Generic placeholder image

Current Chinese Computer Science

Editor-in-Chief

ISSN (Print): 2665-9972
ISSN (Online): 2665-9964

Mini-Review Article

Role of Genetic Interactions in Lung Diseases Detection Using Computational Approaches: A Review

Author(s): S. Priya* and R. Manavalan

Volume 1, Issue 2, 2021

Published on: 24 January, 2021

Article ID: e030621190646 Pages: 20

DOI: 10.2174/2665997201666210125091915

Abstract

Genome-wide Association Studies (GWAS) give special insight into genetic differences and environmental influences that are part of different human disorders and provide prognostic help to increase the survival of patients. Lung diseases such as lung cancer, asthma, and tuberculosis are detected by analyzing Single Nucleotide Polymorphism (SNP) genetic variations. The key causes of lung-related diseases are genetic factors, environmental and social behaviors.

The epistasis effects act as a blueprint for the researchers to observe the genetic variation associated with lung diseases. The manual examination of the enormous genetic interactions is complicated to detect the lung syndromes for diagnosis of acute respiratory diseases. Due to its importance, several computational approaches have been modeled to infer epistasis effects. This article includes a comprehensive and multifaceted review of all the relevant genetic studies published between 2006 and 2020. In this critical review, various computational approaches are extensively discussed in detecting respondent epistasis effects for various lung diseases such as asthma, tuberculosis, lung cancer, and nicotine drug dependence.

The analysis shows that different computational models identified candidate genes such as CHRNA4, CHRNB2, BDNF, TAS2R16, TAS2R38, BRCA1, BRCA2, RAD21, IL4Ra, IL-13 and IL-1β, have important causes for genetic variants linked to pulmonary disease. These computational approaches' strengths and limitations are described. The issues behind the computational methods while identifying the lung diseases through epistasis effects and the parameters used by various researchers for their evaluation are also presented.

Keywords: Epistasis, GWAS, genes, lungs diseases, genetic interactions, SNPs.

Graphical Abstract

[1]
"National Institute of Environmental Science, "Lung Diseases", National Institute of Environmental Science", Avaiable from: www.niehs.nih.gov/health/topics/conditions/lung-disease/index.cfm
[2]
M.H. Peters, An extended liouville equation for variable particle number systems". avxiv, 1998
[3]
S. Uppu, A. Krishna, and R. Gopalan, "“A review of machine learning and statistical approaches for detecting SNP interactions in high-dimensional genomic data”, IEEE/ACM Trans", Comput. Biol. Bioinforma., vol. 1, no. 1, p. 99, 2016.
[4]
P.M. Visscher, M.A. Brown, M.I. McCarthy, and J. Yang, "Five years of GWAS discovery", Am. J. Hum. Genet., vol. 90, no. 1, pp. 7-24, 2012.
[http://dx.doi.org/10.1016/j.ajhg.2011.11.029] [PMID: 22243964]
[5]
D. Altshuler, "Integrating common and rare genetic variation in diverse human populations", Nature, vol. 467, pp. 52-58, 2010.
[http://dx.doi.org/10.1038/nature09298] [PMID: 20811451]
[6]
M.D. Ritchie, Reducing Dimensionality in the Search for Gene-Gene Interactions., Elsevier Inc., 2014.
[http://dx.doi.org/10.1016/B978-0-12-397017-6.00002-7]
[7]
J.H. Moore, and S.M. Williams, "New strategies for identifying gene-gene interactions in hypertension", Ann. Med., vol. 34, no. 2, pp. 88-95, 2002.
[http://dx.doi.org/10.1080/07853890252953473] [PMID: 12108579]
[8]
"Genetics Home reference, “What Are Single Nucleotide Polymorphisms (SNPs)?",, Avaiable from: ghr.nlm.nih.gov/primer/genomicresearch/snp
[9]
T.J. VanderWeele, "Epistatic interactions", Stat. Appl. Genet. Mol. Biol., vol. 9, p. 1, 2010.
[http://dx.doi.org/10.2202/1544-6115.1517] [PMID: 20196744]
[10]
C. Niel, C. Sinoquet, C. Dina, and G. Rocheleau, "A survey about methods dedicated to epistasis detection", Front. Genet., vol. 6, p. 285, 2015.
[http://dx.doi.org/10.3389/fgene.2015.00285] [PMID: 26442103]
[11]
M.D. Ritchie, L.W. Hahn, N. Roodi, L.R. Bailey, W.D. Dupont, F.F. Parl, and J.H. Moore, "Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer", Am. J. Hum. Genet., vol. 69, no. 1, pp. 138-147, 2001.
[http://dx.doi.org/10.1086/321276] [PMID: 11404819]
[12]
J.H. Moore, J.C. Gilbert, C.T. Tsai, F.T. Chiang, T. Holden, N. Barney, and B.C. White, "A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility", J. Theor. Biol., vol. 241, no. 2, pp. 252-261, 2006.
[http://dx.doi.org/10.1016/j.jtbi.2005.11.036] [PMID: 16457852]
[13]
Y. Li, B. Wu, H. Xiong, C. Zhu, and L. Zhang, "Polymorphisms of STAT-6, STAT-4 and IFN-γ genes and the risk of asthma in Chinese population", Respir. Med., vol. 101, no. 9, pp. 1977-1981, 2007.
[http://dx.doi.org/10.1016/j.rmed.2007.04.006] [PMID: 17532201]
[14]
G. Cao, H. Lu, J. Feng, J. Shu, D. Zheng, and Y. Hou, "Lung cancer risk associated with Thr495Pro polymorphism of GHR in Chinese population", Jpn. J. Clin. Oncol., vol. 38, no. 4, pp. 308-316, 2008.
[http://dx.doi.org/10.1093/jjco/hyn007] [PMID: 18299312]
[15]
M.W. Su, K.Y. Tung, P.H. Liang, C.H. Tsai, N.W. Kuo, and Y.L. Lee, "Gene-gene and gene-environmental interactions of childhood asthma: a multifactor dimension reduction approach", PLoS One, vol. 7, no. 2, p. e30694, . 2012
[http://dx.doi.org/10.1371/journal.pone.0030694] [PMID: 22355322]
[16]
R.L. Collins, T. Hu, C. Wejse, G. Sirugo, S.M. Williams, and J.H. Moore, "Multifactor dimensionality reduction reveals a three-locus epistatic interaction associated with susceptibility to pulmonary tuberculosis", BioData Min., vol. 6, no. 1, p. 4, 2013.
[http://dx.doi.org/10.1186/1756-0381-6-4] [PMID: 23418869]
[17]
P. Meenakshi, S. Ramya, T. Shruthi, J. Lavanya, H.H. Mohammed, S.A. Mohammed, V. Vijayalakshmi, and G. Sumanlatha, "Association of IL-1β +3954 C/T and IL-10-1082 G/A cytokine gene polymorphisms with susceptibility to tuberculosis", Scand. J. Immunol., vol. 78, no. 1, pp. 92-97, 2013.
[http://dx.doi.org/10.1111/sji.12055] [PMID: 23654353]
[18]
A. Singh, N. Singh, D. Behera, and S. Sharma, "Association and multiple interaction analysis among five XRCC1 polymorphic variants in modulating lung cancer risk in North Indian population", DNA Repair (Amst.), vol. 47, pp. 30-41, 2016.
[http://dx.doi.org/10.1016/j.dnarep.2016.09.006] [PMID: 27707541]
[19]
M.W. Marcus, O.Y. Raji, S.W. Duffy, R.P. Young, R.J. Hopkins, and J.K. Field, "Incorporating epistasis interaction of genetic susceptibility single nucleotide polymorphisms in a lung cancer risk prediction model", Int. J. Oncol., vol. 49, no. 1, pp. 361-370, 2016.
[http://dx.doi.org/10.3892/ijo.2016.3499] [PMID: 27121382]
[20]
M. Zhang, J. Wang, Y. Wang, S. Wu, A.J. Sandford, J. Luo, and J.Q. He, "Association of the TLR1 variant rs5743557 with susceptibility to tuberculosis", J. Thorac. Dis., vol. 11, no. 2, pp. 583-594, 2019.
[http://dx.doi.org/10.21037/jtd.2019.01.74] [PMID: 30963003]
[21]
X.Y. Lou, G.B. Chen, L. Yan, J.Z. Ma, J. Zhu, R.C. Elston, and M.D. Li, "A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence", Am. J. Hum. Genet., vol. 80, no. 6, pp. 1125-1137, 2007.
[http://dx.doi.org/10.1086/518312] [PMID: 17503330]
[22]
M.D. Li, X.Y. Lou, G. Chen, J.Z. Ma, and R.C. Elston, "Gene-gene interactions among CHRNA4, CHRNB2, BDNF, and NTRK2 in nicotine dependence", Biol. Psychiatry, vol. 64, no. 11, pp. 951-957, 2008.
[http://dx.doi.org/10.1016/j.biopsych.2008.04.026] [PMID: 18534558]
[23]
G.B. Chen, N. Liu, Y.C. Klimentidis, X. Zhu, D. Zhi, X. Wang, and X.Y. Lou, "A unified GMDR method for detecting gene-gene interactions in family and unrelated samples with application to nicotine dependence", Hum. Genet., vol. 133, no. 2, pp. 139-150, 2014.
[http://dx.doi.org/10.1007/s00439-013-1361-9] [PMID: 24057800]
[24]
X.Y. Lou, G.B. Chen, L. Yan, J.Z. Ma, J.E. Mangold, J. Zhu, R.C. Elston, and M.D. Li, "A combinatorial approach to detecting gene-gene and gene-environment interactions in family studies", Am. J. Hum. Genet., vol. 83, no. 4, pp. 457-467, 2008.
[http://dx.doi.org/10.1016/j.ajhg.2008.09.001] [PMID: 18834969]
[25]
G.B. Chen, J. Zhu, and X.Y. Lou, "A faster pedigree-based generalized multifactor dimensionality reduction method for detecting gene-gene interactions", Stat. Interface, vol. 4, no. 3, pp. 295-304, 2011.
[http://dx.doi.org/10.4310/SII.2011.v4.n3.a4] [PMID: 21927640]
[26]
H.M. Xu, X.W. Sun, T. Qi, W.Y. Lin, N. Liu, and X.Y. Lou, "Multivariate dimensionality reduction approaches to identify gene-gene and gene-environment interactions underlying multiple complex traits", PLoS One, vol. 9, no. 9, p. e108103, . 2014
[http://dx.doi.org/10.1371/journal.pone.0108103] [PMID: 25259584]
[27]
X.Y. Lou, "UGMDR: a unified conceptual framework for detection of multifactor interactions underlying complex traits", Heredity, vol. 114, no. 3, pp. 255-261, 2015.
[http://dx.doi.org/10.1038/hdy.2014.94] [PMID: 25335557]
[28]
J. Luyapan, X. Ji, D. Zhu, T.A. Mackenzie, C.I. Amos, and J. Gui, "An efficient survival multifactor dimensionality reduction method for detecting gene-gene interactions of lung cancer onset age", Proc. 2018 IEEE Int. Conf. Bioinforma. Biomed. BIBM, vol. 2019, pp. 2779-2781, 2019.,
[29]
J. Luyapan, X. Ji, S. Li, X. Xiao, D. Zhu, E.J. Duell, D.C. Christiani, M.B. Schabath, S.M. Arnold, S. Zienolddiny, H. Brunnström, O. Melander, M.D. Thornquist, T.A. MacKenzie, C.I. Amos, and J. Gui, "A new efficient method to detect genetic interactions for lung cancer GWAS", BMC Med. Genomics, vol. 13, no. 1, p. 162, 2020.
[http://dx.doi.org/10.1186/s12920-020-00807-9] [PMID: 33126877]
[30]
S.K. Musani, D. Shriner, N. Liu, R. Feng, C.S. Coffey, N. Yi, H.K. Tiwari, and D.B. Allison, "Detection of gene x gene interactions in genome-wide association studies of human population data", Hum. Hered., vol. 63, no. 2, pp. 67-84, 2007.
[http://dx.doi.org/10.1159/000099179] [PMID: 17283436]
[31]
J. Millstein, D.V. Conti, F.D. Gilliland, and W.J. Gauderman, "A testing framework for identifying susceptibility genes in the presence of epistasis", Am. J. Hum. Genet., vol. 78, no. 1, pp. 15-27, 2006.
[http://dx.doi.org/10.1086/498850] [PMID: 16385446]
[32]
A.L. Boulesteix, C. Strobl, S. Weidinger, H.E. Wichmann, and S. Wagenpfeil, "Multiple testing for SNP-SNP interactions", Stat. Appl. Genet. Mol. Biol., vol. 6, no. 1, p. e37, . 2007
[http://dx.doi.org/10.2202/1544-6115.1315] [PMID: 18171321]
[33]
A.A. Shabalin, "Matrix eQTL: ultra fast eQTL analysis via large matrix operations", Bioinformatics, vol. 28, no. 10, pp. 1353-1358, 2012.
[http://dx.doi.org/10.1093/bioinformatics/bts163] [PMID: 22492648]
[34]
R. Zhu, H. Zhao, and S. Ma, "Identifying gene-environment and gene-gene interactions using a progressive penalization approach", Genet. Epidemiol., vol. 38, no. 4, pp. 353-368, 2014.
[http://dx.doi.org/10.1002/gepi.21807] [PMID: 24723356]
[35]
D. Wang, Y. Yang, J. Xu, Z-K. Zhou, and H-Y. Yu, "Association of CD14 -159 (-260C/T) polymorphism and asthma risk: an updated genetic meta-analysis study", Medicine (Baltimore), vol. 95, no. 39, pp. e4959-e4959, 2016.
[http://dx.doi.org/10.1097/MD.0000000000004959] [PMID: 27684840]
[36]
J. Lin, "Genetic polymorphisms in the apoptosis-associated gene casp3 and the risk of lung cancer in chinese population", PLoS One, vol. 11, no. 10, ., e0164358. 2016
[http://dx.doi.org/10.1371/journal.pone.0164358]
[37]
B. Yucesoy, M.L. Kashon, V.J. Johnson, Z.L. Lummus, K. Fluharty, D. Gautrin, A. Cartier, L.P. Boulet, J. Sastre, S. Quirce, S.M. Tarlo, M.J. Cruz, X. Munoz, M.I. Luster, and D.I. Bernstein, "Genetic variants in TNFα, TGFB1, PTGS1 and PTGS2 genes are associated with diisocyanate-induced asthma", J. Immunotoxicol., vol. 13, no. 1, pp. 119-126, 2016.
[http://dx.doi.org/10.3109/1547691X.2015.1017061] [PMID: 25721048]
[38]
L. Li, Y. Li, X.C. Zeng, J. Li, and X.Y. Du, "Role of interleukin-4 genetic polymorphisms and environmental factors in the risk of asthma in children", Genet. Mol. Res., vol. 15, no. 4, 2016.
[http://dx.doi.org/10.4238/gmr15048873] [PMID: 27819719]
[39]
M.Y. Lau, S.C. Dharmage, J.A. Burgess, A.K. Win, A.J. Lowe, C. Lodge, J. Perret, J. Hui, P.S. Thomas, S. Morrison, G.G. Giles, J. Hopper, M.J. Abramson, E.H. Walters, and M.C. Matheson, "The interaction between farming/rural environment and TLR2, TLR4, TLR6 and CD14 genetic polymorphisms in relation to early- and late-onset asthma", Sci. Rep., vol. 7, p. 43681, 2017.
[http://dx.doi.org/10.1038/srep43681] [PMID: 28262750]
[40]
E. Forno, J. Sordillo, J. Brehm, W. Chen, T. Benos, Q. Yan, L. Avila, M. Soto-Quirós, M.M. Cloutier, A. Colón-Semidey, M. Alvarez, E. Acosta-Pérez, S.T. Weiss, A.A. Litonjua, G. Canino, and J.C. Celedón, "Genome-wide interaction study of dust mite allergen on lung function in children with asthma", J. Allergy Clin. Immunol., vol. 140, no. 4, pp. 996-1003.e7, 2017.
[http://dx.doi.org/10.1016/j.jaci.2016.12.967] [PMID: 28167095]
[41]
M. Wu, J. Huang, and S. Ma, "Identifying gene-gene interactions using penalized tensor regression", Stat. Med., vol. 37, no. 4, pp. 598-610, 2018.
[http://dx.doi.org/10.1002/sim.7523] [PMID: 29034516]
[42]
A. Osman, M. Amin, H. Mohamed, O. Abdelaziz, and M. Ibrahim, "Genetic Susceptibility to Asthma and Genetic Interactions in the 5q31- q33 and 16p11 Regions in sudanese families immunome research", Immunome Res., vol. 14, pp. 31-34, 2018.
[http://dx.doi.org/10.4172/1745-7580.1000151]
[43]
J. Li, H. Li, X. Lv, Z. Yang, M. Gao, Y. Bi, Z. Zhang, S. Wang, Z. Cui, B. Zhou, and Z. Yin, "Polymorphism in lncRNA AC016683.6 and its interaction with smoking exposure on the susceptibility of lung cancer", Cancer Cell Int., vol. 18, p. 91, 2018.
[http://dx.doi.org/10.1186/s12935-018-0591-2] [PMID: 29997452]
[44]
V.D. Gaertner, S. Michel, J.A. Curtin, V. Pulkkinen, N. Acevedo, C. Söderhäll, A. von Berg, A. Bufe, O. Laub, E. Rietschel, A. Heinzmann, B. Simma, C. Vogelberg, G. Pershagen, E. Melén, A. Simpson, A. Custovic, J. Kere, and M. Kabesch, "Nocturnal asthma is affected by genetic interactions between RORA and NPSR1", Pediatr. Pulmonol., vol. 54, no. 6, pp. 847-857, 2019.
[http://dx.doi.org/10.1002/ppul.24292] [PMID: 30927345]
[45]
J. Shao, X. Yang, D. Ren, Y. Luo, and W. Lai, "A genetic variation in CHI3L1 is associated with bronchial asthma", Arch. Physiol. Biochem., no. Jul, pp. 1-6, 2019.
[http://dx.doi.org/10.1080/13813455.2019.1634737] [PMID: 31295039]
[46]
H-S. Jin, J-E. Cho, and S. Park, "Association between CD53 genetic polymorphisms and tuberculosis cases", Genes Genomics, vol. 41, no. 4, pp. 389-395, 2019.
[http://dx.doi.org/10.1007/s13258-018-0764-3] [PMID: 30506122]
[47]
S-T. Uh, J.S. Park, S.M. Koo, Y.K. Kim, K.U. Kim, M.A. Kim, S.W. Shin, J.H. Son, H.W. Park, H.D. Shin, C.S. Park, and H.S. Chang, "Association of genetic variants of NLRP4 with exacerbation of asthma: The effect of smoking", DNA Cell Biol., vol. 38, no. 1, pp. 76-84, 2019.
[http://dx.doi.org/10.1089/dna.2018.4433] [PMID: 30526007]
[48]
W. Li, M.X. Jia, J.H. Wang, J.L. Lu, J. Deng, J.X. Tang, and C. Liu, "Association of MMP9-1562C/T and MMP13-77A/G Polymorphisms with Non-small cell lung cancer in southern chinese population", Biomolecules, vol. 9, no. 3, ., E107. 2019
[http://dx.doi.org/10.3390/biom9030107] [PMID: 30889876]
[49]
J. Sastre Tomas, J. Cardenas, D. Heine Suñer, and E. Capriotti, "Detecting cancer-associated epistatic gene variants in lung adenocarcinoma", IWBBIO, vol. 25, p. 21, 2018.
[50]
Y. Li, X. Xiao, Y. Bossé, O. Gorlova, I. Gorlov, Y. Han, J. Byun, N. Leighl, J.S. Johansen, M. Barnett, C. Chen, G. Goodman, A. Cox, F. Taylor, P. Woll, H.E. Wichmann, J. Manz, T. Muley, A. Risch, A. Rosenberger, J. Han, K. Siminovitch, S.M. Arnold, E.B. Haura, C. Bolca, I. Holcatova, V. Janout, M. Kontic, J. Lissowska, A. Mukeria, S. Ognjanovic, T.M. Orlowski, G. Scelo, B. Swiatkowska, D. Zaridze, P. Bakke, V. Skaug, S. Zienolddiny, E.J. Duell, L.M. Butler, R. Houlston, M.S. Artigas, K. Grankvist, M. Johansson, F.A. Shepherd, M.W. Marcus, H. Brunnström, J. Manjer, O. Melander, D.C. Muller, K. Overvad, A. Trichopoulou, R. Tumino, G. Liu, S.E. Bojesen, X. Wu, L. Le Marchand, D. Albanes, H. Bickeböller, M.C. Aldrich, W.S. Bush, A. Tardon, G. Rennert, M.D. Teare, J.K. Field, L.A. Kiemeney, P. Lazarus, A. Haugen, S. Lam, M.B. Schabath, A.S. Andrew, P.A. Bertazzi, A.C. Pesatori, D.C. Christiani, N. Caporaso, M. Johansson, J.D. McKay, P. Brennan, R.J. Hung, and C.I. Amos, "Genetic interaction analysis among oncogenesis-related genes revealed novel genes and networks in lung cancer development", Oncotarget, vol. 10, no. 19, pp. 1760-1774, 2019.
[http://dx.doi.org/10.18632/oncotarget.26678] [PMID: 30956756]
[51]
A. Tyler, J. Mahoney, and G. Carter, Genetic interactions affect lung function in patients with systemic sclerosis G3-Genes Genomes Genet, vol. 1. pp. 151-163. 2020
[52]
D. Tang, Genetic variants of BIRC3 and NRG1 in the NLRP3 inflammasome pathway are associated with non-small cell lung cancer survival.", Am. J. Cancer Res., vol. 10, 2020 no. 8, pp. 2582-2595, 2020., https://pubmed.ncbi.nlm.nih.gov/32905523
[53]
Y. Wu, "Novel genetic variants of KIR3DL2 and PVR involved in immunoregulatory interactions are associated with non-small cell lung cancer survival", American j. Cancer Res., vol. 10, no. 6, pp. 1770-1784, 2020. http://europepmc.org/abstract/MED/32642289
[54]
J. Magaña, M.G. Contreras, K.L. Keys, O. Risse-Adams, P.C. Goddard, A.M. Zeiger, A.C.Y. Mak, J.R. Elhawary, L.A. Samedy-Bates, E. Lee, N. Thakur, D. Hu, C. Eng, S. Salazar, S. Huntsman, T. Hu, E.G. Burchard, and M.J. White, "An epistatic interaction between pre-natal smoke exposure and socioeconomic status has a significant impact on bronchodilator drug response in African American youth with asthma", BioData Min., vol. 13, p. 7, 2020.
[http://dx.doi.org/10.1186/s13040-020-00218-7] [PMID: 32636926]
[55]
J. Magaña, "Pairwise and higher-order epistatic interactions have a significant impact on bronchodilator drug response in african american youth with asthma", bioRxiv, 2020.
[56]
B.K. Kudhair, N.N. Alabid, K.S. Zayed, I.J. Lafta, and A. Taheri-Kafrani, "The correlation of combined OGG1, CYP1A1 and GSTP1 gene variants and risk of lung cancer of male Iraqi waterpipe tobacco smokers", Mol. Biol. Rep., vol. 47, no. 7, pp. 5155-5163, 2020.
[http://dx.doi.org/10.1007/s11033-020-05589-y] [PMID: 32577993]
[57]
A. Akparova, A. Aripova, M. Abishev, B. Kazhiyakhmetova, A. Pirmanova, and R. Bersimbaev, "An investigation of the association between ADRB2 gene polymorphisms and asthma in Kazakh population", Clin. Respir. J., vol. 14, no. 6, pp. 514-520, 2020.
[http://dx.doi.org/10.1111/crj.13160] [PMID: 32034992]
[58]
C. Su, A. Andrew, M.R. Karagas, and M.E. Borsuk, "Using Bayesian networks to discover relations between genes, environment, and disease", BioData Min., vol. 6, no. 1, p. 6, 2013.
[http://dx.doi.org/10.1186/1756-0381-6-6] [PMID: 23514120]
[59]
J. Wakefield, F. De Vocht, and R.J. Hung, "Bayesian mixture modeling of gene-environment and gene-gene interactions", Genet. Epidemiol., vol. 34, no. 1, pp. 16-25, 2010.
[http://dx.doi.org/10.1002/gepi.20429] [PMID: 19492346]
[60]
X. Qin, S. Ma, and M. Wu, Gene-gene interaction analysis incorporating network information via a structured Bayesian approach", avxiv, 2021. http://arxiv.org/abs/2010.10960
[61]
A. Assareh, L.G. Volkert, and J. Li, "Interaction Trees: Optimizing Ensembles of Decision Trees for Gene-Gene Interaction Detections 2012", 11th International Conference on Machine Learning and Applications, vol. 1, 2012pp. 616-621
[http://dx.doi.org/10.1109/ICMLA.2012.114]
[62]
L. De Lobel, P. Geurts, G. Baele, F. Castro-Giner, M. Kogevinas, and K. Van Steen, "A screening methodology based on Random Forests to improve the detection of gene-gene interactions", Eur. J. Hum. Genet., vol. 18, no. 10, pp. 1127-1132, 2010.
[http://dx.doi.org/10.1038/ejhg.2010.48] [PMID: 20461113]
[63]
A. Baryshnikova, M. Costanzo, C.L. Myers, B. Andrews, and C. Boone, "Genetic interaction networks: toward an understanding of heritability", Annu. Rev. Genomics Hum. Genet., vol. 14, pp. 111-133, 2013.
[http://dx.doi.org/10.1146/annurev-genom-082509-141730] [PMID: 23808365]
[64]
B. Mair, J. Moffat, C. Boone, and B.J. Andrews, "Genetic interaction networks in cancer cells", Curr. Opin. Genet. Dev., vol. 54, pp. 64-72, 2019.
[http://dx.doi.org/10.1016/j.gde.2019.03.002] [PMID: 30974317]
[65]
J. Montojo, K. Zuberi, H. Rodriguez, G.D. Bader, and Q. Morris, "GeneMANIA: Fast gene network construction and function prediction for Cytoscape", F1000 Res., vol. 3, p. 153, 2014.
[http://dx.doi.org/10.12688/f1000research.4572.1] [PMID: 25254104]
[66]
A. Auton, L.D. Brooks, R.M. Durbin, E.P. Garrison, H.M. Kang, J.O. Korbel, J.L. Marchini, S. McCarthy, G.A. McVean, and G.R. Abecasis, "A global reference for human genetic variation", Nature, vol. 526, no. 7571, pp. 68-74, 2015.
[http://dx.doi.org/10.1038/nature15393] [PMID: 26432245]
[67]
M. Aflakparast, H. Salimi, A. Gerami, M.P. Dubé, S. Visweswaran, and A. Masoudi-Nejad, "Cuckoo search epistasis: a new method for exploring significant genetic interactions", Heredity, vol. 112, no. 6, pp. 666-674, 2014.
[http://dx.doi.org/10.1038/hdy.2014.4] [PMID: 24549111]
[68]
L. Yuan, C.A. Yuan, and D.S. Huang, FAACOSE: A fast adaptive ant colony optimization algorithm for detecting SNP Epistasis.Complexity, vol. 2017, 2017.,
[http://dx.doi.org/10.1155/2017/5024867]
[69]
Y. Shen, Z. Liu, and J. Ott, "Detecting gene-gene interactions using support vector machines with L 1 penalty", 2010 IEEE Int. Conf. Bioinforma. Biomed. Work. BIBMW, 2010, pp. 309-311.,
[http://dx.doi.org/10.1109/BIBMW.2010.5703819]
[70]
B. Marzouki, O. Belkahla Driss, and K. Ghédira, "Multi-agent model based on combination of chemical reaction optimisation metaheuristic with Tabu search for flexible job shop scheduling problem", Int. J. Intell. Eng. Informatics, vol. 6, p. 242, 2018.
[http://dx.doi.org/10.1504/IJIEI.2018.091875]
[71]
X. Cao, G. Yu, J. Liu, L. Jia, and J. Wang, "ClusterMI: Detecting high-order SNP interactions based on clustering and mutual information", Int. J. Mol. Sci., vol. 19, no. 8, p. E2267, . 2018
[http://dx.doi.org/10.3390/ijms19082267] [PMID: 30072632]
[72]
F. Ou-Yang, Y.D. Lin, L.Y. Chuang, H.W. Chang, C.H. Yang, and M.F. Hou, "The combinational polymorphisms of orai1 gene are associated with preventive models of breast cancer in the taiwanese", BioMed Res. Int. vol. 2015., 281263. 2015
[http://dx.doi.org/10.1155/2015/281263] [PMID: 26380267]
[73]
J. Liu, G. Yu, Y. Jiang, and J. Wang, "HiSeeker: Detecting high-order SNP interactions based on pairwise SNP combinations", Genes (Basel), vol. 8, no. 6, pp. 2-19, 2017.
[http://dx.doi.org/10.3390/genes8060153] [PMID: 28561745]

© 2025 Bentham Science Publishers | Privacy Policy