Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

Recent Advancements in Lignin Valorization and Biomedical Applications: A Patent Review

Author(s): Vandana Prasad, Lubna Siddiqui, Pawan Kumar Mishra, Adam Ekielski and Sushama Talegaonkar*

Volume 16, Issue 2, 2022

Published on: 16 February, 2021

Page: [107 - 127] Pages: 21

DOI: 10.2174/1872210515666210216085831

Price: $65

Abstract

Background: Synthetic polymers present disadvantages such as high cost, limited availability, safety concerns, environmental hazards and accumulation in body. Lignin, an aromatic biopolymer, is highly abundant and offers various advantages including cost-effectiveness, biocompatibility and biodegradability. It also possesses various pharmacological activities including antioxidant, antibacterial, anticancer and UV protection, thus lignin has become a popular biopolymer in recent years and is no more considered as bio-waste rather extensive research is been carried out on developing it as drug carrier. Lignin also has non-biomedical applications including dispersing agents, surfactants, detergent/ cleaning agents, energy storage, etc.

Methods: This review compiles patents granted on production of technical lignin, different lignin therapeutic carriers and its biomedical and non-biomedical applications. The literature is collected from recent years including both articles as well as patents and is carefully analyzed and compiled in an easy to comprehend pattern for guiding future research.

Results: The reviewed patents and articles highlighted the advancement made in lignin isolation and valorization. Numerous lignin nanoformulations as drug delivery agents or as standalone entities with various pharmacological actions like antibacterial, antioxidant or UV protectant have been reported. As well as industrial applications of lignin as adhesives, insulators or supercapacitors have also made lignin a biopolymer of choice.

Conclusion: Lignin being a bio-inspired polymer has huge potential in commercial applications. New methods of lignin isolation from lignocellulosic biomass including physical pretreatments, solvent fraction, and chemical and biological pretreatment have been widely patented. Several micro/nano lignin formulations with improved and controllable reactivity like nanocontainers, nanocapsules, nanoparticles have also been reported recently. Also, various pharmacological properties of lignin have also been explored, thus valorization of lignin is a hot topic of hour.

Keywords: Lignin, nanoformulations, valorization, lignin nanoparticles, UV protectant, antioxidant, anticancer.

Next »
Graphical Abstract

[1]
Yearla SR, Padmasree K. Preparation and characterisation of lignin nanoparticles: Evaluation of their potential as antioxidants and UV protectants. J Exp Nanosci 2016; 11: 289-302.
[http://dx.doi.org/10.1080/17458080.2015.1055842]
[2]
Vinardell M, Montserrat M. Lignins and their derivatives with beneficial effects on human health. Int J Mol Sci 2017; 18: 1219.
[http://dx.doi.org/10.3390/ijms18061219]
[3]
Miettinen M. Method for making a lignin component, a lignin component and its use and a product. JUSTIA Patent 9688824, 2017.
[4]
Siddiqui L, Mishra H, Mishra PK, Iqbal Z, Talegaonkar S. Novel 4-in-1 strategy to combat colon cancer, drug resistance and cancer relapse utilizing functionalized bioinspiring lignin nanoparticle. Med Hypotheses 2018; 121: 10-4.
[http://dx.doi.org/10.1016/j.mehy.2018.09.003] [PMID: 30396459]
[5]
Watkins D, Nuruddin M, Hosur M, Tcherbi-Narteh A, Jeelani S. Extraction and characterization of lignin from different biomass resources. J Mater Res Technol 2015; 4: 26-32.
[http://dx.doi.org/10.1016/j.jmrt.2014.10.009]
[6]
Bhuvaneshwari S, Hettiarachchi H, Meegoda JN. Crop residue burning in India: Policy challenges and potential solutions. Int J Environ Res Public Health 2019; 16(5): 832.
[http://dx.doi.org/10.3390/ijerph16050832] [PMID: 30866483]
[7]
Jain N, Bhatia A, Pathak H. Emission of air pollutants from crop residue burning in India. Aerosol Air Qual Res 2014; 14: 422-30.
[http://dx.doi.org/10.4209/aaqr.2013.01.0031]
[8]
Mishra PK, Ekielski A. The self-assembly of lignin and its application in nanoparticle synthesis: A short review. Nanomaterials (Basel) 2019; 9(2): 9.
[http://dx.doi.org/10.3390/nano9020243] [PMID: 30754724]
[9]
Mattinen M-L, Valle-Delgado JJ, Leskinen T, et al. Enzymatically and chemically oxidized lignin nanoparticles for biomaterial applications. Enzyme Microb Technol 2018; 111: 48-56.
[http://dx.doi.org/10.1016/j.enzmictec.2018.01.005] [PMID: 29421036]
[10]
Song Y, Mobley JK, Motagamwala AH, et al. Gold-catalyzed conversion of lignin to low molecular weight aromatics. Chem Sci (Camb) 2018; 9(42): 8127-33.
[http://dx.doi.org/10.1039/C8SC03208D] [PMID: 30542563]
[11]
Awungacha Lekelefac C, Busse N, Herrenbauer M, Czermak P. Photocatalytic based degradation processes of lignin derivatives. Int J Photoenergy 2015; 2015: 1-18.
[http://dx.doi.org/10.1155/2015/137634]
[12]
Witzler M, Alzazgameem A, Bergs M, et al. Lignin-derived biomaterials for drug release and tissue engineering molecules 2018; 23(8): 1885.
[13]
Kumar P, Barrett DM, Delwiche MJ, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 2009; 48: 3713-29.
[http://dx.doi.org/10.1021/ie801542g]
[14]
Yiamsawas D, Beckers SJ, Lu H, Landfester K, Wurm FR. Morphology-controlled synthesis of lignin nanocarriers for drug delivery and carbon materials. ACS Biomater Sci Eng 2017; 3: 2375-83.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00278]
[15]
Zhou Y, Han Y, Li G, Yang S, Xiong F, Chu F. Preparation of targeted lignin–based hollow nanoparticles for the delivery of doxorubicin. Nanomaterials (Basel) 2019; 9: 188.
[http://dx.doi.org/10.3390/nano9020188]
[16]
Mishra PK, Wimmer R. Aerosol assisted self-assembly as a route to synthesize solid and hollow spherical lignin colloids and its utilization in layer by layer deposition. Ultrason Sonochem 2017; 35(Pt A): 45-50.
[http://dx.doi.org/10.1016/j.ultsonch.2016.09.001] [PMID: 27614582 ]
[17]
Mishra PK, Ekielski A. A simple method to synthesize lignin nanoparticles. Colloids Interfaces 2019; 3: 52.
[http://dx.doi.org/10.3390/colloids3020052]
[18]
Siddiqui L, Bag J Seetha. Assessing the potential of lignin nanoparticles as drug carrier: Synthesis, cytotoxicity and genotoxicity studies. Int J Biol Macromol 2020; 152: 786-802.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.311] [PMID: 32114178]
[19]
Mishra PK, Giagli K, Tsalagkas D, et al. Changing face of wood science in modern era: Contribution of nanotechnology. Recent Pat Nanotechnol 2018; 12(1): 13-21.
[http://dx.doi.org/10.2174/1872210511666170808111512] [PMID: 28786344]
[20]
Klímek P, Wimmer R, Mishra PK, Kúdela J. Utilizing brewer’s-spent-grain in wood-based particleboard manufacturing. J Clean Prod 2017; 141: 812-7.
[http://dx.doi.org/10.1016/j.jclepro.2016.09.152]
[21]
Vishtal AG, Kraslawski A. Challenges in industrial applications of technical lignins. BioResources 2011; 6: 3547-68.
[22]
Li T, Takkellapati S. The current and emerging sources of technical lignins and their applications. Biofuels Bioprod Biorefin 2018; 12(5): 756-87.
[http://dx.doi.org/10.1002/bbb.1913] [PMID: 30220952]
[23]
Eraghi Kazzaz A, Fatehi P. Technical lignin and its potential modification routes: A mini-review. Ind Crops Prod 2020; 154112732.
[http://dx.doi.org/10.1016/j.indcrop.2020.112732]
[24]
Mansouri N-EE, Salvadó J. Structural characterization of technical lignins for the production of adhesives: Application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Ind Crops Prod 2006; 24: 8-16.
[http://dx.doi.org/10.1016/j.indcrop.2005.10.002]
[25]
Jung MH. Method for preparing low-molecular lignin derivative. 10100073, 2018.
[26]
Humphrey ST. Agrochemical formulations using natural lignin productsChem Technol Agrochem Formul. Dordrecht: Springer Netherlands 1998; pp. 158-78.
[http://dx.doi.org/10.1007/978-94-011-4956-3_6]
[27]
Malutan T, Nicu R, Popa VI. Agrochemical formulations using natural lignin products Knowles DA editor Chem Technol Agrochem Formul. 1998; pp. 158-78.
[28]
Kopacic S, Ortner A, Guebitz G, Kraschitzer T, Leitner J, Bauer W. Technical lignins and their utilization in the surface sizing of paperboard. Ind Eng Chem Res 2018; 57: 6284-91.
[http://dx.doi.org/10.1021/acs.iecr.8b00974]
[29]
Iravani S, Varma RS. Greener synthesis of lignin nanoparticles and their applications. Green Chem 2020; 22: 612-36.
[http://dx.doi.org/10.1039/C9GC02835H]
[30]
Ouyang X, Ke L, Qiu X, Guo Y, Pang Y. Sulfonation of alkali lignin and its potential use in dispersant for cement. J Dispers Sci Technol 2009; 30: 1-6.
[http://dx.doi.org/10.1080/01932690802473560]
[31]
Ge Y, Li Z. Application of lignin and its derivatives in adsorption of heavy metal ions in water: A review. ACS Sustain Chem& Eng 2018; 6: 7181-92.
[http://dx.doi.org/10.1021/acssuschemeng.8b01345]
[32]
He Q, Ziegler-Devin I, Chrusciel L, et al. Lignin-first integrated steam explosion process for green wood adhesive application. ACS Sustain Chem& Eng 2020; 8: 5380-92.
[http://dx.doi.org/10.1021/acssuschemeng.0c01065]
[33]
Zhao C, Qiao X, Shao Q, Hassan M, Ma Z, Yao L. Synergistic effect of hydrogen peroxide and ammonia on lignin. Ind Crops Prod 2020; 146: 112177.
[http://dx.doi.org/10.1016/j.indcrop.2020.112177]
[34]
Al Afif R, Wendland M, Amon T, Pfeifer C. Supercritical carbon dioxide enhanced pre-treatment of cotton stalks for methane production. Energy 2020; 194: 116903.
[http://dx.doi.org/10.1016/j.energy.2020.116903]
[35]
Ben’ko E, Chukhchin D, Mamleeva N, Kharlanov A, Lunin V. Ozonolytic delignification of wheat straw. Russ J Phys Chem A 2020; 94: 1535-42.
[http://dx.doi.org/10.1134/S0036024420080038]
[36]
Guerra A, Filpponen I, Lucia LA, Argyropoulos DS. Comparative evaluation of three lignin isolation protocols for various wood species. J Agric Food Chem 2006; 54(26): 9696-705.
[http://dx.doi.org/10.1021/jf062433c] [PMID: 17177489]
[37]
Guerra A, Filpponen I, Lucia LA, Saquing C, Baumberger S, Argyropoulos DS. Toward a better understanding of the lignin isolation process from wood. J Agric Food Chem 2006; 54(16): 5939-47.
[http://dx.doi.org/10.1021/jf060722v] [PMID: 16881698]
[38]
Masterman T, Medoff M, Paradis R. Processing Materials. AU2019275544A1, 2020.
[39]
Boitouzet T. Process for partial delignification and filling of a lignocellulosic material, and composite material structure able to be obtained by this process United States Patent: 10538012, 2020.
[40]
Wittmann T. Method for obtaining stabilized lignin having a defined particle-size distribution from a lignin-containing liquid United States Patent: 10415184, 2019.
[41]
Tikka P. Method for producing high purity lignin United States Patent: 10072037, 2018.
[42]
Kilambi S, Kadam KL. Production of fermentable sugars and lignin from biomass using supercritical fluids United States Patent: 10053745, 2018.
[43]
Streffer F. Method for lignin recovery United States Patent: 9969760, 2018.
[44]
Thies MC, Klett AS, Bruce DA. Solvent and recovery process for lignin United States Patent: 10053482, 2018.
[45]
Feghali E. Method of preparing aromatic compounds from lignin United States Patent: 10081644, 2018.
[46]
Nakagawa H. Lignin resin composition, cured product, and molded product United States Patent: 10059793, 2018.
[47]
Grelier S. Process for depolymerization of lignin by laccases United States Patent: 10059731, 2018.
[48]
Hilli T. Method for treating lignin-based material United States Patent: 10035957, 2018.
[49]
Tamminen T. Functionalized lignin and method of producing the same United States Patent: 9902815, 2018.
[50]
Eskelinen K. Method for fractionating lignin United States Patent: 9896469, 2018.
[51]
Socha A, Singh S, Simmons BA, Bergeron M. Synthesis of novel ionic liquids from lignin-derived compounds United States Patent: 9765044, 2017.
[52]
Jansen R, Lawson JA, Lapidot N, Hallac B, et al. Methods for preparing thermally stable lignin fractions United States Patent: 9683005, 2017.
[53]
Chung H. Lignin-containing polymers United States Patent: 9701777, 2017.
[54]
Dorgan JR, Eyser MP, Perbix C. US Patent: 9303127, Lignin extraction from lignocellulosics. 2016.
[55]
Mikhnevich ICY, Zhalezniak MBY, Asadchenko NBY, et al. Method for production of dry hydrolytic lignin. US Patent: 9255187, 2016.
[56]
Kadam K, Simard MA, Champagne AT. Lignin production from lignocellulosic biomass. US8840995B2, 2014.
[57]
Blount DH. Delignification of biomass containing lignin and production of amino lignin aldehyde resins and carbohydrates. US Patent: 8268121, 2012.
[58]
Lora JH, Katzen R, Cronlund M, Wu CF. Recovery of lignin. US Patent: 4764596, 1988.
[59]
Ten E, Ling C, Wang Y, Srivastava A, Dempere LA, Vermerris W. Lignin nanotubes as vehicles for gene delivery into human cells. Biomacromolecules 2014; 15(1): 327-38.
[http://dx.doi.org/10.1021/bm401555p] [PMID: 24308459]
[60]
Bajwa DS, Wang X, Sitz E, Loll T, Bhattacharjee S. Application of bioethanol derived lignin for improving physico-mechanical properties of thermoset biocomposites. Int J Biol Macromol 2016; 89: 265-72.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.077] [PMID: 27131732]
[61]
Guo J, Chen X, Wang J, et al. The influence of compatibility on the structure and properties of PLA/lignin biocomposites by chemical modification. Polymers (Basel) 2019; 12(1): 56.
[http://dx.doi.org/10.3390/polym12010056] [PMID: 31906231]
[62]
Triwulandari E, Ghozali M, Sondari D, Septiyanti M, Sampora Y, Meliana Y, et al. Effect of lignin on mechanical, biodegradability, morphology, and thermal properties of polypropylene/polylactic acid/lignin biocomposite. Plast Rubber Compos 2019; 48: 82-92.
[http://dx.doi.org/10.1080/14658011.2018.1562746]
[63]
Mulder WJ, Gosselink RJA, Vingerhoeds MH, et al. Lignin based controlled release coatings. Ind Crops Prod 2011; 34: 915-20.
[http://dx.doi.org/10.1016/j.indcrop.2011.02.011]
[64]
Fernández-Pérez M, Garrido-Herrera FJ, González-Pradas E, Villafranca-Sánchez M, Flores-Céspedes F. Lignin and ethylcellulose as polymers in controlled release formulations of urea. J Appl Polym Sci 2008; 108: 3796-803.
[http://dx.doi.org/10.1002/app.27987]
[65]
Pishnamazi M, Hafizi H, Shirazian S, et al. Design of controlled release system for paracetamol based on modified lignin. Polymers (Basel) 2019; 11(6): 1059.
[http://dx.doi.org/10.3390/polym11061059] [PMID: 31216694]
[66]
Cheng L, Deng B, Luo W, et al. PH-responsive lignin-based nanomicelles for oral drug delivery. J Agric Food Chem 2020; 68(18): 5249-58.
[http://dx.doi.org/10.1021/acs.jafc.9b08171] [PMID: 32286845]
[67]
Pang Y, Wang S, Qiu X, et al. Preparation of lignin/sodium dodecyl sulfate composite nanoparticles and their application in pickering emulsion template-based microencapsulation. J Agric Food Chem 2017; 65(50): 11011-9.
[http://dx.doi.org/10.1021/acs.jafc.7b03784] [PMID: 29156122]
[68]
Qian Y, Deng Y, Qiu X, Li H, Yang D. Formation of uniform colloidal spheres from lignin, a renewable resource recovered from pulping spent liquor. Green Chem 2014; 16: 2156-63.
[http://dx.doi.org/10.1039/c3gc42131g]
[69]
Matteucci ME, Hotze MA, Johnston KP, Williams RO III. Drug nanoparticles by antisolvent precipitation: Mixing energy versus surfactant stabilization. Langmuir 2006; 22(21): 8951-9.
[http://dx.doi.org/10.1021/la061122t] [PMID: 17014140]
[70]
Pan X, Kadla JF, Ehara K, Gilkes N, Saddler JN. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: Relationship between lignin structure, extraction conditions, and antioxidant activity. J Agric Food Chem 2006; 54(16): 5806-13.
[http://dx.doi.org/10.1021/jf0605392] [PMID: 16881681]
[71]
Kubo S, Kadla JF. The formation of strong intermolecular interactions in immiscible blends of poly vinyl alcohol (PVA) and lignin. Biomacromolecules 2003; 4(3): 561-7.
[http://dx.doi.org/10.1021/bm025727p] [PMID: 12741770]
[72]
Ago M, Okajima K, Jakes JE, Park S, Rojas OJ. Lignin-based electrospun nanofibers reinforced with cellulose nanocrystals. Biomacromolecules 2012; 13(3): 918-26.
[http://dx.doi.org/10.1021/bm201828g] [PMID: 22283444]
[73]
Ago M, Borghei M, Haataja JS, Rojas OJ. Mesoporous carbon soft-templated from lignin nanofiber networks: Microphase separation boosts supercapacitance in conductive electrodes. RSC Advances 2016; 6: 85802-10.
[http://dx.doi.org/10.1039/C6RA17536H]
[74]
Thunga M, Chen K, Grewell D, Kessler MR. Bio-renewable precursor fibers from lignin/polylactide blends for conversion to carbon fibers. Carbon 2014; 68: 159-66.
[http://dx.doi.org/10.1016/j.carbon.2013.10.075]
[75]
Delgado-Aguilar M, González I, Tarrés Q, Pèlach MÀ, Alcalà M, Mutjé P. The key role of lignin in the production of low-cost lignocellulosic nanofibres for papermaking applications. Ind Crops Prod 2016; 86: 295-300.
[http://dx.doi.org/10.1016/j.indcrop.2016.04.010]
[76]
Caicedo HM, Dempere LA, Vermerris W. Template-mediated synthesis and bio-functionalization of flexible lignin-based nanotubes and nanowires. Nanotechnology 2012; 23(10): 105605.
[http://dx.doi.org/10.1088/0957-4484/23/10/105605] [PMID: 22362196]
[77]
Patel K, Angelos S, Dichtel WR, et al. Enzyme-responsive snap-top covered silica nanocontainers. J Am Chem Soc 2008; 130(8): 2382-3.
[http://dx.doi.org/10.1021/ja0772086] [PMID: 18232687]
[78]
Cauley AN, Wilson JN. Functionalized lignin biomaterials for enhancing optical properties and cellular interactions of dyes. Biomater Sci 2017; 5(10): 2114-21.
[http://dx.doi.org/10.1039/C7BM00518K] [PMID: 28831468]
[79]
Cui Y, Lawoko M, Svagan AJ. High Value Use of Technical Lignin. Fractionated Lignin Enables Facile Synthesis of Microcapsules with Various Shapes: Hemisphere, Bowl, Mini-tablets, or Spheres with Single Holes. ACS Sustain Chem& Eng 2020; 8: 13282-91.
[http://dx.doi.org/10.1021/acssuschemeng.0c03521]
[80]
Aaltonen O, Jauhiainen O. The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym 2009; 75: 125-9.
[http://dx.doi.org/10.1016/j.carbpol.2008.07.008]
[81]
Chen F, Xu M, Wang L, Li J. Preparation and characterization of organic aerogels by the lignin - resorcinol - formaldehyde copolymer. BioResources 2011; 6: 1262-72.
[82]
Grishechko LI, Amaral-Labat G, Szczurek A, Fierro V, Kuznetsov BN, Celzard A. Lignin–phenol–formaldehyde aerogels and cryogels. Microporous Mesoporous Mater 2013; 168: 19-29.
[http://dx.doi.org/10.1016/j.micromeso.2012.09.024]
[83]
Grishechko LI, Amaral-Labat G, Szczurek A, Fierro V, Kuznetsov BN, Pizzi A, et al. New tannin–lignin aerogels. Ind Crops Prod 2013; 41: 347-55.
[http://dx.doi.org/10.1016/j.indcrop.2012.04.052]
[84]
Quraishi S, Martins M, Barros AA, Gurikov P, Raman SP, Smirnova I, et al. Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering. J Supercrit Fluids 2015; 105: 1-8.
[http://dx.doi.org/10.1016/j.supflu.2014.12.026]
[85]
Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm 2010; 385(1-2): 113-42.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.018] [PMID: 19825408]
[86]
Bartzoka ED, Lange H, Thiel K, Crestini C. Coordination complexes and one-step assembly of lignin for versatile nanocapsule engineering. ACS Sustain Chem Eng 2016; 4: 5194-203.
[http://dx.doi.org/10.1021/acssuschemeng.6b00904]
[87]
Falsini S, Clemente I, Papini A, et al. When sustainable nanochemistry meets agriculture: Lignin nanocapsules for bioactive compound delivery to plantlets. ACS Sustain Chem& Eng 2019; 7: 19935-42.
[http://dx.doi.org/10.1021/acssuschemeng.9b05462]
[88]
Zhou Y, Qian Y, Wang J, Qiu X, Zeng H. Bioinspired lignin-polydopamine nanocapsules with strong bioadhesion for long-acting and high-performance natural sunscreens. Biomacromolecules 2020; 21(8): 3231-41.
[http://dx.doi.org/10.1021/acs.biomac.0c00696] [PMID: 32662631]
[89]
Beisl S, Miltner A, Friedl A. Lignin from Micro- to Nanosize: Production Methods. Int J Mol Sci 2017; 18(6): 1244.
[http://dx.doi.org/10.3390/ijms18061244] [PMID: 28604584]
[90]
Li B, Xia X, Chen J, Xia D, Xu R, Zou X, et al. Paclitaxel-loaded lignin particle encapsulated into electrospun PVA/PVP composite nanofiber for effective cervical cancer cell inhibition. Nanotechnology 2020; 32910: 015101.
[PMID: 33043894]
[91]
Alqahtani MS, Kazi M, Ahmad MZ, Syed R, Alsenaidy MA, Albraiki SA. Lignin nanoparticles as a promising vaccine adjuvant and delivery system for ovalbumin. Int J Biol Macromol 2020; 163: 1314-22.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.026] [PMID: 32645499]
[92]
Murray LR, Gupta C, Washburn NR, Erk KA. Lignopolymers as viscosity-reducing additives in magnesium oxide suspensions. J Colloid Interface Sci 2015; 459: 107-14.
[http://dx.doi.org/10.1016/j.jcis.2015.07.037] [PMID: 26275503]
[93]
Gregorová A, Redik S, Sedlarik V, Stelzer F. Lignin-containing polyethylene films with antibacterial activity. Proc 3rd Int Conf Thomson Reuters Nanocoon.
[94]
Baumberger S, Lapierre C, Monties B, Della Valle G. Use of kraft lignin as filler for starch films. Polym Degrad Stabil 1998; 59: 273-7.
[http://dx.doi.org/10.1016/S0141-3910(97)00193-6]
[95]
Yang W, Owczarek JS, Fortunati E, et al. Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging. Ind Crops Prod 2016; 94: 800-11.
[http://dx.doi.org/10.1016/j.indcrop.2016.09.061]
[96]
Lai C, Zhou Z, Zhang L, et al. Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors. J Power Sources 2014; 247: 134-41.
[http://dx.doi.org/10.1016/j.jpowsour.2013.08.082]
[97]
Yang W, Kenny JM, Puglia D. Structure and properties of biodegradable wheat gluten bionanocomposites containing lignin nanoparticles. Ind Crops Prod 2015; 74: 348-56.
[http://dx.doi.org/10.1016/j.indcrop.2015.05.032]
[98]
Xiong W, Yang D, Zhong R, Li Y, Zhou H, Qiu X. Preparation of lignin-based silica composite submicron particles from alkali lignin and sodium silicate in aqueous solution using a direct precipitation method. Ind Crops Prod 2015; 74: 285-92.
[http://dx.doi.org/10.1016/j.indcrop.2015.05.021]
[99]
Yang W, Dominici F, Fortunati E, Kenny JM, Puglia D. Effect of lignin nanoparticles and masterbatch procedures on the final properties of glycidyl methacrylate-g-poly (lactic acid) films before and after accelerated UV weathering. Ind Crops Prod 2015; 77: 833-44.
[http://dx.doi.org/10.1016/j.indcrop.2015.09.057]
[100]
Silmore KS, Gupta C, Washburn NR. Tunable pickering emulsions with polymer-grafted lignin nanoparticles (PGLNs). J Colloid Interface Sci 2016; 466: 91-100.
[http://dx.doi.org/10.1016/j.jcis.2015.11.042] [PMID: 26707776]
[101]
Lallave M, Bedia J, Ruiz-Rosas R, et al. Filled and Hollow Carbon Nanofibers by Coaxial Electrospinning of Alcell Lignin without Binder Polymers. Adv Mater 2007; 19: 4292-6.
[http://dx.doi.org/10.1002/adma.200700963]
[102]
Salas C, Ago M, Lucia LA, Rojas OJ. Synthesis of soy protein–lignin nanofibers by solution electrospinning. React Funct Polym 2014; 85: 221-7.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2014.09.022]
[103]
Gosselink RJA, Snijder MHB, Kranenbarg A, Keijsers ERP, de Jong E, Stigsson LL. Characterisation and application of NovaFiber lignin. Ind Crops Prod 2004; 20: 191-203.
[http://dx.doi.org/10.1016/j.indcrop.2004.04.021]
[104]
Nishida M, Uraki Y, Sano Y. Lignin gel with unique swelling property. Bioresour Technol 2003; 88(1): 81-3.
[http://dx.doi.org/10.1016/S0960-8524(02)00264-X] [PMID: 12573568]
[105]
Tortora M, Cavalieri F, Mosesso P, Ciaffardini F, Melone F, Crestini C. Ultrasound driven assembly of lignin into microcapsules for storage and delivery of hydrophobic molecules. Biomacromolecules 2014; 15(5): 1634-43.
[http://dx.doi.org/10.1021/bm500015j] [PMID: 24720505]
[106]
Chen N, Dempere LA, Tong Z. Synthesis of pH-responsive lignin-based nanocapsules for controlled release of hydrophobic molecules. ACS Sustain Chem& Eng 2016; 4: 5204-11.
[http://dx.doi.org/10.1021/acssuschemeng.6b01209]
[107]
Li Y, Qiu X, Qian Y, Xiong W, Yang D. pH-responsive lignin-based complex micelles: Preparation, characterization and application in oral drug delivery. Chem Eng J 2017; 327: 1176-83.
[http://dx.doi.org/10.1016/j.cej.2017.07.022]
[108]
Yang W, Fortunati E, Dominici F, Kenny JM, Puglia D. Effect of processing conditions and lignin content on thermal, mechanical and degradative behavior of lignin nanoparticles/polylactic (acid) bionanocomposites prepared by melt extrusion and solvent casting. Eur Polym J 2015; 71: 126-39.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.07.051]
[109]
Gronn AJ. Method for the production of pellets or briquettes United States Patent: 10570349, 2020.
[110]
Berlin A. Carbon fibre compositions comprising lignin derivatives United States Patent: 10533030, 2020.
[111]
Edye LA. Lignin-based waterproof coating United States Patent: 10544545, 2020.
[112]
Liu Z, Gast JC, Bottorff KJ. Lignin nanoparticle dispersions and methods for producing and using the same United States Patent: 10035928, 2018.
[113]
Jung YC. Lignin microcapsule and method of producing the same United States Patent: 9549952, 2017.
[114]
Kaplan DL, Omenetto F, Lawrence B, et al. Biopolymer sensor and method of manufacturing the same. US9802374B2, 2017.
[115]
Vermerris WE, Caicedo HM, Dempere LA. Lignin-based nanostructures. . United States Patent: 9023471, 2015.
[116]
Dirk SM, Cicotte KN. Lignin nanoparticle synthesis. 9(54)
[117]
Moss RD, Lim F. Microencapsulated agriculturally active agents and method of producing same. EP0584210A4, 1994.
[118]
Beisl S, Friedl A, Miltner A. Lignin from micro to nanosize: Applications. Int J Mol Sci 2017; 18(11): 2367.
[http://dx.doi.org/10.3390/ijms18112367] [PMID: 29117142]
[119]
Yang W, Qi G, Kenny JM, et al. Effect of cellulose nanocrystals and lignin nanoparticles on mechanical, antioxidant and water vapour barrier properties of glutaraldehyde crosslinked PVA films. Polymers (Basel) 2020; 12(6): 1364.
[http://dx.doi.org/10.3390/polym12061364] [PMID: 32560476]
[120]
Avelino F, de Oliveira DR, Mazzetto SE, Lomonaco D. Poly(methyl methacrylate) films reinforced with coconut shell lignin fractions to enhance their UV-blocking, antioxidant and thermo-mechanical properties. Int J Biol Macromol 2019; 125: 171-80.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.043] [PMID: 30529210]
[121]
Dalton N, Lynch RP, Collins MN, Culebras M. Thermoelectric properties of electrospun carbon nanofibres derived from lignin. Int J Biol Macromol 2019; 121: 472-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.051] [PMID: 30321639]
[122]
Michelin M, Liebentritt S, Vicente AA, Teixeira JA. Lignin from an integrated process consisting of liquid hot water and ethanol organosolv: Physicochemical and antioxidant properties. Int J Biol Macromol 2018; 120(Pt A): 159-69.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.046] [PMID: 30102983]
[123]
Vinardell MP, Ugartondo V, Mitjans M. Potential applications of antioxidant lignins from different sources. Ind Crops Prod 2008; 27(2): 220-3.
[http://dx.doi.org/10.1016/j.indcrop.2007.07.011]
[124]
Richter AP, Brown JS, Bharti B, et al. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nat Nanotechnol 2015; 10(9): 817-23.
[http://dx.doi.org/10.1038/nnano.2015.141] [PMID: 26167765]
[125]
Yang W, Fortunati E, Gao D, et al. Valorization of acid isolated high yield lignin nanoparticles as innovative antioxidant/antimicrobial organic materials. ACS Sustain Chem& Eng 2018; 6(3): 3502-14.
[http://dx.doi.org/10.1021/acssuschemeng.7b03782]
[126]
Rocca DM, Vanegas JP, Fournier K, et al. Biocompatibility and photo-induced antibacterial activity of lignin-stabilized noble metal nanoparticles. RSC Advances 2018; 8(70): 40454-63.
[http://dx.doi.org/10.1039/C8RA08169G]
[127]
Ugartondo V, Mitjans M, Vinardell MP. Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour Technol 2008; 99(14): 6683-7.
[http://dx.doi.org/10.1016/j.biortech.2007.11.038] [PMID: 18187323]
[128]
Aadil KR, Barapatre A, Meena AS, Jha H. Hydrogen peroxide sensing and cytotoxicity activity of Acacia lignin stabilized silver nanoparticles. Int J Biol Macromol 2016; 82: 39-47.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.09.072] [PMID: 26434518]
[129]
Figueiredo P, Lintinen K, Kiriazis A, et al. In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells. Biomaterials 2017; 121: 97-108.
[http://dx.doi.org/10.1016/j.biomaterials.2016.12.034] [PMID: 28081462]
[130]
Figueiredo P, Ferro C, Kemell M, et al. Functionalization of carboxylated lignin nanoparticles for targeted and pH-responsive delivery of anticancer drugs. Nanomedicine (Lond) 2017; 12(21): 2581-96.
[http://dx.doi.org/10.2217/nnm-2017-0219] [PMID: 28960138]
[131]
Dai L, Liu R, Hu L-Q, et al. Lignin nanoparticle as a novel green carrier for the efficient delivery of resveratrol. ACS Sustain Chem& Eng 2017; 5(9): 8241-9.
[http://dx.doi.org/10.1021/acssuschemeng.7b01903]
[132]
Gordts SC, Férir G, D’huys T, et al. The low-cost compound Lignosulfonic Acid (LA) exhibits broad-spectrum anti-HIV and anti-HSV activity and has potential for microbicidal applications. PLoS One 2015; 10(7): e0131219.
[http://dx.doi.org/10.1371/journal.pone.0131219] [PMID: 26132818]
[133]
Norikura T, Mukai Y, Fujita S, et al. Lignophenols decrease oleate-induced apolipoprotein-B secretion in HepG2 cells. Basic Clin Pharmacol Toxicol 2010; 107(4): 813-7.
[http://dx.doi.org/10.1111/j.1742-7843.2010.00575.x] [PMID: 20412465]
[134]
Chang JN, Olejnik O, Firestone BA. Cyclosporin compositions United States Patent: 10507229, 2019.
[135]
Naae DG, Winslow GA, Dwarakanath V, et al. Surfactant compositions United States Patent: 10501677, 2019.
[136]
Massey-Brooker AD. Consumer goods product comprising functionalised lignin oligomer United States Patent: 9901526, 2018.
[137]
Massey-Brooker AD. Consumer goods product comprising functionalised lignin oligomer United States Patent: 9907742, 2018.
[138]
Kotoda Kayoko. Ohara Toshisho Drug as an active ingredient lignin extract JP6445567B2, 2018.
[139]
Yu Xue, Chen Liheng, Shi Yunfeng. Method for preparing lignin nano-particles and synchronous carrier medicine. CN107814952A, 2018.
[140]
Lei J, Liu Q, Jing H. Targeted folic acid-polyethylene glycol-lignin conjugate medicine-carrying nano particles and preparation method thereof. CN108578387A, 2018.
[141]
Lin D. Magnetic lignin nano drug carrier. CN107693506A, 2018.
[142]
Belinky P. Methods of producing lignin peroxidase and its use in skin and hair lightening United States Patent: 9693946, 2017.
[143]
Li Z, Ge Y, Huang W. Preparation method for lignin drug sustained release microspheres. CN106562933A, 2017.
[144]
Adam GA. Lignin-based surfactants United States Patent: 9790248, 2017.
[145]
Asrar J, Ding Y. Lignin-based microparticles for the controlled release of agricultural actives United States Patent: 9445599, 2016.
[146]
Adam GA. Lignin-based surfactants United States Patent: 8987428, 2015.
[147]
Adam GA. Lignin-based multipurpose fertilizers United States Patent: 9039803, 2015.
[148]
Stecker F. Method for producing vanillin by electrochemical oxidation of aqueous lignin solutions or suspensions United States Patent: 8808781, 2014.
[149]
Uraki YJP, Honma HJP, Yamada TJP, et al. Lignin-based enzyme stabilizer United States Patent: 8911976, 2014.
[150]
Dikovsky AB, Dikovsky AV, Tretyakov SV, et al. Veterinary pharmaceutical composition and method (options) for the prevention and treatment of gastrointestinal diseases and intoxication of various etiologies in animals. RU2440121C2, 2012.
[151]
Rudoi BA. Pharmaceutical composition for the prophylaxis and treatment of infectious and non-infectious diarrhoea. EP2486943A1, 2012.
[152]
Qi R, Wu X, Li X, et al. Application of lignin flavanonol in preparation of antiviral drugs. CN101548971B, 2011.
[153]
Tomita T. Dispersant using kraft lignin and novel lignin derivative United States Patent: 7691982, 2010.
[154]
Jing Zhang, Ge Xu, Yang Yang. Preparation method of lignin medicinal active substance and use thereof in preparing medicine for treating cardiovascular diseases. CN1739549B, 2010.
[155]
Xu Y, Shi S, Li X. Lignin in dandelion and its antibacterial activity and medical use. CN100471851C, 2009.
[156]
Dikovskiy AV. Pharmaceutical composition of enterosorbent and prebiotics, dosage forms and the method for prevention and treatment of gastrointestinal disorders. WO2007117175A1, 2007.
[157]
Plenina LV, Khlyustov SV, Silverberglite MA, et al. Method for preparing a lignin-containing pharmaceutical formulation having an antioxidant, antihypoxic, radioprotective and anticancer action. EA004230B1, 2004.
[158]
Liang Z-Z. Lignin based colloidal compositions United States Patent: 6737443, 2004.
[159]
Scheibel JJ. Household cleaning and/or laundry detergent compositions comprising lignin-derived materials. United States Patent: 6689737, 2004.
[160]
Hobbs DG, Campbell BJ, Lidster WD. Ultra violet radiation lignin protected pesticidal compositions United States Patent: 5994266, 1999.
[161]
Shasha BS, McGuire MR, Behle RW. Lignin-based pest control formulations United States Patent: 5750467, 1998.
[162]
Ishitoku HJP, Sugiwaki TJP, Kawamura MJP, et al. Lignin composition, method of producing the same and dispersing agent for cement used the same United States Patent: 5811527, 1998.
[163]
Glukhov IL. Antiviral medicinal preparation. RU2070411C1, 1996.
[164]
Kuhrts EH. Delivery system containing a gel-forming dietary fiber and a drug. US5445826A, 1995.
[165]
Kuhrts EH. Prolonged release drug tablet formulations United States Patent: 5096714, 1992.
[166]
Kuhrts EH. Delivery system containing a gel-forming dietary fiber and a drug United States Patent: 5445826, 1995.
[167]
Machida M, Yashiro M, Takezawa E, et al. Composition for antiviral medicines comprising lignin derivatives. GB2229919A, 1990.
[168]
Machida M, Murakami K, Yashiro J. Composition for antiviral drug JPH03120223A, 1991.
[169]
DelliColli HT, Mc Partland TF, Bauer WA. Alkali lignin based pesticide phytotoxicity reducing composition. United States Patent: 4381194, 1983.
[170]
DelliColli HT, Dilling P, Falkehag SI. Cross-linked lignin gels. United States Patent: 4244728, 1981.
[171]
Ludwig CH. Lignin composition and a process for its preparation United States Patent: 4017475, 1977.
[172]
Helle MA, Cheung CL. Methods of making and using lignin derivatives United States Patent: 10533031, 2020.
[173]
Langlois A. Process for the preparation of lignin based polyurethane products United States Patent: 9598529, 2017.
[174]
Sharma K, Murray A, Ryba S, et al. Process for the preparation of lignin based polyurethane products United States Patent: 9598529, 2016.
[175]
Deleuze H. Interconnected microcellular material made of industrial lignin and method for preparing same United States Patent: 9290633, 2016.
[176]
Kamegawa KJP, Sakaki TJP, Sakanishi KJP, et al. Carbon microparticle having lignin as raw material and preparation method therefor United States Patent: 9321649, 2016.
[177]
Bolle R. Lignin based paint United States Patent: 6072015, 2000.
[178]
Dimitri MS Submicron lignin dispersions United States Patent: 5008378, 1991.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy