Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Review Article

An Overview of Removal of Heavy Metal Ions From Toxic Aqueous Solution Using Pani-Based Adsorbents

Author(s): Smruti Rekha Mohanty and Susanta Kumar Biswal*

Volume 14, Issue 2, 2022

Published on: 26 January, 2021

Page: [144 - 155] Pages: 12

DOI: 10.2174/1876402913666210126150157

Price: $65

Abstract

In the present time, water pollution has become a quibbling issue in the current environmental engineering and protection senario. The most important aspect of nanocomposite is to develop economic and bio-friendly route for the synthesis of nanosamples. Various methods such as ion exchange, reverse osmosis, filtration, adsorption, etc. for removing the metal ions from toxic water were studied. Among these methods, adsorption technique is widely used due to low cost. Basically, over the last years, conducting polymer based nanocomposites showed their application in different heavy metal ions especially Hg (II), Cd(II), Cr(VI), Pb(II), As(V), etc. Among the various conducting polymers, PANI plays the most important role in extracting the necessary heavy metal ions. The current review mainly focuses on the synthesis, adsorption and mechanism of different PANI-based adsorbents like PANI/iron oxide, PANI/ZNO, PANI/GO, and PANI/CHITOSAN, etc., which extract the heavy metal ions.

Keywords: Adsorption, PANI, metal oxide, mechanism, heavy metal extraction, nanomaterials.

Graphical Abstract

[1]
Ekramul, M.H.N.M.; Obidul, H.A.K.; Yahya, R.B. The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: A review. RSC Advances, 2016, 6(18), 14778-14791.
[http://dx.doi.org/10.1039/C5RA24358K]
[2]
Lingamdinne, L.P.; Vemula, K.R.; Chang, Y.Y.; Yang, J.K.; Karri, R.R.; Koduru, J.R. Process optimization and modeling of lead removal using iron oxide nanocomposites generated from bio-waste mass. Chemosphere, 2020, 243, 125257.
[http://dx.doi.org/10.1016/j.chemosphere.2019.125257] [PMID: 31726263]
[3]
Hota, G. Functionalization of Graphene Oxide with Metal Oxide Nanomaterials: Synthesis and Application towards the Removal of Inorganic Toxic Environmental Pollutants from Water. In Handbook of Functionalized Nanomaterials for Industrial Applications (pp. 299-326). Elsevier.
[4]
Thekkudan, V.N.; Vaidyanathan, V.K.; Ponnusamy, S.K.; Charles, C.; Sundar, S.; Vishnu, D.; Anbalagan, S.; Vaithyanathan, V.K.; Subramanian, S. Review on nanoadsorbents: a solution for heavy metal removal from wastewater. IET Nanobiotechnol., 2017, 11(3), 213-224.
[http://dx.doi.org/10.1049/iet-nbt.2015.0114] [PMID: 28476976]
[5]
Lingamdinne, L.P.; Koduru, J.R.; Karri, R.R. Green synthesis of iron oxide nanoparticles for lead removal from aqueous solutions. Key Eng. Mater., 2019, 805, 122-127.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.805.122]
[6]
Liu, X.; Ma, R.; Wang, X.; Ma, Y.; Yang, Y.; Zhuang, L.; Zhang, S.; Jehan, R.; Chen, J.; Wang, X. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: A review. Environ. Pollut., 2019, 252(Pt A), 62-73.
[http://dx.doi.org/10.1016/j.envpol.2019.05.050] [PMID: 31146239]
[7]
Ahmad, N.; Sultana, S.; Khan, M.Z.; Sabir, S. Chitosan Based Nanocomposites as Efficient Adsorbents for Water Treatment; Mod; Age Waste Water Probl, 2020, pp. 69-83.
[http://dx.doi.org/10.1007/978-3-030-08283-3_4]
[8]
Namvar-Mahboub, M.; Khodeir, E.; Bahadori, M.; Mahdizadeh, S.M. Preparation of magnetic MgO/Fe3O4 via the green method for competitive removal of Pb and cd from aqueous solution. Colloids Surf. A Physicochem. Eng. Asp., 2020, 589, 124419.
[http://dx.doi.org/10.1016/j.colsurfa.2020.124419]
[9]
Pakdel, M.A.; Pourafshari, C.M.; Namvar-Mahboub, M.; Eftekhari, M. Development of PES/polyaniline-modified TiO2 adsorptive membrane for copper removal. Colloids Surf. A Physicochem. Eng. Asp., 2019, 583, 123931.
[http://dx.doi.org/10.1016/j.colsurfa.2019.123931]
[10]
Kavosi, R.K.; Mirzaei, M.; Maghsoodi, S.; Shahbazi, A. Preparation and characterization of poly aniline modified chitosan embedded with ZnO-Fe3O4 for Cu(II) removal from aqueous solution. Int. J. Biol. Macromol., 2019, 130, 1025-1045.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.033] [PMID: 30826403]
[11]
Rastgordani, M.; Zolgharnein, J.; Mahdavi, V. Derivative spectrophotometry and multivariate optimization for simultaneous removal of titan yellow and bromophenol blue dyes using polyaniline@SiO2 nanocomposite. Microchem. J., 2020, 155, 104717.
[http://dx.doi.org/10.1016/j.microc.2020.104717]
[12]
Mohapatra, R.K. Engineering Chemistry with Laboratory Experiments; PHI: Delhi, 2015.
[13]
Zhao, X.; Lv, L.; Pan, B.; Zhang, W.; Zhang, S.; Zhang, Q. Polymer-supported nanocomposites for environmental application: A review. Chem. Eng. J., 2011, 170(2–3), 381-394.
[http://dx.doi.org/10.1016/j.cej.2011.02.071]
[14]
Liu, P.; Yan, J.; Guang, Z.; Huang, Y.; Li, X.; Huang, W. Recent advancements of polyaniline-based nanocomposites for supercapacitors. J. Power Sources, 2018, 2019(424), 108-130.
[http://dx.doi.org/10.1016/j.jpowsour.2019.03.094]
[15]
Shahadat, M.; Oves, M.; Shalla, A. H.; Ahammad, S. Z.; Wazed Ali, S.; Sreekrishnan, T. R. Fabrication of Polyaniline Supported Nanocomposites and Their Sensing Application for Detection of Environmental Pollutants, 2020.
[http://dx.doi.org/10.1007/978-3-030-08283-3_6]
[16]
Zare, E.N.; Motahari, A.; Sillanpää, M. Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: A review. Environ. Res., 2018, 162(162), 173-195.
[http://dx.doi.org/10.1016/j.envres.2017.12.025] [PMID: 29329014]
[17]
Wijethilake, C.; Upadhaya, B. Market drivers of sustainability and sustainability learning capabilities: The moderating role of sustainability control systems. Bus. Strategy Environ., 2020, 29(6), 2297-2309.
[http://dx.doi.org/10.1016/j.envres.2017.12.025] [PMID: 29329014]
[18]
Eskandari, E.; Kosari, M.; Davood, A.F.M.H.; Khiavi, N.D.; Saeedikhani, M.; Katal, R.; Zarinejad, M. A review on polyaniline-based materials applications in heavy metals removal and catalytic processes. Separ. Purif. Tech., 2019, 2020, 231.
[http://dx.doi.org/10.1016/j.seppur.2019.115901]
[19]
Dinari, M.; Neamati, S. Surface modified layered double hydroxide/polyaniline nanocomposites: Synthesis, characterization and Pb2+ removal. Colloids Surf. A Physicochem. Eng. Asp., 2020, 589, 124438.
[http://dx.doi.org/10.1016/j.colsurfa.2020.124438]
[20]
Shahadat, M.; Ahmad, A.; Bushra, R.; Ismail, S.; Ahammad, S.Z.; Wazed Ali, S.; Rafatullah, M. Recent Advancement in Wastewater Decontamination Technology; Mod; Age Waste Water Probl, 2020, pp. 1-22.
[21]
Bashir, A.; Malik, L.A.; Ahad, S.; Manzoor, T.; Bhat, M.A.; Dar, G.N.; Pandith, A.H. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ. Chem. Lett., 2019, 17(2), 729-754.
[http://dx.doi.org/10.1007/s10311-018-00828-y]
[22]
Gupta, V.K.; Ali, I. Removal of lead and chromium from wastewater using bagasse fly ash: A sugar industry waste. J. Colloid Interface Sci., 2004, 271(2), 321-328.
[http://dx.doi.org/10.1016/j.jcis.2003.11.007] [PMID: 14972608]
[23]
Gapusan, R.B.; Balela, M.D.L. Adsorption of anionic methyl orange dye and lead(II) heavy metal ion by polyaniline-kapok fiber nanocomposite. Mater. Chem. Phys., 2020, 243, 122682.
[24]
Ait El Fakir, A.; Anfar, Z.; Benafqir, M.; Jada, A.; El Alem, N. Polyaniline coated hematite sand supported on graphene oxide (HS@PANI-GO) as a new magnetic material for advanced catalytic oxidation based on sulfate radicals: Optimization using response surface methodology. J. Chem. Technol. Biotechnol., 2019, 94(8), 2609-2620.
[http://dx.doi.org/10.1002/jctb.6070]
[25]
Kim, H.; Abdala, A.A.; MacOsko, C.W. Graphene/polymer nanocomposites. Macromolecules, 2010, 43(16), 6515-6530.
[http://dx.doi.org/10.1021/ma100572e]
[26]
Sahu, S.; Sahu, U.K.; Patel, R.K. Modified thorium oxide polyaniline core-shell nanocomposite and its application for the efficient removal of Cr(VI). J. Chem. Eng. Data, 2019, 64(3), 1294-1304.
[http://dx.doi.org/10.1021/acs.jced.8b01225]
[27]
Arora, R. Adsorption of Heavy Metals-a Review. Mater. Today Proc., 2019, 18, 4745-4750.
[http://dx.doi.org/10.1016/j.matpr.2019.07.462]
[28]
Sen, T.; Mishra, S.; Shimpi, N.G. Synthesis and sensing applications of polyaniline nanocomposites: A review. RSC Advances, 2016, 6(48), 42196-42222.
[http://dx.doi.org/10.1039/C6RA03049A]
[29]
Khin, M.M.; Nair, A.S.; Babu, V.J.; Murugan, R.; Ramakrishna, S. A review on nanomaterials for environmental remediation. Energy Environ. Sci., 2012, 5(8), 8075-8109.
[http://dx.doi.org/10.1039/c2ee21818f]
[30]
Çolak, N.; Sükmen, B. Doping of chemically synthesized polyaniline. Des. Monomers Polym., 2000, 3(2), 181-189.
[http://dx.doi.org/10.1163/156855500300142870]
[31]
Luo, X.; Lei, X.; Xie, X.; Yu, B.; Cai, N.; Yu, F. Adsorptive removal of lead from water by the effective and reusable magnetic cellulose nanocomposite beads entrapping activated bentonite. Carbohydr. Polym., 2016, 151, 640-648.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.003] [PMID: 27474609]
[32]
Mahmoud, M.E.; Fekry, N.A.; El-Latif, M.M.A. Nanocomposites of nanosilica-immobilized-nanopolyaniline and crosslinked nanopolyaniline for removal of heavy metals. Chem. Eng. J., 2016, 304, 679-691.
[http://dx.doi.org/10.1016/j.cej.2016.06.110]
[33]
Singh, S.; Barick, K.C.; Bahadur, D. Functional oxide nanomaterials and nanocomposites for the removal of heavy metals and dyes. Nanomater. Nanotechnol., 2013, 3(1), 1-19.
[http://dx.doi.org/10.5772/57237]
[34]
Ahmad, A.; Ahmad, H.; Lokhat, D.; Golandaj, A.; Ramjugernath, D.; Mohd-Setapar, S.H. Recent Advances in Polyaniline-Based Nanocomposites as Potential Adsorbents for Trace Metal Ions; Elsevier Ltd., 2018.
[http://dx.doi.org/10.1016/B978-0-08-102262-7.00022-2]
[35]
Yang, Z.; Peng, H.; Wang, W.; Liu, T. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci., 2010, 116(5), 2658-2667.
[http://dx.doi.org/10.1002/app.31787]
[36]
Fawaz, J.; Mittal, V. Synthesis of polymer nanocomposites. Polymer (Guildf.), 2002, 13, 549-553.
[37]
Waseem, K.; Nawaf, H. Polymer Nanocomposites–Synthesis Techniques, Classification and Properties; Sci; Appl. Tailored Nanostructures, 2016, pp. 50-67.
[38]
Nasar, A.; Mashkoor, F. Application of polyaniline-based adsorbents for dye removal from water and wastewater: A review. Environ. Sci. Pollut. Res. Int., 2019, 26(6), 5333-5356.
[http://dx.doi.org/10.1007/s11356-018-3990-y] [PMID: 30612350]
[39]
Sun, C.; Xiong, B.; Pan, Y.; Cui, H. Adsorption removal of tannic acid from aqueous solution by polyaniline: Analysis of operating parameters and mechanism. J. Colloid Interface Sci., 2017, 487, 175-181.
[http://dx.doi.org/10.1016/j.jcis.2016.10.035] [PMID: 27769001]
[40]
Jahan, K.; Kumar, N.; Verma, V. Removal of hexavalent chromium from potable drinking using a polyaniline-coated bacterial cellulose mat. Environ. Sci. Water Res. Technol., 2018, 4(10), 1589-1603.
[http://dx.doi.org/10.1039/C8EW00255J]
[41]
KV B.; BM, N.; MNK, H.; Krishna, R.H. An efficient removal of toxic Cr(VI) from aqueous solution by mno2 coated polyaniline nanofibers: Kinetic and thermodynamic study. J. Environ. Anal. Toxicol., 2017, 07(02), 442.
[http://dx.doi.org/10.4172/2161-0525.1000442]
[42]
Jiang, Y.; Liu, Z.; Zeng, G.; Liu, Y.; Shao, B.; Li, Z.; Liu, Y.; Zhang, W.; He, Q. Polyaniline-based adsorbents for removal of hexavalent chromium from aqueous solution: A mini review. Environ. Sci. Pollut. Res. Int., 2018, 25(7), 6158-6174.
[http://dx.doi.org/10.1007/s11356-017-1188-3] [PMID: 29307070]
[43]
Gokila, S.; Gomathi, T.; Sudha, P.N.; Anil, S. Removal of the heavy metal ion chromiuim(VI) using Chitosan and Alginate nanocomposites. Int. J. Biol. Macromol., 2017, 104(Pt B), 1459-1468.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.117] [PMID: 28551438]
[44]
Karthikeyan, P.; Elanchezhiyan, S.S.D.; Preethi, J.; Meenakshi, S.; Park, C.M. Mechanistic performance of polyaniline-substituted hexagonal boron nitride composite as a highly efficient adsorbent for the removal of phosphate, nitrate, and hexavalent chromium ions from an aqueous environment. Appl. Surf. Sci., 2020, 511, 145543.
[http://dx.doi.org/10.1016/j.apsusc.2020.145543]
[45]
Nivetha, R.; Grace, A.N. Manganese and zinc ferrite based graphene nanocomposites for electrochemical hydrogen evolution reaction. J. Alloys Compd., 2019, 796, 185-195.
[http://dx.doi.org/10.1016/j.jallcom.2019.05.021]
[46]
Zheng, H.; Liu, M.; Yan, Z.; Chen, J. Highly selective and stable glucose biosensor based on incorporation of platinum nanoparticles into polyaniline-montmorillonite hybrid composites. Microchem. J., 2020, 152.
[http://dx.doi.org/10.1016/j.microc.2019.104266]
[47]
Hassan, A.; Akbari, A.; Korea, S. Polylactic acid based blends, composites and nanocomposites; polylactic acid based blends, composites and nanocomposites. In Advances in natural polymers, 2013. Vol. 18, (pp. 361-396). Springer, Berlin, Heidelberg.,
[48]
Liu, J.; Chen, T.W.; Yang, Y.L.; Bai, Z.C.; Xia, L.R.; Wang, M.; Lv, X.L.; Li, L. Removal of heavy metal ions and anionic dyes from aqueous solutions using amide-functionalized cellulose-based adsorbents. Carbohydr. Polym., 2020, 230, 115619.
[http://dx.doi.org/10.1016/j.carbpol.2019.115619] [PMID: 31887868]
[49]
Acharya, S.; Sahoo, S.; Sonal, S.; Lee, S.H.; Mishra, B.K.; Nayak, G.C. Nayak. Adsorbed Cr(VI) based activated carbon/polyaniline nanocomposite: A superior electrode material for asymmetric supercapacitor device. Composites Part B: Engin., 2020, 193, 15, 107913.
[http://dx.doi.org/10.1016/j.compositesb.2020.107913]
[50]
Singh, P.; Shukla, S.K. Advances in polyaniline-based nanocomposites. J. Mater. Sci., 2020, 55(4), 1331-1365.
[http://dx.doi.org/10.1007/s10853-019-04141-z]
[51]
Chauhan, N.P.S. Functionalized Polyaniline and Composites; Elsevier Inc., 2019.
[http://dx.doi.org/10.1016/B978-0-12-817915-4.00011-7]
[52]
Bhandari, S. Polyaniline; Elsevier Inc., 2018.
[http://dx.doi.org/10.1016/B978-0-12-809551-5.00002-3]
[53]
Qomi, M.H.; Eisazadeh, H.; Hosseini, M.; Namaghi, H.A. Manganese removal from aqueous media using polyaniline nanocomposite coated on wood sawdust. Synth. Met., 2014, 194, 153-159.
[http://dx.doi.org/10.1016/j.synthmet.2014.04.016]
[54]
Al-Thani, N.J.; Bhadra, J.; Abdulmalik, D.; Al-Qaradawi, I.; Alashraf, A.; Madi, N.K. Positron annihilation study on polyaniline nanocomposite used for Pb(II) ion removal. Desalin. Water Treat., 2016, 57(56), 27374-27385.
[http://dx.doi.org/10.1080/19443994.2016.1167128]
[55]
Vakili, M.; Deng, S.; Cagnetta, G.; Wang, W.; Meng, P.; Liu, D.; Yu, G. Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review. Separ. Purif. Tech., 2019, 224, 373-387.
[http://dx.doi.org/10.1016/j.seppur.2019.05.040]
[56]
Thambidurai, S.; Pandiselvi, K. Polyaniline/Natural Polymer Composites and Nanocomposites; Elsevier, 2018.
[http://dx.doi.org/10.1016/B978-0-12-809551-5.00009-6]
[57]
Mohammadi, B.; Pirsa, S.; Alizadeh, M. Preparing chitosan–polyaniline nanocomposite film and examining its mechanical, electrical, and antimicrobial properties. Polym. Polymer Compos., 2019, 27(8), 507-517.
[http://dx.doi.org/10.1177/0967391119851439]
[58]
Noreen, S.; Bhatti, H.N.; Iqbal, M.; Hussain, F.; Sarim, F.M. Chitosan, starch, polyaniline and polypyrrole biocomposite with sugarcane bagasse for the efficient removal of acid black dye. Int. J. Biol. Macromol., 2020, 147, 439-452.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.257] [PMID: 31917212]
[59]
Suo, L.; Zhao, J.; Dong, X.; Gao, X.; Li, X.; Xu, J.; Lu, X.; Zhao, L. Functionalization of a SiO2-coated magnetic graphene oxide composite with polyaniline-polypyrrole for magnetic solid phase extraction of ultra-trace Cr(III) and Pb(II) in water and food samples using a box-behnken design. New J. Chem., 2019, 43(30), 12126-12136.
[http://dx.doi.org/10.1039/C9NJ02038A]
[60]
Hato, M. J.; Maponya, T. C.; Ramohlola, K. E.; Modibane, K. D.; Maity, A.; Monama, G. R.; Makgopa, K.; Bello, A. Polymer-Based Magnetic Nanocomposites for the Removal of Highly Toxic Hexavalent Chromium from Aqueous Solutions, 2019.
[http://dx.doi.org/10.1007/978-3-030-04477-0_8]
[61]
DeMerlis, C.C.; Schoneker, D.R. Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem. Toxicol., 2003, 41(3), 319-326.
[http://dx.doi.org/10.1016/S0278-6915(02)00258-2] [PMID: 12504164]
[62]
Riahi Samani, M.; Ebrahimbabaie, P.; Vafaei Molamahmood, H. Hexavalent chromium removal by using synthesis of polyaniline and polyvinyl alcohol. Water Sci. Technol., 2016, 74(10), 2305-2313.
[http://dx.doi.org/10.2166/wst.2016.412] [PMID: 27858787]
[63]
Bhadra, J.; Popelka, A.; Abdulkareem, A.; Lehocky, M.; Humpolicek, P.; Al-Thani, N. Effect of humidity on the electrical properties of the silver-polyaniline/polyvinyl alcohol nanocomposites. Sens. Actuators A Phys., 2019, 288, 47-54.
[http://dx.doi.org/10.1016/j.sna.2019.01.012]
[64]
Karthik, R.; Meenakshi, S. Adsorption study on removal of Cr(VI) ions by polyaniline composite. Desalin. Water Treat., 2015, 54(11), 3083-3093.
[http://dx.doi.org/10.1080/19443994.2014.909330]
[65]
Kozlowski, H.; Janicka-Klos, A.; Brasun, J.; Gaggelli, E.; Valensin, D.; Valensin, G. Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coord. Chem. Rev., 2009, 253(21-22), 2665-2685.
[http://dx.doi.org/10.1016/j.ccr.2009.05.011]
[66]
Parthiban, E.; Kalaivasan, N.; Sudarsan, S. A study of magnetic, antibacterial and antifungal behaviour of a novel gold anchor of polyaniline/itaconic acid/Fe3O4 hybrid nanocomposite: Synthesis and characterization. Arab. J. Chem., 2020, 13(3), 4751-4763.
[http://dx.doi.org/10.1016/j.arabjc.2019.12.002]
[67]
Daraei, P.; Madaeni, S.S.; Ghaemi, N.; Salehi, E.; Khadivi, M.A.; Moradian, R.; Astinchap, B. Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu(II) removal from water. J. Membr. Sci., 2012, 415-416, 250-259.
[http://dx.doi.org/10.1016/j.memsci.2012.05.007]
[68]
Muhammad, A.; Shah, A.A.; Bilal, S.; Rahman, G. Basic Blue Dye Adsorption from Water Using Polyaniline/Magnetite (Fe3O4) Composites: Kinetic and Thermodynamic Aspects. Materials, 2019, 12(11), 1764.
[69]
Sahoo, S.; Sahoo, P.K.; Sharma, A.; Satpati, A.K. Interfacial polymerized RGO/MnFe2O4/polyaniline fibrous nanocomposite supported glassy carbon electrode for selective and ultrasensitive detection of nitrite. Sens. Actuators B Chem., 2020, 309, 127763.
[http://dx.doi.org/10.1016/j.snb.2020.127763]
[70]
Saghatchi, H.; Ansari, R. Application of magnetic polyaniline nanocomposite for separation of uranyl ions from aqueous solutions. Sep. Sci. Technol., 2018, 53(15), 2486-2499.
[http://dx.doi.org/10.1080/01496395.2018.1459701]
[71]
Li, R.; Liu, L.; Yang, F. Preparation of polyaniline/reduced graphene oxide nanocomposite and its application in adsorption of aqueous Hg(II). Chem. Eng. J., 2013, 229, 460-468.
[http://dx.doi.org/10.1016/j.cej.2013.05.089]
[72]
Kumar, D.; Pandey, J.; Khan, N.; Kumar, P.; Kundu, P.P. Synthesize and characterization of binary grafted psyllium for removing toxic mercury (II) ions from aqueous solution. Mater. Sci. Eng. C, 2019, 104, 109900.
[http://dx.doi.org/10.1016/j.msec.2019.109900] [PMID: 31499947]
[73]
Wang, Z.; Han, J.J.; Zhang, N.; Sun, D.D.; Han, T. Synthesis of polyaniline/graphene composite and its application in zinc-rechargeable batteries. J. Solid State Electrochem., 2019, 23(12), 3373-3382.
[http://dx.doi.org/10.1007/s10008-019-04435-x]
[74]
El-Sharkaway, E.A.; Kamel, R.M.; El-Sherbiny, I.M.; Gharib, S.S. Removal of methylene blue from aqueous solutions using polyaniline/graphene oxide or polyaniline/reduced graphene oxide composites; Environ. Technol: United Kingdom, 2019, pp. 1-35.
[http://dx.doi.org/10.1080/09593330.2019.1585481]] [PMID: 30789092]
[75]
Debnath, M.K.; Rahman, M.A.; Minami, H.; Rahman, M.M.; Alam, M.A.; Sharafat, M.K.; Hossain, M.K.; Ahmad, H. Single step modification of micrometer-sized polystyrene particles by electromagnetic polyaniline and sorption of chromium(VI) metal ions from water. J. Appl. Polym. Sci., 2019, 136(19), 23-25.
[http://dx.doi.org/10.1002/app.47524]
[76]
Liu, Y.; Chen, L.; Li, Y.; Wang, P.; Dong, Y. Synthesis of magnetic polyaniline/graphene oxide composites and their application in the efficient removal of Cu(II) from aqueous solutions. J. Environ. Chem. Eng., 2016, 4(1), 825-834.
[http://dx.doi.org/10.1016/j.jece.2015.12.023]
[77]
Barik, B.; Kumar, A.; Nayak, P.S.; Achary, L.S.K.; Rout, L.; Dash, P. Ionic liquid assisted mesoporous silica-graphene oxide nanocomposite synthesis and its application for removal of heavy metal ions from water. Mater. Chem. Phys., 2020, 239, 122028.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122028]
[78]
Shao, D.; Hou, G.; Li, J.; Wen, T.; Ren, X.; Wang, X. PANI/GO as a super adsorbent for the selective adsorption of uranium(VI). Chem. Eng. J., 2014, 255(6), 604-612.
[79]
Han, X.; Liu, Y.; Xiong, L.; Huang, H.; Zhang, Q.; Li, L.; Yu, X.; Wei, L. Facile assembly of polyaniline/graphene oxide composite hydrogels as adsorbent for Cr(VI) removal. Polym. Compos., 2019, 40(S2), E1777-E1785.
[http://dx.doi.org/10.1002/pc.25161]
[80]
Fajardo, S. Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease., 2013. Available from: https://doi.org/http://dx.doi.org/10.5772/57353
[81]
Moosavian, M.A.; Moazezi, N. Removal of cadmium and zinc ions from industrial wastewater using nanocomposites of PANI/ZnO and PANI/CoHCF: A comparative study. Desalin. Water Treat., 2016, 57(44), 20817-20836.
[http://dx.doi.org/10.1080/19443994.2015.1110717]
[82]
Arfin, T.; Tarannum, A. Rapid determination of lead ions using polyaniline-zirconium (IV) iodate-based ion selective electrode. J. Environ. Chem. Eng., 2019, 7(1), 102811.
[http://dx.doi.org/10.1016/j.jece.2018.102811]
[83]
Du, X.; Zhang, Q.; Qiao, W.; Sun, X.; Ma, X.; Hao, X.; Wang, Z.; Abudula, A.; Guan, G. Controlled self-assembly of oligomers-grafted fibrous polyaniline/single zirconium phosphate nanosheet hybrids with potential-responsive ion exchange properties. Chem. Eng. J., 2016, 302, 516-525.
[http://dx.doi.org/10.1016/j.cej.2016.05.066]
[84]
R, B.; M, A.K; Qiao, W.; S, J.T Fabrication of polyaniline-Zr(IV) molybdophosphate as a nanocomposite and its potential applications. Nanotechnol. Appl., 2018, 1(2), 1-8.
[http://dx.doi.org/10.33425/2639-9466.1008]
[85]
Kaushal, Sandeep; Badru, R. P, Singh; S, J.T; S, Kumar; S.K., Mittal estimation of trace level cadmium(II) by polyaniline-zirconium phosphoborate nanocomposite-based membrane electrode. J. Anal. Chem., 2019, 74(8), 800-808.
[http://dx.doi.org/10.1134/S1061934819080148]
[86]
Alipour, A.; Lakouraj, M.M.; Ojani, R.; Roudbari, M.N.; Chaichi, M.J.; Nemati, A. Electrochemical and chemiluminescence properties of polyaniline/pectin hybrid nanocomposites based on graphene and CdS nanoparticles. Polym. Test., 2019, 76, 490-498.
[http://dx.doi.org/10.1016/j.polymertesting.2019.04.013]
[87]
El-Naggar, M.R.; El-Naggar, I.M.; El-Shahat, M.F.; Abd El-Mohsen, E.S. Sorption of Cesium and Cobalt Ions onto Novel Zirconium Silicophosphate/Polyacrylamide Nanocomposite. J. Radiat. Res. Appl. Sci., 2019, 12(1), 319-331.
[http://dx.doi.org/10.1080/16878507.2019.1663013]
[88]
Tanzifi, M.; Tavakkoli Yaraki, M.; Karami, M.; Karimi, S.; Dehghani Kiadehi, A.; Karimipour, K.; Wang, S. Modelling of dye adsorption from aqueous solution on polyaniline/carboxymethyl cellulose/TiO2 nanocomposites. J. Colloid Interface Sci., 2018, 519, 154-173.
[http://dx.doi.org/10.1016/j.jcis.2018.02.059] [PMID: 29494878]
[89]
Zhou, Y.; Yan, C.; Zhou, S.; Liang, T.; Wen, X. Preparation of montmorillonite grafted polyacrylic acid composite and study on its adsorption properties of lanthanum ions from aqueous solution. Environ. Sci. Pollut. Res. Int., 2019, 26, 10-9861-9875.
[http://dx.doi.org/10.1007/s11356-019-04422-9] [PMID: 30734258]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy