Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

General Research Article

协会血清S100B蛋白与阿尔茨海默氏病的关系:来自南印度的病例对照研究

卷 17, 期 12, 2020

页: [1095 - 1101] 页: 7

弟呕挨: 10.2174/1567205018666210119145104

价格: $65

摘要

背景:最新证据表明,炎症调节蛋白S100B蛋白与阿尔茨海默氏病(AD)的发病机制之间可能存在联系。 目的:探讨南印度人人群AD中血清S100B蛋白水平升高及其与认知障碍严重程度的关系。 方法:对100名AD患者和100名年龄和性别相匹配的健康对照者进行了一项横断面研究。合格的神经科医生使用NINCDS ADRDA标准对AD进行诊断。血清S100B蛋白的测定均采用固相夹心ELISA法进行。 结果:血清S100B蛋白升高的比率显着较高(44%(44%))(p <0.0001),高血压52(52%)(p = 0.02),糖尿病58%(58%)(p = 0.002),甲状腺功能障碍28(与对照组相比,AD患者的CRP阳性率为46%(46%)(p = 0.009)(p <0.0001)(p <0.0001),平均最低精神状态检查(MMSE)值为20.4±5.1(p <0.0001)。与正常水平相比,升高的S100B蛋白水平与临床痴呆评分(CDR)得分2(34%)(p = 0.05)和得分3(61.3%)(p = 0.03)显着相关。经过多变量logistic回归分析后,阳性C反应蛋白(几率:3.2; 95%CI:2.8-9.8)(p = 0.001),S100B蛋白升高(几率:9.0; 95%CI:2.2-35.8)和糖尿病(几率) :1.2; 95%CI:1.0-4.9)(p <0.0001)与AD显着相关。 结论:在我们的研究中,我们建立了血清S100B蛋白水平升高与AD的独立关联。 CDR得分3中S100B蛋白水平升高。

关键词: 阿尔茨海默氏病,血清S100B蛋白升高,CRP,病例对照研究,糖尿病,神经退行性变。

[1]
Chaves ML, Camozzato AL, Ferreira ED, et al. Serum levels of S100B and NSE proteins in Alzheimer’s disease patients. J Neuroinflammation 2010; 7: 6.
[http://dx.doi.org/10.1186/1742-2094-7-6] [PMID: 20105309]
[3]
Newcombe EA, Camats-Perna J, Silva ML, Valmas N, Huat TJ, Medeiros R. Inflammation: The link between comorbidities, genetics, and Alzheimer’s disease. J Neuroinflammation 2018; 15(1): 276.
[http://dx.doi.org/10.1186/s12974-018-1313-3] [PMID: 30249283]
[4]
Weiner HL, Frenkel D. Immunology and immunotherapy of Alzheimer’s disease. Nat Rev Immunol 2006; 6(5): 404-16.
[http://dx.doi.org/10.1038/nri1843] [PMID: 16639431]
[5]
Cristóvão JS, Gomes CM. S100 proteins in Alzheimer’s disease. Front Neurosci 2019; 13: 463.
[http://dx.doi.org/10.3389/fnins.2019.00463] [PMID: 31156365]
[6]
Donato R. Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. Biochim Biophys Acta 1999; 1450(3): 191-231.
[http://dx.doi.org/10.1016/S0167-4889(99)00058-0] [PMID: 10395934]
[7]
Leclerc E, Sturchler E, Vetter SW. The S100B/RAGE axis in Alzheimer’s disease. Cardiovasc Psychiatry Neurol 2010; 2010539581
[http://dx.doi.org/10.1155/2010/539581] [PMID: 20672051]
[8]
Ben Abdesselam O, Vally J, Adem C, Foglietti MJ, Beaudeux JL. Reference values for serum S-100B protein depend on the race of individuals. Clin Chem 2003; 49(5): 836-7.
[http://dx.doi.org/10.1373/49.5.836] [PMID: 12709387]
[9]
Konukoglu D, Fırtına S, Erkol G, Bolayırlı IM. Comparing oxidative stress markers and S100B, Aβ40 proteins as independent neurological markers in distinguishing the relation of Alzheimer’s disease and diabetes mellitus. J Neurol Neurosci 2016; 7: 5.
[http://dx.doi.org/10.21767/2171-6625.1000146]
[10]
Thelin EP, Nelson DW, Bellander BM. A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochir (Wien) 2017; 159(2): 209-25.
[http://dx.doi.org/10.1007/s00701-016-3046-3] [PMID: 27957604]
[12]
Bandarua VCSS, Chaudhury RC, Lalitha L, et al. Prevalence of asymptomatic nonalcoholic fatty liver disease in nondiabetic participants: A study from south India. Egypt J Intern Med 2019; 31: 92-8.
[http://dx.doi.org/10.4103/ejim.ejim_76_18]
[13]
Griffin WS, Stanley LC, Ling C, et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA 1989; 86(19): 7611-5.
[http://dx.doi.org/10.1073/pnas.86.19.7611] [PMID: 2529544]
[14]
Green AJ, Harvey RJ, Thompson EJ, Rossor MN. Increased S100beta in the cerebrospinal fluid of patients with frontotemporal dementia. Neurosci Lett 1997; 235(1-2): 5-8.
[http://dx.doi.org/10.1016/S0304-3940(97)00701-5] [PMID: 9389582]
[15]
Lavado LK, Zhang MH, Patel K, Khan S, Patel UK. Biometals as potential predictors of the neurodegenerative decline in Alzheimer’s disease. Cureus 2019; 11(9)e5573
[http://dx.doi.org/10.7759/cureus.5573] [PMID: 31695992]
[16]
Power MC, Weuve J, Gagne JJ, McQueen MB, Viswanathan A, Blacker D. The association between blood pressure and incident Alzheimer disease: A systematic review and meta-analysis. Epidemiology 2011; 22(5): 646-59.
[http://dx.doi.org/10.1097/EDE.0b013e31822708b5] [PMID: 21705906]
[17]
Joas E, Bäckman K, Gustafson D, et al. Blood pressure trajectories from midlife to late life in relation to dementia in women followed for 37 years. Hypertension 2012; 59(4): 796-801.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.182204] [PMID: 22331381]
[18]
Yasar S, Xia J, Yao W, et al. Ginkgo Evaluation of Memory (GEM) Study Investigators. Antihypertensive drugs decrease risk of Alzheimer disease: Ginkgo evaluation of memory study. Neurology 2013; 81(10): 896-903.
[http://dx.doi.org/10.1212/WNL.0b013e3182a35228] [PMID: 23911756]
[19]
Østergaard SD, Mukherjee S, Sharp SJ, et al. Alzheimer’s Disease Genetics Consortium. GERAD1 Consortium; EPIC-InterAct Consortium. Associations between potentially modifiable risk factors and alzheimer disease: A mendelian randomization study. PLoS Med 2015; 12(6)e1001841
[http://dx.doi.org/10.1371/journal.pmed.1001841] [PMID: 26079503]
[20]
Dos Santos Matioli MNP, Suemoto CK, Rodriguez RD, et al. Diabetes is not associated with Alzheimer’s disease neuropathology. J Alzheimers Dis 2017; 60(3): 1035-43.
[http://dx.doi.org/10.3233/JAD-170179] [PMID: 28984587]
[21]
Wang KC, Woung LC, Tsai MT, Liu CC, Su YH, Li CY. Risk of Alzheimer’s disease in relation to diabetes: A population-based cohort study. Neuroepidemiology 2012; 38(4): 237-44.
[http://dx.doi.org/10.1159/000337428] [PMID: 22572745]
[22]
Bongarzone S, Savickas V, Luzi F, Gee AD. Targeting the receptor for advanced glycation endproducts (RAGE): A medicinal chemistry perspective. J Med Chem 2017; 60(17): 7213-32.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00058] [PMID: 28482155]
[23]
Tan ZS, Vasan RS. Thyroid function and Alzheimer’s disease. J Alzheimers Dis 2009; 16(3): 503-7.
[http://dx.doi.org/10.3233/JAD-2009-0991] [PMID: 19276542]
[24]
Kheirouri S, Ebrahimi E, Alizadeh M. Association of S100B serum levels with metabolic syndrome and its components. Acta Med Port 2018; 31(4): 201-6.
[http://dx.doi.org/10.20344/amp.9073] [PMID: 29855413]
[25]
Gonçalves CA, Leite MC, Guerra MC. Adipocytes as an important source of serum S100B and possible roles of this protein in adipose tissue. Cardiovasc Psychiatry Neurol 2010; 2010790431
[http://dx.doi.org/10.1155/2010/790431] [PMID: 20672003]
[26]
Zhang Y, Reichel JM, Han C, Zuniga-Hertz JP, Cai D. Astrocytic process plasticity and IKKβ/NF-κB in central control of blood glucose, blood pressure, and body weight. Cell Metab 2017; 25(5): 1091-1102.e4.
[http://dx.doi.org/10.1016/j.cmet.2017.04.002] [PMID: 28467927]
[27]
Forti P, Olivelli V, Rietti E, et al. Serum thyroid-stimulating hormone as a predictor of cognitive impairment in an elderly cohort. Gerontology 2012; 58(1): 41-9.
[http://dx.doi.org/10.1159/000324522] [PMID: 21430364]
[28]
Hu Y, Wang ZC, Guo QH, Cheng W, Chen YW. Is thyroid status associated with cognitive impairment in elderly patients in China? BMC Endocr Disord 2016; 16: 11.
[http://dx.doi.org/10.1186/s12902-016-0092-z] [PMID: 26897535]
[29]
Kim H, Shin A, Lee KJ. Differences in C-reactive protein level in patients with Alzheimer’s disease and mild cognitive impairment. J Psychiatry 2015; 18: 1.
[30]
Song IU, Chung SW, Kim YD, Maeng LS. Relationship between the hs-CRP as non-specific biomarker and Alzheimer’s disease according to aging process. Int J Med Sci 2015; 12(8): 613-7.
[http://dx.doi.org/10.7150/ijms.12742] [PMID: 26283879]
[31]
Kravitz BA, Corrada MM, Kawas CH. Elevated C-reactive protein levels are associated with prevalent dementia in the oldest-old. Alzheimers Dement 2009; 5(4): 318-23.
[http://dx.doi.org/10.1016/j.jalz.2009.04.1230] [PMID: 19560102]
[32]
Serpente M, Bonsi R, Scarpini E, Galimberti D. Innate immune system and inflammation in Alzheimer’s disease: From pathogenesis to treatment. Neuroimmunomodulation 2014; 21(2-3): 79-87.
[http://dx.doi.org/10.1159/000356529] [PMID: 24557039]
[33]
Liu L, Chan C. The role of inflammasome in Alzheimer’s disease. Ageing Res Rev 2014; 15: 6-15.
[http://dx.doi.org/10.1016/j.arr.2013.12.007] [PMID: 24561250]
[34]
Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. European Alzheimer’s Disease Initiative (EADI); Genetic and Environmental Risk in Alzheimer’s Disease; Alzheimer’s Disease Genetic Consortium; Cohorts for Heart and Aging Research in Genomic Epidemiology. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 2013; 45(12): 1452-8.
[http://dx.doi.org/10.1038/ng.2802] [PMID: 24162737]
[35]
Yarchoan M, Louneva N, Xie SX, et al. Association of plasma C-reactive protein levels with the diagnosis of Alzheimer’s disease. J Neurol Sci 2013; 333(1-2): 9-12.
[http://dx.doi.org/10.1016/j.jns.2013.05.028] [PMID: 23978419]
[36]
Arevalo-Rodriguez I, Smailagic N, Roqué I, et al. Mini-Mental State Examination (MMSE) for the detection of Alzheimer’s disease and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev 2015; 3(3)CD010783
[PMID: 25740785]
[37]
Whitaker-Azmitia PM, Wingate M, Borella A, Gerlai R, Roder J, Azmitia EC. Transgenic mice overexpressing the neurotrophic factor S-100 beta show neuronal cytoskeletal and behavioral signs of altered aging processes: Implications for Alzheimer’s disease and Down’s syndrome. Brain Res 1997; 776(1-2): 51-60.
[http://dx.doi.org/10.1016/S0006-8993(97)01002-0] [PMID: 9439795]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy