10.1152/ajprenal.2000.278.4.F676] [PMID: 10751230]
[9]
Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab 2001; 280(5): E685-94.
[http://dx.doi.org/10.1152/ajpendo.2001.280.5.E685] [PMID: 11287350]
[10]
Basta G, Lazzerini G, Massaro M, et al. Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: A mechanism for amplification of inflammatory responses. Circulation 2002; 105(7): 816-22.
[http://dx.doi.org/10.1161/hc0702.104183] [PMID: 11854121]
[11]
Hudson BI, Kalea AZ, Del Mar Arriero M, et al. Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. J Biol Chem 2008; 283(49): 34457-68.
[http://dx.doi.org/10.1074/jbc.M801465200] [PMID: 18922799]
[12]
Yonekura H, Yamamoto Y, Sakurai S, et al. Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem J 2003; 370(Pt 3): 1097-109.
[http://dx.doi.org/10.1042/bj20021371] [PMID: 12495433]
[13]
Bowler E, Oltean S. Alternative splicing in angiogenesis. Int J Mol Sci 2019; 20(9): 2067.
[http://dx.doi.org/10.3390/ijms20092067] [PMID: 31027366]
[14]
Ding Q, Keller JN. Evaluation of rage isoforms, ligands, and signaling in the brain. Biochim Biophys Acta 2005; 1746(1): 18-27.
[http://dx.doi.org/10.1016/j.bbamcr.2005.08.006] [PMID: 16214242]
[15]
Ding Y, Kantarci A, Hasturk H, Trackman PC, Malabanan A, Van Dyke TE. Activation of RAGE induces elevated O2- generation by mononuclear phagocytes in diabetes. J Leukoc Biol 2007; 81(2): 520-7.
[http://dx.doi.org/10.1189/jlb.0406262] [PMID: 17095613]
[16]
Yan SD, Chen X, Fu J, et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature 1996; 382(6593): 685-91.
[http://dx.doi.org/10.1038/382685a0] [PMID: 8751438]
[17]
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell 2010; 140(6): 918-34.
[http://dx.doi.org/10.1016/j.cell.2010.02.016] [PMID: 20303880]
[18]
Sorci G, Riuzzi F, Giambanco I, Donato R. RAGE in tissue homeostasis, repair and regeneration. Biochim Biophys Acta 2013; 1833(1): 101-9.
[http://dx.doi.org/10.1016/j.bbamcr.2012.10.021] [PMID: 23103427]
[19]
Neeper M, Schmidt AM, Brett J, et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 1992; 267(21): 14998-5004.
[http://dx.doi.org/10.1016/S0021-9258(18)42138-2] [PMID: 1378843]
[20]
Han SH, Kim YH, Mook-Jung I. RAGE: The beneficial and deleterious effects by diverse mechanisms of actions. Mol Cells 2011; 31(2): 91-7.
[http://dx.doi.org/10.1007/s10059-011-0030-x] [PMID: 21347704]
[21]
Amor S, Puentes F, Baker D, van der Valk P. Inflammation in neurodegenerative diseases. Immunology 2010; 129(2): 154-69.
[http://dx.doi.org/10.1111/j.1365-2567.2009.03225.x] [PMID: 20561356]
[22]
Rai V, Touré F, Chitayat S, et al. Lysophosphatidic acid targets vascular and oncogenic pathways via RAGE signaling. J Exp Med 2012; 209(13): 2339-50.
[http://dx.doi.org/10.1084/jem.20120873] [PMID: 23209312]
[23]
Kislinger T, Fu C, Huber B, et al. N(ε)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J Biol Chem 1999; 274(44): 31740-9.
[http://dx.doi.org/10.1074/jbc.274.44.31740] [PMID: 10531386]
[24]
Giri R, Shen Y, Stins M, et al. β-amyloid-induced migration of monocytes across human brain endothelial cells involves RAGE and PECAM-1. Am J Physiol Cell Physiol 2000; 279(6): C1772-81.
[http://dx.doi.org/10.1152/ajpcell.2000.279.6.C1772] [PMID: 11078691]
[25]
McManus CJ, Graveley BR. RNA structure and the mechanisms of alternative splicing. Curr Opin Genet Dev 2011; 21(4): 373-9.
[http://dx.doi.org/10.1016/j.gde.2011.04.001] [PMID: 21530232]
[26]
Hori O, Brett J, Slattery T, et al. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem 1995; 270(43): 25752-61.
[http://dx.doi.org/10.1074/jbc.270.43.25752] [PMID: 7592757]
[27]
Marenholz I, Heizmann CW, Fritz G. S100 proteins in mouse and man: From evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 2004; 322(4): 1111-22.
[http://dx.doi.org/10.1016/j.bbrc.2004.07.096] [PMID: 15336958]
[28]
Fritz G, Botelho HM, Morozova-Roche LA, Gomes CM. Natural and amyloid self-assembly of S100 proteins: structural basis of functional diversity. FEBS J 2010; 277(22): 4578-90.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07887.x] [PMID: 20977662]
[29]
Donato R, Cannon BR, Sorci G, et al. Functions of S100 proteins. Curr Mol Med 2013; 13(1): 24-57.
[http://dx.doi.org/10.2174/156652413804486214] [PMID: 22834835]
[30]
Farokhzadian J, Mangolian Shahrbabaki P, Bagheri V. S100A12-CD36 axis: A novel player in the pathogenesis of atherosclerosis? Cytokine 2019; 122154104
[http://dx.doi.org/10.1016/j.cyto.2017.07.010] [PMID: 28756107]
[31]
Huttunen HJ, Kuja-Panula J, Sorci G, Agneletti AL, Donato R, Rauvala H. Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem 2000; 275(51): 40096-105.
[http://dx.doi.org/10.1074/jbc.M006993200] [PMID: 11007787]
[32]
Fuentes MK, Nigavekar SS, Arumugam T, et al. RAGE activation by S100P in colon cancer stimulates growth, migration, and cell signaling pathways. Dis Colon Rectum 2007; 50(8): 1230-40.
[http://dx.doi.org/10.1007/s10350-006-0850-5] [PMID: 17587138]
[33]
Gromov LA, Syrovatskaya LP, Ovinova GV. Functional role of the neurospecific S-100 protein in the processes of memory. Neurosci Behav Physiol 1992; 22(1): 25-9.
[http://dx.doi.org/10.1007/BF01186664] [PMID: 1614614]
[34]
O’Dowd BS, Zhao WQ, Ng KT, Robinson SR. Chicks injected with antisera to either S-100 alpha or S-100 beta protein develop amnesia for a passive avoidance task. Neurobiol Learn Mem 1997; 67(3): 197-206.
[http://dx.doi.org/10.1006/nlme.1997.3766] [PMID: 9159758]
[35]
Epstein OI, Pavlov IF, Shtark MB. Improvement of memory by means of ultra-low doses of antibodies to S-100B antigen. Evid Based Complement Alternat Med 2006; 3(4): 541-5.
[http://dx.doi.org/10.1093/ecam/nel073] [PMID: 17173119]
[36]
Santos G, Barateiro A, Gomes CM, Brites D, Fernandes A. Impaired oligodendrogenesis and myelination by elevated S100B levels during neurodevelopment. Neuropharmacology 2018; 129: 69-83.
[http://dx.doi.org/10.1016/j.neuropharm.2017.11.002] [PMID: 29126910]
[37]
Esposito G, Imitola J, Lu J, et al. Genomic and functional profiling of human Down syndrome neural progenitors implicates S100B and aquaporin 4 in cell injury. Hum Mol Genet 2008; 17(3): 440-57.
[http://dx.doi.org/10.1093/hmg/ddm322] [PMID: 17984171]
[38]
Lu J, Esposito G, Scuderi C, et al. S100B and APP promote a gliocentric shift and impaired neurogenesis in Down syndrome neural progenitors. PLoS One 2011; 6(7)e22126
[http://dx.doi.org/10.1371/journal.pone.0022126] [PMID: 21779383]
[39]
Chen C, Jiang P, Xue H, et al. Role of astroglia in Down’s syndrome revealed by patient-derived human-induced pluripotent stem cells. Nat Commun 2014; 5: 4430.
[http://dx.doi.org/10.1038/ncomms5430] [PMID: 25034944]
[40]
Sorci G, Agneletti AL, Donato R. Effects of S100A1 and S100B on microtubule stability. An in vitro study using triton-cytoskeletons from astrocyte and myoblast cell lines. Neuroscience 2000; 99(4): 773-83.
[http://dx.doi.org/10.1016/S0306-4522(00)00238-4] [PMID: 10974440]
[41]
Wasik U, Schneider G, Mietelska-Porowska A, et al. Calcyclin binding protein and Siah-1 interacting protein in Alzheimer’s disease pathology: Neuronal localization and possible function. Neurobiol Aging 2013; 34(5): 1380-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.11.007] [PMID: 23260124]
[42]
Esposito G, Scuderi C, Lu J, et al. S100B induces tau protein hyperphosphorylation via Dickopff-1 up-regulation and disrupts the Wnt pathway in human neural stem cells. J Cell Mol Med 2008; 12(3): 914-27. [b
[http://dx.doi.org/10.1111/j.1582-4934.2008.00159.x] [PMID: 18494933]
[43]
Shepherd CE, Goyette J, Utter V, et al. Inflammatory S100A9 and S100A12 proteins in Alzheimer’s disease. Neurobiol Aging 2006; 27(11): 1554-63.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.09.033] [PMID: 16253391]
[44]
Sheng JG, Mrak RE, Griffin WS. Glial-neuronal interactions in Alzheimer disease: Progressive association of IL-1alpha+ microglia and S100beta+ astrocytes with neurofibrillary tangle stages. J Neuropathol Exp Neurol 1997; 56(3): 285-90.
[http://dx.doi.org/10.1097/00005072-199703000-00007] [PMID: 9056542]
[45]
Li G, Chen H, Cheng L, Zhao R, Zhao J, Xu Y. Amyloid precursor-like protein 2 C-terminal fragments upregulate S100A9 gene and protein expression in BV2 cells. Neural Regen Res 2014; 9(21): 1923-8.
[http://dx.doi.org/10.4103/1673-5374.145362] [PMID: 25558244]
[46]
Tian ZY, Wang CY, Wang T, Li YC, Wang ZY. Glial S100A6 Degrades beta-amyloid aggregation through targeting competition with zinc ions. Aging Dis 2019; 10(4): 756-69.
[http://dx.doi.org/10.14336/AD.2018.0912] [PMID: 31440382]
[47]
Roltsch E, Holcomb L, Young KA, Marks A, Zimmer DB. PSAPP mice exhibit regionally selective reductions in gliosis and plaque deposition in response to S100B ablation. J Neuroinflammation 2010; 7: 78.
[http://dx.doi.org/10.1186/1742-2094-7-78] [PMID: 21080947]
[48]
Afanador L, Roltsch EA, Holcomb L, et al. The Ca2+ sensor S100A1 modulates neuroinflammation, histopathology and Akt activity in the PSAPP Alzheimer’s disease mouse model. Cell Calcium 2014; 56(2): 68-80.
[http://dx.doi.org/10.1016/j.ceca.2014.05.002] [PMID: 24931125]
[49]
Kummer MP, Vogl T, Axt D, et al. Mrp14 deficiency ameliorates amyloid β burden by increasing microglial phagocytosis and modulation of amyloid precursor protein processing. J Neurosci 2012; 32(49): 17824-9.
[http://dx.doi.org/10.1523/JNEUROSCI.1504-12.2012] [PMID: 23223301]
[50]
Wang C, Iashchishyn IA, Pansieri J, et al. S100A9-Driven amyloid-neuroinflammatory cascade in traumatic brain injury as a precursor state for Alzheimer’s disease. Sci Rep 2018; 8(1): 12836.
[http://dx.doi.org/10.1038/s41598-018-31141-x] [PMID: 30150640]
[51]
Butterfield DA, Swomley AM, Sultana R. Amyloid β-peptide (1-42)-induced oxidative stress in Alzheimer disease: Importance in disease pathogenesis and progression. Antioxid Redox Signal 2013; 19(8): 823-35.
[http://dx.doi.org/10.1089/ars.2012.5027] [PMID: 23249141]
[52]
Sturchler E, Galichet A, Weibel M, Leclerc E, Heizmann CW. Site-specific blockade of RAGE-Vd prevents amyloid-β oligomer neurotoxicity. J Neurosci 2008; 28(20): 5149-58.
[http://dx.doi.org/10.1523/JNEUROSCI.4878-07.2008] [PMID: 18480271]
[53]
Chaney MO, Stine WB, Kokjohn TA, et al. RAGE and amyloid beta interactions: Atomic force microscopy and molecular modeling. Biochim Biophys Acta 2005; 1741(1-2): 199-205.
[http://dx.doi.org/10.1016/j.bbadis.2005.03.014] [PMID: 15882940]
[54]
Krishnan S, Ravi S, Ponmalai S, Rani P. A molecular dynamics study on RAGE-Aβ42 interaction and the influence of G82S RAGE polymorphism on Aβ interaction. Int J Bioautomation 2015; 19(4): 433-46.
[55]
Koch M, Chitayat S, Dattilo BM, et al. Structural basis for ligand recognition and activation of RAGE. Structure 2010; 18(10): 1342-52.
[http://dx.doi.org/10.1016/j.str.2010.05.017]
[56]
Fritz G. RAGE: A single receptor fits multiple ligands. Trends Biochem Sci 2011; 36(12): 625-32.
[http://dx.doi.org/10.1016/j.tibs.2011.08.008] [PMID: 22019011]
[57]
Park H, Adsit FG, Boyington JC. The 1.5 Å crystal structure of human receptor for advanced glycation endproducts (RAGE) ectodomains reveals unique features determining ligand binding. J Biol Chem 2010; 285(52): 40762-70.
[58]
Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS. Calcium-dependent and independent interactions of the S100 protein family. Biochem J 2006; 396(2): 201-14.
[http://dx.doi.org/10.1042/BJ20060195] [PMID: 16683912]
[59]
Bierhaus A, Stern DM, Nawroth PP. RAGE in inflammation: A new therapeutic target? Curr Opin Invest Dr (London, England: 2000) 2006; 2006(11): 985-1..
[60]
Clynes R, Moser B, Yan SF, Ramasamy R, Herold K, Schmidt AM. Receptor for AGE (RAGE): Weaving tangled webs within the inflammatory response. Curr Mol Med 2007; 7(8): 743-51.
[http://dx.doi.org/10.2174/156652407783220714] [PMID: 18331232]
[61]
Herold K, Moser B, Chen Y, et al. Receptor for advanced glycation end products (RAGE) in a dash to the rescue: Inflammatory signals gone awry in the primal response to stress. J Leukoc Biol 2007; 82(2): 204-12.
[http://dx.doi.org/10.1189/jlb.1206751] [PMID: 17513693]
[62]
Collison KS, Parhar RS, Saleh SS, et al. RAGE-mediated neutrophil dysfunction is evoked by advanced glycation end products (AGEs). J Leukoc Biol 2002; 71(3): 433-44.
[PMID: 11867681]
[63]
Gebhardt C, Riehl A, Durchdewald M, et al. RAGE signaling sustains inflammation and promotes tumor development. J Exp Med 2008; 205(2): 275-85.
[http://dx.doi.org/10.1084/jem.20070679] [PMID: 18208974]
[64]
Chen Y, Akirav EM, Chen W, et al. RAGE ligation affects T cell activation and controls T cell differentiation. J Immunol 2008; 181(6): 4272-8.
[http://dx.doi.org/10.4049/jimmunol.181.6.4272] [PMID: 18768885]
[65]
Chavakis T, Bierhaus A, Al-Fakhri N, et al. The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: A novel pathway for inflammatory cell recruitment. J Exp Med 2003; 198(10): 1507-15.
[http://dx.doi.org/10.1084/jem.20030800] [PMID: 14623906]
[66]
Orlova VV, Choi EY, Xie C, et al. A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO J 2007; 26(4): 1129-39.
[http://dx.doi.org/10.1038/sj.emboj.7601552] [PMID: 17268551]
[67]
Gebhardt C, Németh J, Angel P, Hess J. S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol 2006; 72(11): 1622-31.
[http://dx.doi.org/10.1016/j.bcp.2006.05.017] [PMID: 16846592]
[68]
Foell D, Wittkowski H, Vogl T, Roth J. S100 proteins expressed in phagocytes: A novel group of damage-associated molecular pattern molecules. J Leukoc Biol 2007; 81(1): 28-37.
[http://dx.doi.org/10.1189/jlb.0306170] [PMID: 16943388]
[69]
Bianchi ME, Manfredi AA. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev 2007; 220(1): 35-46.
[http://dx.doi.org/10.1111/j.1600-065X.2007.00574.x] [PMID: 17979838]
[70]
Bierhaus A, Humpert PM, Morcos M, et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl) 2005; 83(11): 876-86.
[http://dx.doi.org/10.1007/s00109-005-0688-7] [PMID: 16133426]
[71]
Westerterp M, Murphy AJ, Wang M, et al. Deficiency of ATP-binding cassette transporters A1 and G1 in macrophages increases inflammation and accelerates atherosclerosis in mice. Circ Res 2013; 112(11): 1456-65.
[72]
Daffu G, Shen X, Senatus L, et al. RAGE suppresses ABCG1-mediated macrophage cholesterol efflux in diabetes. Diabetes 2015; 64(12): 4046-60.
[http://dx.doi.org/10.2337/db15-0575] [PMID: 26253613]
[73]
Arancio O, Zhang HP, Chen X, et al. RAGE potentiates Abeta-induced perturbation of neuronal function in transgenic mice. EMBO J 2004; 23(20): 4096-105.
[http://dx.doi.org/10.1038/sj.emboj.7600415] [PMID: 15457210]
[74]
Li J, Schmidt AM. Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J Biol Chem 1997; 272(26): 16498-506.
[http://dx.doi.org/10.1074/jbc.272.26.16498] [PMID: 9195959]
[75]
Schmidt AM, Yan SD, Yan SF, Stern DM. The biology of the receptor for advanced glycation end products and its ligands. Biochim Biophys Acta 2000; 1498(2-3): 99-111.
[http://dx.doi.org/10.1016/S0167-4889(00)00087-2] [PMID: 11108954]
[76]
Bierhaus A, Schiekofer S, Schwaninger M, et al. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 2001; 50(12): 2792-808.
[http://dx.doi.org/10.2337/diabetes.50.12.2792] [PMID: 11723063]
[77]
Sparvero LJ, Asafu-Adjei D, Kang R, et al. RAGE (Receptor for Advanced Glycation Endproducts), RAGE ligands, and their role in cancer and inflammation. J Transl Med 2009; 7(1): 17.
[http://dx.doi.org/10.1186/1479-5876-7-17] [PMID: 19292913]
[78]
Zlokovic B, Yamada S, Holtzman D, et al. Clearance of amyloid β-peptide from brain: Transport or metabolism? Nat Med 2000; 6: 718.
[http://dx.doi.org/10.1038/77397]
[79]
Herz J, Strickland DK. LRP: A multifunctional scavenger and signaling receptor. J Clin Invest 2001; 108(6): 779-84.
[http://dx.doi.org/10.1172/JCI200113992] [PMID: 11560943]
[80]
Go GW, Mani A. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J Biol Med 2012; 85(1): 19-28.
[PMID: 22461740]
[81]
Uranga RM, Keller JN. Diet and age interactions with regards to cholesterol regulation and brain pathogenesis. Curr Gerontol Geriatr Res 2010; 2010219683
[http://dx.doi.org/10.1155/2010/219683] [PMID: 20396385]
[82]
Ranganathan S, Liu CX, Migliorini MM, et al. Serine and threonine phosphorylation of the low density lipoprotein receptor-related protein by protein kinase Calpha regulates endocytosis and association with adaptor molecules. J Biol Chem 2004; 279(39): 40536-.
[83]
Li Y, van Kerkhof P, Marzolo MP, Strous GJ, Bu G. Identification of a major cyclic AMP-dependent protein kinase A phosphorylation site within the cytoplasmic tail of the low-density lipoprotein receptor-related protein: Implication for receptor-mediated endocytosis. Mol Cell Biol 2001; 21(4): 1185-95.
[http://dx.doi.org/10.1128/MCB.21.4.1185-1195.2001] [PMID: 11158305]
[84]
Zhao Z, Sagare AP, Ma Q, et al. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat Neurosci 2015; 18(7): 978-87.
[http://dx.doi.org/10.1038/nn.4025] [PMID: 26005850]
[85]
Deane R, Wu Z, Sagare A, et al. LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron 2004; 43(3): 333-44.
[86]
Sagare A, Deane R, Bell RD, et al. Clearance of amyloid-beta by circulating lipoprotein receptors. Nat Med 2007; 13(9): 1029-31.
[http://dx.doi.org/10.1038/nm1635] [PMID: 17694066]
[87]
von Arnim CA, Kinoshita A, Peltan ID, et al. The low density lipoprotein receptor-related protein (LRP) is a novel beta-secretase (BACE1) substrate. J Biol Chem 2005; 280(18): 17777-85.
[http://dx.doi.org/10.1074/jbc.M414248200] [PMID: 15749709]
[88]
Liu Q, Zhang J, Tran H, et al. LRP1 shedding in human brain: Roles of ADAM10 and ADAM17. Mol Neurodegener 2009; 4: 17.
[http://dx.doi.org/10.1186/1750-1326-4-17]
[89]
Rozanov DV, Hahn-Dantona E, Strickland DK, Strongin AY. The low density lipoprotein receptor-related protein LRP is regulated by membrane type-1 matrix metalloproteinase (MT1-MMP) proteolysis in malignant cells. J Biol Chem 2004; 279(6): 4260-8.
[http://dx.doi.org/10.1074/jbc.M311569200] [PMID: 14645246]
[90]
Polavarapu R, Gongora MC, Yi H, et al. Tissue-type plasminogen activator-mediated shedding of astrocytic low-density lipoprotein receptor-related protein increases the permeability of the neurovascular unit. Blood 2007; 109(8): 3270-8.
[http://dx.doi.org/10.1182/blood-2006-08-043125] [PMID: 17170123]
[91]
Donahue JE, Flaherty SL, Johanson CE, et al. RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease. Acta Neuropathol 2006; 112(4): 405-15.
[http://dx.doi.org/10.1007/s00401-006-0115-3] [PMID: 16865397]
[92]
Deane R, Du Yan S, Submamaryan RK, et al. RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 2003; 9(7): 907-13.
[http://dx.doi.org/10.1038/nm890] [PMID: 12808450]
[93]
Shiiki T, Ohtsuki S, Kurihara A, et al. Brain insulin impairs amyloid-beta(1-40) clearance from the brain. J Neurosci 2004; 24(43): 9632-7.
[94]
Sagare AP, Bell RD, Srivastava A, et al. A lipoprotein receptor cluster IV mutant preferentially binds amyloid-β and regulates its clearance from the mouse brain. J Biol Chem 2013; 288(21): 15154-66.
[http://dx.doi.org/10.1074/jbc.M112.439570] [PMID: 23580652]
[95]
Sagare AP, Deane R, Zlokovic BV. Low-density lipoprotein receptor-related protein 1: A physiological Aβ homeostatic mechanism with multiple therapeutic opportunities. Pharmacol Ther 2012; 136(1): 94-105.
[http://dx.doi.org/10.1016/j.pharmthera.2012.07.008] [PMID: 22820095]
[96]
Lue LF, Walker DG, Brachova L, et al. Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease: Identification of a cellular activation mechanism. Exp Neurol 2001; 171(1): 29-45.
[http://dx.doi.org/10.1006/exnr.2001.7732] [PMID: 11520119]
[97]
Valente T, Gella A, Fernàndez-Busquets X, Unzeta M, Durany N. Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer’s disease and diabetes mellitus. Neurobiol Dis 2010; 37(1): 67-76.
[http://dx.doi.org/10.1016/j.nbd.2009.09.008] [PMID: 19778613]
[98]
Origlia N, Righi M, Capsoni S, et al. Receptor for advanced glycation end product-dependent activation of p38 mitogen-activated protein kinase contributes to amyloid-β-mediated cortical synaptic dysfunction. J Neurosci 2008; 28(13): 3521-30.
[http://dx.doi.org/10.1523/JNEUROSCI.0204-08.2008] [PMID: 18367618]
[99]
Guglielmotto M, Aragno M, Tamagno E, et al. AGEs/RAGE complex upregulates BACE1 via NF-κB pathway activation. Neurobiol Aging 2012; 33(1): 196.e13-27.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.05.026] [PMID: 20638753]
[100]
Origlia N, Capsoni S, Cattaneo A, et al. Abeta-dependent Inhibition of LTP in different intracortical circuits of the visual cortex: The role of RAGE. J Alzheimers Dis 2009; 17(1): 59-68.
[http://dx.doi.org/10.3233/JAD-2009-1045] [PMID: 19221410]
[101]
Kuhla B, Loske C, Garcia De Arriba S, Schinzel R, Huber J, Münch G. Differential effects of “Advanced glycation endproducts” and β-amyloid peptide on glucose utilization and ATP levels in the neuronal cell line SH-SY5Y. J Neural Transm (Vienna) 2004; 111(3): 427-39.
[http://dx.doi.org/10.1007/s00702-003-0038-2] [PMID: 14991463]
[102]
Takuma K, Fang F, Zhang W, et al. RAGE-mediated signaling contributes to intraneuronal transport of amyloid-β and neuronal dysfunction. Proc Natl Acad Sci USA 2009; 106(47): 20021-6.
[http://dx.doi.org/10.1073/pnas.0905686106] [PMID: 19901339]
[103]
Castelli V, Benedetti E, Antonosante A, et al. Neuronal cells rearrangement during aging and neurodegenerative disease: Metabolism, oxidative stress and organelles dynamic. Front Mol Neurosci 2019; 12: 132.
[104]
Perrone L, Sbai O, Nawroth PP, Bierhaus A. The complexity of sporadic Alzheimer’s disease pathogenesis: The role of RAGE as therapeutic target to promote neuroprotection by inhibiting neurovascular dysfunction. Int J Alzheimers Dis 2012; 2012734956
[http://dx.doi.org/10.1155/2012/734956] [PMID: 22482078]
[105]
Fuller S, Steele M, Münch G. Activated astroglia during chronic inflammation in Alzheimer’s disease--do they neglect their neurosupportive roles? Mutat Res 2010; 690(1-2): 40-9.
[http://dx.doi.org/10.1016/j.mrfmmm.2009.08.016] [PMID: 19748514]
[106]
Fang F, Lue LF, Yan S, et al. RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease. FASEB J 2010; 24(4): 1043-55.
[http://dx.doi.org/10.1096/fj.09-139634] [PMID: 19906677]
[107]
Mackic JB, Bading J, Ghiso J, et al. Circulating amyloid-β peptide crosses the blood-brain barrier in aged monkeys and contributes to Alzheimer’s disease lesions. Vascul Pharmacol 2002; 38(6): 303-13.
[http://dx.doi.org/10.1016/S1537-1891(02)00198-2] [PMID: 12529925]
[108]
Martel CL, Mackic JB, McComb JG, Ghiso J, Zlokovic BV. Blood-brain barrier uptake of the 40 and 42 amino acid sequences of circulating Alzheimer’s amyloid β in guinea pigs. Neurosci Lett 1996; 206(2-3): 157-60.
[http://dx.doi.org/10.1016/S0304-3940(96)12462-9] [PMID: 8710175]
[109]
Malm T, Koistinaho M, Muona A, Magga J, Koistinaho J. The role and therapeutic potential of monocytic cells in Alzheimer’s disease. Glia 2010; 58(8): 889-900.
[http://dx.doi.org/10.1002/glia.20973] [PMID: 20155817]
[110]
Giri R, Selvaraj S, Miller CA, et al. Effect of endothelial cell polarity on β-amyloid-induced migration of monocytes across normal and AD endothelium. Am J Physiol Cell Physiol 2002; 283(3): C895-904.
[http://dx.doi.org/10.1152/ajpcell.00293.2001] [PMID: 12176746]
[111]
Gospodarska E, Kupniewska-Kozak A, Goch G, Dadlez M. Binding studies of truncated variants of the Aβ peptide to the V-domain of the RAGE receptor reveal Aβ residues responsible for binding. Biochim Biophys Acta 2011; 1814(5): 592-609.
[http://dx.doi.org/10.1016/j.bbapap.2011.02.011] [PMID: 21354340]
[112]
Krishnan S, Rani P. Polymorphism in the ligand binding domain of rage alters its binding affinity towards Aβ42 peptides: An in-silico study. IJBRA 2016; 12(3): 181-93.
[http://dx.doi.org/10.1504/IJBRA.2016.078226]
[113]
Baiguera S, Fioravanzo L, Grandi C, Di Liddo R, Parnigotto PP, Folin M. Involvement of the receptor for advanced glycation-end products (RAGE) in β-amyloid-induced toxic effects in rat cerebromicrovascular endothelial cells cultured in vitro. Int J Mol Med 2009; 24(1): 9-15.
[PMID: 19513528]
[114]
Falcone C, Emanuele E, D’Angelo A, et al. Plasma levels of soluble receptor for advanced glycation end products and coronary artery disease in nondiabetic men. Arterioscler Thromb Vasc Biol 2005; 25(5): 1032-7.
[http://dx.doi.org/10.1161/01.ATV.0000160342.20342.00] [PMID: 15731496]
[115]
Quade-Lyssy P, Kanarek AM, Baiersdörfer M, Postina R, Kojro E. Statins stimulate the production of a soluble form of the receptor for advanced glycation end products. J Lipid Res 2013; 54(11): 3052-61.
[http://dx.doi.org/10.1194/jlr.M038968] [PMID: 23966666]
[116]
Lee EJ, Park EY, Mun H, et al. Soluble receptor for advanced glycation end products inhibits disease progression in autosomal dominant polycystic kidney disease by down-regulating cell proliferation. FASEB J 2015; 29(8): 3506-14.
[http://dx.doi.org/10.1096/fj.15-272302] [PMID: 25934702]
[117]
Qi XM, Ma JF. The role of amyloid beta clearance in cerebral amyloid angiopathy: More potential therapeutic targets. Transl Neurodegener 2017; 6(1): 22.
[http://dx.doi.org/10.1186/s40035-017-0091-7] [PMID: 28824801]
[118]
Kuhla B, Boeck K, Schmidt A, et al. Age- and stage-dependent glyoxalase I expression and its activity in normal and Alzheimer’s disease brains. Neurobiol Aging 2007; 28(1): 29-41.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.11.007] [PMID: 16427160]
[119]
More SS, Vartak AP, Vince R. Restoration of glyoxalase enzyme activity precludes cognitive dysfunction in a mouse model of Alzheimer’s disease. ACS Chem Neurosci 2013; 4(2): 330-8.
[http://dx.doi.org/10.1021/cn3001679] [PMID: 23421684]
[120]
Chellappa RC, Rani P. G82S RAGE polymorphism is associated with Alzheimer’s disease. Front Biosci (Elite Ed) 2020; 12: 150-61.
[http://dx.doi.org/10.2741/e864] [PMID: 32114455]
[121]
Bermejo P, Martín-Aragón S, Benedí J, et al. Differences of peripheral inflammatory markers between mild cognitive impairment and Alzheimer’s disease. Immunol Lett 2008; 117(2): 198-202.
[http://dx.doi.org/10.1016/j.imlet.2008.02.002] [PMID: 18367253]
[122]
Di Filippo M, Tozzi A, Costa C, et al. Plasticity and repair in the post-ischemic brain. Neuropharmacology 2008; 55(3): 353-62.
[http://dx.doi.org/10.1016/j.neuropharm.2008.01.012] [PMID: 18359495]
[123]
Kong Y, Wang F, Wang J, et al. Pathological mechanisms linking diabetes mellitus and alzheimer’s disease: The receptor for advanced glycation end products (RAGE). Front Aging Neurosci 2020; 12: 217.
[124]
Wang P, Huang R, Lu S, et al. RAGE and AGEs in mild cognitive impairment of diabetic patients: A cross-sectional study. PLoS One 2006; 11(1)e0145521
[125]
West RK, Moshier E, Lubitz I, et al. Dietary advanced glycation end products are associated with decline in memory in young elderly. Mech Ageing Dev 2014; 140: 10-2.
[http://dx.doi.org/10.1016/j.mad.2014.07.001] [PMID: 25037023]
[126]
Cai W, Uribarri J, Zhu L, et al. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc Natl Acad Sci USA 2014; 111(13): 4940-5.
[http://dx.doi.org/10.1073/pnas.1316013111]
[127]
Bongarzone S, Savickas V, Luzi F, Gee AD. Targeting the receptor for advanced glycation endproducts (RAGE): A medicinal chemistry perspective. J Med Chem 2017; 60(17): 7213-32.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00058] [PMID: 28482155]
[128]
Oh S, Son M, Choi J, Lee S, Byun K. sRAGE prolonged stem cell survival and suppressed RAGE-related inflammatory cell and T lymphocyte accumulations in an Alzheimer’s disease model. Biochem Biophys Res Commun 2018; 495(1): 807-13.
[129]
Hu Q, Yu B, Chen Q, et al. Effect of Linguizhugan decoction on neuroinflammation and expression disorder of the amyloid β related transporters RAGE and LRP 1 in a rat model of Alzheimer’s disease. Mol Med Rep 2018; 17(1): 827-34.
[PMID: 29115637]
[130]
Deane R, Singh I, Sagare AP, et al. A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest 2012; 122(4): 1377-92.
[http://dx.doi.org/10.1172/JCI58642] [PMID: 22406537]
[131]
Cirillo C, Capoccia E, Iuvone T, et al. S100B inhibitor pentamidine attenuates reactive gliosis and reduces neuronal loss in a mouse model of Alzheimer’s disease. BioMed Res Int 2015; 2015508342
[http://dx.doi.org/10.1155/2015/508342] [PMID: 26295040]
[132]
Cui L, Cai Y, Cheng W, et al. A novel, multi-target natural drug candidate, Matrine, improves cognitive deficits in Alzheimer’s disease transgenic mice by inhibiting Aβ aggregation and blocking the RAGE/Aβ Axis. Mol Neurobiol 2017; 54(3): 1939-52.
[http://dx.doi.org/10.1007/s12035-016-9783-8] [PMID: 26899576]
[133]
Hong Y, An Z. Hesperidin attenuates learning and memory deficits in APP/PS1 mice through activation of Akt/Nrf2 signaling and inhibition of RAGE/NF-κB signaling. Arch Pharm Res 2018; 41(6): 655-63.
[http://dx.doi.org/10.1007/s12272-015-0662-z] [PMID: 26391026]
[134]
Burstein AH, Sabbagh M, Andrews R, Valcarce C, Dunn I, Altstiel L. Development of Azeliragon, an oral small molecule antagonist of the receptor for advanced glycation endproducts, for the potential slowing of loss of cognition in mild Alzheimer’s disease. J Prev Alzheimers Dis 2018; 5(2): 149-54.
[PMID: 29616709]
[135]
Deane RJ. Is RAGE still a therapeutic target for Alzheimer’s disease? Future Med Chem 2012; 4(7): 915-25.
[http://dx.doi.org/10.4155/fmc.12.51] [PMID: 22571615]
[136]
ClinicalTrials.gov; Bethesda (MD): National Library of Medicine (US). Identifier NCT00566397, A Phase 2 Study Evaluating The Efficacy And Safety Of PF 04494700 In Mild To Moderate Alzheimer's Disease 2007. Available from:. https://clinicaltrials.gov/ct2/show/results/NCT00566397
[137]
ClinicalTrials.gov; Bethesda (MD): National Library of Medicin (US). Identifier NCT02916056, 2-year extension study of azeliragon in subjects with Alzheimer's disease (STEADFAST Extension) 2016. Available from; https://clinicaltrials.gov/ct2/show/NCT02916056.
[138]
] ClinicalTrials.gov; Bethesda (MD): National Library of Medicine (US). Identifier NCT02080364, Evaluation of the Efficacy and Safety of Azeliragon (TTP488) in Patients With Mild Alzheimer's Disease (STEADFAST) 2015. Available from: . https://clinicaltrials. gov/ct2/show/NCT02080364
[139]
ClinicalTrials.gov; Bethesda (MD): National Library of Medicine (US). Identifier NCT03980730, Study of Azeliragon in Patients With Mild Alzheimer's Disease and Impaired Glucose Tolerance (Elevage) 2019. Available from: . https://clinicaltrials.gov/ct2/show/NCT03980730
[140]
Galasko D, Bell J, Mancuso JY, et al. Alzheimer’s Disease Cooperative, S. Clinical trial of an inhibitor of RAGE-Abeta interactions in Alzheimer disease. Neurology 2014; 82: 1536-42.
[http://dx.doi.org/10.1212/WNL.0000000000000364] [PMID: 24696507]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy