Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Investigation of the Structural, Thermal and Morphological Properties of Nanocellulose Synthesised from Pineapple Leaves and Sugarcane Bagasse

Author(s): Muhammad Hanif Sainorudin, Nur Athirah Abdullah, Mohd Saiful Asmal Rani*, Masita Mohammad*, Nurul Huda Abd Kadir, Halim Razali, Nilofar Asim and Zahira Yaakob

Volume 18, Issue 1, 2022

Published on: 16 February, 2021

Page: [68 - 77] Pages: 10

DOI: 10.2174/1573413717666210216115609

Price: $65

Abstract

Background: Nanocrystalline celluloses (NCCs), also known as nanocelluloses derived from natural renewable resources, have elicited much interest from researchers. The annual local agricultural residues of pineapple leaves and sugarcane bagasse are abundant and must be used properly. The detailed comparative analysis of chemical, physical and thermal properties conducted in this work demonstrates that several types of agro-waste can be utilised economically and reasonably for various applications.

Methods: NCCs were successfully isolated by the pre-treatment (alkaline and bleaching) and acid hydrolysis of pineapple leaves and sugarcane bagasse. The structural, crystallinity, morphological and thermal properties were evaluated via Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA).

Results: The FTIR spectra revealed an extensive removal of hemicellulose and lignin from the extracted NCC. Morphological investigations conducted through TEM revealed that the NCC nanostructure had a needle-like shape, whereas SEM showed an irregular rod-like shape. The XRD pattern proved the crystallinity of the isolated NCC from both samples. The crystallinity indices of NCC from pineapple leaves and sugarcane bagasse were 76.38% and 74.60%, respectively. NCC’s thermal stability increased in both samples at different purification stages.

Conclusion: Pineapple leaves and sugarcane bagasse can be the industry’s primary source of raw materials and a possible alternative for costly and non-renewable materials. The use of NCCs from these agro-waste forms is beneficial and can provide considerable biomass to the agricultural industry with nano-energy-based markets.

Keywords: Renewable, nanocrystalline cellulose, agricultural residue, pineapple leaves, sugarcane bagasse, isolation

Graphical Abstract

[1]
Ozturk, M.; Saba, N.; Altay, V.; Iqbal, R.; Hakeem, K.R.; Jawaid, M.; Ibrahim, F.H. An overview of the development potential in Turkey and Malaysia. Renew. Sustain. Energy Rev., 2017, 79, 1285-1302.
[http://dx.doi.org/10.1016/j.rser.2017.05.111]
[2]
Rani, M.S.A.; Ahmad, A.; Mohamed, N.S. A comprehensive investigation on electrical characterization and ionic transport properties of cellulose derivative from kenaf fibre-based biopolymer electrolytes. Polym. Bull., 2018, 75, 5061-5074.
[http://dx.doi.org/10.1007/s00289-018-2320-3]
[3]
Tholibon, D.; Tharazi, I.; Sulong, A.B.; Muhamad, N.; Ismail, N.F.; Md Radzi, M.K.; Radzuan, N.A.M.; Hui, D. Kenaf fiber composites : a review on synthetic and biodegradable polymer matrix. J. Kejuruteraan, 2019, 31, 65-76.
[4]
Kargarzadeh, H.; Mariano, M.; Huang, J.; Lin, N.; Ahmad, I.; Dufresne, A.; Thomas, S. Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer (Guildf.), 2017, 132, 368-393.,
[http://dx.doi.org/10.1016/j.polymer.2017.09.043]
[5]
Brinchi, L.; Cotana, F.; Fortunati, E.; Kenny, J.M. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr. Polym., 2013, 94(1), 154-169.
[http://dx.doi.org/10.1016/j.carbpol.2013.01.033] [PMID: 23544524]
[6]
Rani, M.S.A.; Rudhziah, S.; Ahmad, A.; Mohamed, N.S. Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber.Polymers (Basel), 2014, 6, 2371-2385.,
[http://dx.doi.org/10.3390/polym6092371]
[7]
Rani, M.S.A.; Mohammad, M.; Sua’it, M.S.; Ahmad, A.; Mohamed, N.S. Novel approach for the utilization of ionic liquid-based cellulose derivative biosourced polymer electrolytes in safe sodium-ion batteries. Polym. Bull., 2020, 78, 1-23.
[http://dx.doi.org/10.1007/s00289-020-03382-2]
[8]
Saba, N.; Tahir, P.M.; Jawaid, M. A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers (Basel), 2014, 6, 2247-2273.,
[http://dx.doi.org/10.3390/polym6082247]
[9]
Kian, L.K.; Jawaid, M.; Ariffin, H.; Karim, Z. Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose. Int. J. Biol. Macromol., 2018, 114, 54-63.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.065] [PMID: 29551511]
[10]
Rani, M.S.A.; Ahmad, A.; Mohamed, N.S. Influence of nano-sized fumed silica on physicochemical and electrochemical properties of cellulose derivatives-ionic liquid biopolymer electrolytes. Ionics, 2018, 24, 807-814.
[http://dx.doi.org/10.1007/s11581-017-2235-2]
[11]
Abitbol, T.; Rivkin, A.; Cao, Y.; Nevo, Y.; Abraham, E.; Ben- Shalom, T.; Lapidot, S.; Shoseyov, O. Nanocellulose, a tiny fiber with huge applications. Curr. Opin. Biotechnol., 2016, 39, 76-88.,
[http://dx.doi.org/10.1016/j.copbio.2016.01.002] [PMID: 26930621]
[12]
Peng, B.L.; Dhar, N.; Liu, H.L.; Tam, K.C. Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective. Can. J. Chem. Eng., 2011, 89, 1191-1206.,
[http://dx.doi.org/10.1002/cjce.20554]
[13]
Rosli, N.A.; Ahmad, I.; Abdullah, I. Isolation and characterization of cellulose nanocrystlas from Agave angustifolia fibre. BioResources, 2013, 8, 1893-1908.
[http://dx.doi.org/10.15376/biores.8.2.1893-1908]
[14]
Mondal, S. Preparation, properties and applications of nanocellulosic materials.Carbohydr. Polym., 2017, 163, 301-316.,
[http://dx.doi.org/10.1016/j.carbpol.2016.12.050] [PMID: 28267510]
[15]
Battista, O.A. Hydrolysis and crystalline of cellulose. Ind. Eng. Chem. Res., 1950, 42, 502-507.
[http://dx.doi.org/10.1021/ie50483a029]
[16]
Rawway, M.; Ali, S.; Badawy, A. Isolation and identification of cellulose degrading bacteria from different sources at Assiut Governorate (Upper Egypt). J. Ecol. Health Environ., 2018, 6, 15-24.,
[http://dx.doi.org/10.18576/jehe/060103]
[17]
Battista, O.A. Hydrolysis and crystalline of cellulose. Ind. Eng. Chem. Res., 1950, 42, 502-507.
[http://dx.doi.org/10.1021/ie50483a029]
[18]
Majeed, K.; Jawaid, M.; Hassan, A.; Abu Bakar, A.; Abdul Khalil, H.P.S.; Salema, A.A.; Inuwa, I. Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater. Des., 2013, 46, 391-410.
[http://dx.doi.org/10.1016/j.matdes.2012.10.044]
[19]
H P S, A.K.; Saurabh, C.K.; A S, A.; Nurul Fazita, M.R.; Syakir, M.I.; Davoudpour, Y.; Rafatullah, M.; Abdullah, C.K.; M Haafiz, M.K.; Dungani, R. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohydr. Polym., 2016, 150, 216-226.,
[http://dx.doi.org/10.1016/j.carbpol.2016.05.028] [PMID: 27312632]
[20]
Ahmad, R.; Hamid, R.; Osman, S.A. Physical and chemical modifications of plant fibres for reinforcement in cementitious composites. Adv. Civ. Eng., 2019, 23, 1-18.
[http://dx.doi.org/10.1155/2019/5185806]
[21]
Sena Neto, A.R.; Araujo, M.A.M.; Barboza, R.M.P.; Fonseca, A.S.; Tonoli, G.H.D.; Souza, F.V.D.; Mattoso, L.H.C.; Marconcini, J.M. Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites. Ind. Crops Prod., 2015, 64, 68-78.
[http://dx.doi.org/10.1016/j.indcrop.2014.10.042]
[22]
Riantong, S.; Worasit, T.; Teeraporn, K.; Chiroporn, S. Extraction and properties of cellulose from banana peels. Warasan Technol. Suranaree, 2014, 21, 215-232.
[23]
Chen, Y.W.; Lee, H.V.; Juan, J.C.; Phang, S.M. Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydr. Polym., 2016, 151, 1210-1219.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.083] [PMID: 27474672]
[24]
Segal, L.; Creely, J.J.; Martin, A.E.; Conrad, C.M. An empirical method for estimating the degree of crystallinity of native cellulose using X-ray diffractometer. Text. Res. J., 1959, 29, 786-794.
[http://dx.doi.org/10.1177/004051755902901003]
[25]
He, J.; Tang, Y.; Wang, S.Y. Differences in morphological characteristics of bamboo fibres and other natural cellulose fibres: Studies on X-ray diffraction, solid state 13C-CP/MAS NMR, and second derivative FTIR spectroscopy data. Iran. Polym. J., 2007, 16, 807-818.
[26]
Mandal, A.; Chakrabarty, D. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr. Polym., 2011, 86, 1291-1299.
[http://dx.doi.org/10.1016/j.carbpol.2011.06.030]
[27]
Shanmugam, N.; Nagarkar, R.D.; Kurhade, M. Microcrystalline cellulose powder from banana pseudostem fibres using bio-chemical route. Indian J. Nat. Prod. Resour., 2015, 6, 42-50.
[28]
Okon, O.; Eduok, U.; Israel, A. Characterization and phytochemical screening of coconut (Cocos nucifera L.) Coir dust as a low cost adsorbent for wastewater treatment. Elixir. Appl. Chem., 2012, 47, 8961-8968.
[29]
Ng, H-M.; Sin, L.T.; Tee, T-T.; Bee, S-T.; Hui, D.; Low, C-Y.; Rahmat, A.R. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos., Part B Eng., 2015, 75, 176-200.
[http://dx.doi.org/10.1016/j.compositesb.2015.01.008]
[30]
Mat Zain, N.F. Preparation and characterization of cellulose and nanocellulose from pomelo (Citrus grandis) albedo. J. Nutr. Food Sci., 2014, 5, 10-13.
[http://dx.doi.org/10.4172/2155-9600.1000334]
[31]
Wulandari, W.T.; Rochliadi, A.; Arcana, I.M. Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. Mater. Sci. Eng., 2016, 107, 1-7.
[32]
Adel, A.M.; El-Shafei, A.M.; Ibrahim, A.A.; Al-Shemy, M.T. Chitosan/nanocrystalline cellulose biocomposites based on date palm (Phoenix dactylifera L.) sheath fibers. J. Renew. Mater., 2019, 7, 567-582.,
[http://dx.doi.org/10.32604/jrm.2019.00034]
[33]
Li, M.; Wang, L.J.; Li, D.; Cheng, Y.L.; Adhikari, B. Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. Carbohydr. Polym., 2014, 102, 136-143.
[http://dx.doi.org/10.1016/j.carbpol.2013.11.021] [PMID: 24507265]
[34]
Lee, K.Y.; Aitomäki, Y.; Berglund, L.A.; Oksman, K.; Bismarck, A. On the use of nanocellulose as reinforcement in polymer matrix composites. Compos. Sci. Technol., 2014, 105, 15-27.,
[http://dx.doi.org/10.1016/j.compscitech.2014.08.032]
[35]
Sun, J.X; Sun, X.F.; Zhao, H.; Sun, R.C. Isolation and characterization of cellulose from sugarcane bagasse. Polym. Degrad. Stabil., 2004, 84, 331-339.,
[http://dx.doi.org/10.1016/j.polymdegradstab.2004.02.008]
[36]
Pereira, P.H.F.; Voorwald, H.C.J.; Cioffi, M.O.H.; Mulinari, D.R.; da Luz, S.M.; da Silva, M.L.C.P. Sugarcane bagasse pulping and bleaching: Thermal and chemical characterization. BioResources, 2011, 6, 2471-2482.
[37]
Mahardika, M.; Abral, H.; Kasim, A.; Arief, S.; Asrofi, M. Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication. Fibers (Basel), 2018, 6, 1-12.,
[http://dx.doi.org/10.3390/fib6020028]
[38]
Prado, K.S.; Spinacé, M.A.S. Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. Int. J. Biol. Macromol., 2019, 122, 410-416.,
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.187] [PMID: 30385342]
[39]
Yang, J.; Ching, Y.C.; Chuah, C.H. Applications of lignocellulosic fibers and lignin in bioplastics: A review. Polymers (Basel), 2019, 11(5), 1-26.
[http://dx.doi.org/10.3390/polym11050751] [PMID: 31035331]
[40]
Teixeira, J.G.; Gomes, M.G.; Oliveira, R.R.; Silva, V.A.; Mariana, M. Sugarcane Bagasse Ash Reinforced HDPE Composites : Effects of Electron-Beam Radiation Crosslinking on Tensile and Morphological Properties. International Nuclear Atlantic Conference, 2013, pp. 1-10.
[41]
Zeni, M.; Favero, D.; Pacheco, K.; Ana Grisa, M. Preparation of microcellulose (MCC) and nanocellulose (NCC) from Eucalyptus Kraft Ssp Pulp. Polym. Sci., 2015, 1, 1-7.
[42]
Flórez Pardo, L.M.; Salcedo Mendoza, J.G.; López Galán, J.E. Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues. Braz. J. Chem. Eng., 2019, 36, 131-141.,
[http://dx.doi.org/10.1590/0104-6632.20190361s20180093]
[43]
Zhang, D.; Zhang, Q.; Gao, X.; Piao, G. A nanocellulose polypyrrole composite based on tunicate cellulose. Int. J. Polym. Sci., 2013, 1, 1-6.
[http://dx.doi.org/10.1155/2013/175609]
[44]
Azubuike, C.P.; Okhamafe, A.O. Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. Int. J. Recycl. Org. Waste Agric., 2012, 1, 1-7.
[http://dx.doi.org/10.1186/2251-7715-1-9]
[45]
Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels, 2010, 3, 10.
[http://dx.doi.org/10.1186/1754-6834-3-10] [PMID: 20497524]
[46]
Fisher, T.; Hajaligol, M.; Waymack, B.; Kellogg, D. 27-Pyrolysis behavior and kinetics of biomass driered materials. J. Anal. Appl. Pyrolysis, 2002, 62, 331-349.
[http://dx.doi.org/10.1016/S0165-2370(01)00129-2]
[47]
Moreno, G.; Ramirez, K.; Esquivel, M.; Jimenez, G. Isolation and characterization of nanocellulose obtained from industrial crop waste resources by using mild acid hydrolysis. J. Renew. Mater., 2018, 6, 362-369.,
[http://dx.doi.org/10.7569/JRM.2017.634167]
[48]
Gan, P.G.; Sam, S.T.; Faiq, M.; Omar, M.F. Thermal properties of nanocellulose-reinforced composites : A review. J. Appl. Polym. Sci., 2020, 48544, 1-14.
[http://dx.doi.org/10.1002/app.48544]
[49]
Santmartí, A.; Lee, K.Y. Crystallinity and Thermal Stability of Nanocellulose; Nanocell. Sust, 2018, pp. 67-86.
[50]
Nehad Ali Shah, Animasaun, I.L.; Ibraheem, R.O.; Babatunde, H.A.; Sandeep, N.; Pop, I. Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces. J. Mol. Liq., 2018, 249, 980-990.
[http://dx.doi.org/10.1016/j.molliq.2017.11.042]
[51]
Wakif, A.; Animasaun, I.L.; Satya Narayana, P.V.; Sarojamma, G. Meta-analysis on thermo-migration of tiny/nano-sized particles in the motion of various fluids. Zhongguo Wuli Xuekan, 2020, 68, 293-307.,
[http://dx.doi.org/10.1016/j.cjph.2019.12.002]
[52]
Indarti, E. Marwan, Wanrosli, W.D. Thermal stability of oil palm empty fruit bunch (OPEFB) nanocrystalline cellulose: Effects of post-treatment of oven drying and solvent exchange techniques. J. Phys. Conf. Ser., 2015, 622, 1-8.
[http://dx.doi.org/10.1088/1742-6596/622/1/012025]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy