Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

The Progress and Perspectives of Nanotechnology Applied in Nontraditional Precision Machining Processes for Advanced Industrial Applications

Author(s): Xun Qiao*, Yi Zhang and Dongrong Meng

Volume 16, Issue 1, 2022

Published on: 14 January, 2021

Page: [18 - 29] Pages: 12

DOI: 10.2174/1872210515666210114092329

Price: $65

Abstract

Abstract: Nontraditional precision processes (especially at the nanoscale) have been significantly developed in modern industry to meet the specific requirements of applications. In this paper, the progress of nanotechnology applied in nontraditional precision machining processes for advanced industrial applications is presented. In particular, the mechanisms, parameters, properties, applications and patent trends of ultrasonic machining, ion nanobeams machining and laser machining are further explored and analyzed in detail. Other nontraditional precision machining processes related to nanotechnology are also outlined briefly. Finally, the developments and future perspectives of nanotechnology used in nontraditional precision machining are discussed.

Keywords: Nontraditional precision machining, nanomachining, nanotechnology, ultrasonic machining, ion nanobeams machining, laser machining, 3-D additive manufacturing.

Graphical Abstract

[1]
Kuriakose S, Mangalan AV, Namboothiri B, Ray A. Micro Machining Process Selection: An Integrated Theory. Procedia Technology 2016; 25: 862-8.
[http://dx.doi.org/10.1016/j.protcy.2016.08.193]
[2]
Feng Y, Hung T-P, Lu Y-T, et al. Inverse analysis of the tool life in laser-assisted milling. Int J Adv Manuf Technol 2019; 103(5): 1947-58.
[http://dx.doi.org/10.1007/s00170-019-03695-1]
[3]
Feng Y, Hsu F-C, Lu Y-T, et al. Tool wear rate prediction in ultrasonic vibration-assisted milling. Mach Sci Technol 2020; 1-23.
[http://dx.doi.org/10.1080/10910344.2020.1815048]
[4]
Feng Y, Hung TP, Lu YT, Lin YF, Liang SY. Prediction of Surface Hardness in Laser-Assisted Milling. ASME 2019 14th International Manufacturing Science and Engineering Conference.
[5]
Feng Y, Hung T-P, Lu Y-T, et al. Analytical prediction of temperature in laser-assisted milling with laser preheating and machining effects. Int J Adv Manuf Technol 2019; 100(9): 3185-95.
[http://dx.doi.org/10.1007/s00170-018-2930-9]
[6]
Lamikiz A, Ukar E, Tabernero I, Martinez S. 5 - Thermal advanced machining processesModern Machining Technology. Woodhead Publishing 2011; pp. 335-72.
[http://dx.doi.org/10.1533/9780857094940.335]
[7]
Guimarães B, Figueiredo D, Fernandes CM, Silva FS, Miranda G, Carvalho O. Laser machining of WC-Co green compacts for cutting tools manufacturing. Int J Refract Met Hard Mater 2019; 81: 316-24.
[http://dx.doi.org/10.1016/j.ijrmhm.2019.03.018]
[8]
Wang L, Jin Z, Paeng D, et al. Laser machined ultrathin microscale platinum thermometers on transparent oxide substrates. Sens Actuators A Phys 2019.111657
[http://dx.doi.org/10.1016/j.sna.2019.111657]
[9]
Bhavsar SN, Aravindan S, Rao PV. Machinability study of high speed steel for focused ion beam (FIB) milling process – An experimental investigation at micron/nano scale. Precis Eng 2014; 38(1): 168-73.
[http://dx.doi.org/10.1016/j.precisioneng.2013.08.009]
[10]
De Felicis D, Mughal MZ, Bemporad E. A method to improve the quality of 2.5 dimensional micro-and nano-structures produced by focused ion beam machining. Micron 2017; 101: 8-15.
[http://dx.doi.org/10.1016/j.micron.2017.05.005] [PMID: 28582658]
[11]
Ning F, Wang H, Hu Y, Cong W, Zhang M, Li Y. Rotary Ultrasonic Surface Machining of CFRP Composites: A Comparison with Conventional Surface Grinding. Procedia Manufacturing 2017; 10: 557-67.
[http://dx.doi.org/10.1016/j.promfg.2017.07.049]
[12]
Kumar J. Ultrasonic machining-a comprehensive review. Mach Sci Technol 2013; 17(3): 325-79.
[http://dx.doi.org/10.1080/10910344.2013.806093]
[13]
Hong H, Tsai HY. Advanced Analysis of Nontraditional Machining 2013.
[14]
O’Toole L, Kang C, Fang F. Advances in Rotary Ultrasonic-Assisted Machining. Nanomanufacturing and Metrology 2020; 3(1): 1-25.
[http://dx.doi.org/10.1007/s41871-019-00053-3]
[15]
Baraheni M, Amini S. Predicting subsurface damage in silicon nitride ceramics subjected to rotary ultrasonic assisted face grinding. Ceram Int 2019; 45(8): 10086-96.
[http://dx.doi.org/10.1016/j.ceramint.2019.02.055]
[16]
Hui W, Ning F, Hu Y, Fernando P. Cong WJAiME Surface grinding of carbon fiber-reinforced plastic composites using rotary ultrasonic machining: Effects of tool variables 2016; 8(9)
[17]
Liu S, Tao C. Wu CJIJoAMTRotary ultrasonic face grinding of carbon fiber reinforced plastic (CFRP): a study on cutting force model 2016; 89(1-4): 1-10
[18]
Zhang JH, Yan Z, Tian FQ, Zhang S. Guo LSJIJoAMT Kinematics and experimental study on ultrasonic vibration-assisted micro end grinding of silica glass 2015; 78(1-2): 1893-904
[19]
Feng Y, Hsu F-C, Lu Y-T, et al. Temperature prediction of ultrasonic vibration-assisted milling. Ultrasonics 2020; 108106212
[http://dx.doi.org/10.1016/j.ultras.2020.106212] [PMID: 32590260]
[20]
Feng Y, Hsu F-C, Lu Y-T, et al. Surface roughness prediction in ultrasonic vibration-assisted milling. Journal of Advanced Mechanical Design, Systems, and Manufacturing 2020; 14(4)
[21]
Feng Y, Hung T-P, Lu Y-T, et al. Surface roughness modeling in Laser-assisted End Milling of Inconel 718. Mach Sci Technol 2019; 23(4): 650-68.
[http://dx.doi.org/10.1080/10910344.2019.1575407]
[22]
Feng Y, Hsu F-C, Lu Y-T, et al. Residual stress prediction in ultrasonic vibration–assisted milling. Int J Adv Manuf Technol 2019; 104(5): 2579-92.
[http://dx.doi.org/10.1007/s00170-019-04109-y]
[23]
Ni C, Zhu L, Yang Z. Comparative investigation of tool wear mechanism and corresponding machined surface characterization in feed-direction ultrasonic vibration assisted milling of Ti–6Al–4V from dynamic view. Wear 2019; 436-437203006
[http://dx.doi.org/10.1016/j.wear.2019.203006]
[24]
Das S, Doloi B, Bhattacharyya B. Recent Advancement on Ultrasonic Micro Machining (USMM) ProcessNon-traditional Micromachining Processes: Fundamentals and Applications. Cham: Springer International Publishing 2017; pp. 61-91.
[http://dx.doi.org/10.1007/978-3-319-52009-4_2]
[25]
Milanez D, Faria L, Amaral R, et al. Patents in nanotechnology: an analysis using macro-indicators and forecasting curves 2013.
[26]
Huang C, Notten A, Rasters N. Nanoscience and technology publications and patents: a review of social science studies and search strategies. J Technol Transf 2011; 36(2): 145-72.
[http://dx.doi.org/10.1007/s10961-009-9149-8]
[27]
Kong C, Cheong S, Tilley RD. 215 - Recent Development in Focused Ion Beam NanofabricationComprehensive Nanoscience and Nanotechnology. 2nd ed. Oxford: Academic Press 2019; pp. 327-56.
[http://dx.doi.org/10.1016/B978-0-12-803581-8.10432-1]
[28]
Langford RM. Focused Ion Beam Systems: Application to Micro- and NanofabricationEncyclopedia of Materials: Science and Technology. Oxford: Elsevier 2010; pp. 1-13.
[http://dx.doi.org/10.1016/B978-008043152-9.02211-9]
[29]
Lisitsyn SA, Kolomiytsev AS, Il’in OI, et al. Study of Ion Beam Including Deposition Modes of Platinum Nanosized Structures Using by Focused Ion Beams. Russ Microelectron 2017; 46(7): 468-73.
[http://dx.doi.org/10.1134/S106373971707006X]
[30]
Bobrinetskii II, Volkova AV, Zaitsev AA, Nevolin VK, Tsarik KA, Chudinov AA. Silicon-based nanostructures formed by plasma etching through a mask formed by a focused beam of Ga+ ions. Russ Microelectron 2015; 44(7): 482-6.
[http://dx.doi.org/10.1134/S1063739715070045]
[31]
Li W, Cui A, Gu C, Warburton PA. Atomic resolution top-down nanofabrication with low-current focused-ion-beam thinning. MiEng 2012; 98: 301-4.
[http://dx.doi.org/10.1016/j.mee.2012.07.108]
[32]
Dupré A, Lei K-M, Mak P-I, Martins RP, Peng WK. Micro- and nanofabrication NMR technologies for point-of-care medical applications – A review. MiEng 2019; 209: 66-74.
[http://dx.doi.org/10.1016/j.mee.2019.02.005]
[33]
Volkert CA, Minor AM. Focused Ion Beam Microscopy and Micromachining. MRSBu 2007; 32(5): 389-99.
[34]
Xu ZW, Fang F, Zeng G. Focused Ion Beam Nanofabrication TechnologyHandbook of Manufacturing Engineering and Technology. London: Springer London 2015; pp. 1391-423.
[35]
Reyntjens S, Puers R. A review of focused ion beam applications in microsystem technology. JMiMi 2001; 11(4): 287-300.
[http://dx.doi.org/10.1088/0960-1317/11/4/301]
[36]
Utke I, Hoffmann P, Melngailis J. Gas-assisted focused electron beam and ion beam processing and fabrication 2008; 26(4): 1197-276.
[37]
Utlaut M. 4 - Focused ion beams for nano-machining and imagingNanolithography. Woodhead Publishing 2014; pp. 116-57.
[http://dx.doi.org/10.1533/9780857098757.116]
[38]
Ding X, Lim GC, Cheng CK, et al. Microengineering, Fabrication of a micro-size diamond tool using a focused ion beam 2008; 18(7)
[39]
Zhang SJ, Fang FZ, Xu ZW, Hu XT. Controlled morphology of microtools shaped using focused ion beam milling technique 2009; 27(3): 1304-9.
[40]
Xu ZW, Fang FZ, Zhang SJ, et al. Fabrication of micro DOE using micro tools shaped with focused ion beam. Opt Express 2010; 18(8): 8025-32.
[http://dx.doi.org/10.1364/OE.18.008025] [PMID: 20588646]
[41]
Li L, Wang C, Nie Y, Yao B, Hu H. Nanofabrication enabled lab-on-a-chip technology for the manipulation and detection of bacteria. TrACTrends Analyt Chem 2020; 127115905
[http://dx.doi.org/10.1016/j.trac.2020.115905]
[42]
Romoli L, Rashed CAA, Fiaschi M. Experimental characterization of the inner surface in micro-drilling of spray holes: A comparison between ultrashort pulsed laser and EDM. Opt Laser Technol 2014; 56: 35-42.
[http://dx.doi.org/10.1016/j.optlastec.2013.07.010]
[43]
Gao S, Huang H. Recent advances in micro- and nano-machining technologies. Front Mech Eng 2017; 12(1): 18-32.
[http://dx.doi.org/10.1007/s11465-017-0410-9]
[44]
Knowles MRH, Rutterford G, Karnakis D, Ferguson A. Micro-machining of metals, ceramics and polymers using nanosecond lasers. Int J Adv Manuf Technol 2007; 33(1): 95-102.
[http://dx.doi.org/10.1007/s00170-007-0967-2]
[45]
Meijer J. Laser beam machining (LBM), state of the art and new opportunities. J Mater Process Technol 2004; 149(1): 2-17.
[http://dx.doi.org/10.1016/j.jmatprotec.2004.02.003]
[46]
Qin Y, Brockett A, Ma Y, et al. Micro-manufacturing: research, technology outcomes and development issues. Int J Adv Manuf Technol 2010; 47(9): 821-37.
[http://dx.doi.org/10.1007/s00170-009-2411-2]
[47]
Pham DT, Dimov SS, Ji C, Petkov PV, Dobrev T. Laser milling as a ‘rapid’ micromanufacturing process. Proc Inst Mech Eng, B J Eng Manuf 2004; 218(1): 1-7.
[http://dx.doi.org/10.1243/095440504772830156]
[48]
Brousseau EB, Dimov SS, Pham DT. Some recent advances in multi-material micro- and nano-manufacturing. Int J Adv Manuf Technol 2010; 47(1): 161-80.
[http://dx.doi.org/10.1007/s00170-009-2214-5]
[49]
Rizvi NH, Apte P. Developments in laser micro-machining techniques. J Mater Process Technol 2002; 127(2): 206-10.
[http://dx.doi.org/10.1016/S0924-0136(02)00143-7]
[50]
Matsuoka Y, Kizuka Y, Inoue T. The characteristics of laser micro drilling using a Bessel beam. Appl Phys, A Mater Sci Process 2006; 84(4): 423-30.
[http://dx.doi.org/10.1007/s00339-006-3629-6]
[51]
Biswas R, Kuar AS, Sarkar S, Mitra S. A parametric study of pulsed Nd:YAG laser micro-drilling of gamma-titanium aluminide. Opt Laser Technol 2010; 42(1): 23-31.
[http://dx.doi.org/10.1016/j.optlastec.2009.04.011]
[52]
Zheng HY, Huang H. Ultrasonic vibration-assisted femtosecond laser machining of microholes 17 2007; 17
[53]
Petkov PV, Dimov SS, Minev RM, Pham DT. Laser milling: Pulse duration effects on surface integrity. Proc Inst Mech Eng, B J Eng Manuf 2008; 222(1): 35-45.
[http://dx.doi.org/10.1243/09544054JEM840]
[54]
Huang H, Zheng HY, Lim GC. Femtosecond laser machining characteristics of Nitinol. ApSS 2004; 228(1): 201-6.
[55]
von der Linde D, Sokolowski-Tinten K. The physical mechanisms of short-pulse laser ablation. ApSS 2000; 154-155: 1-10.
[http://dx.doi.org/10.1016/S0169-4332(99)00440-7]
[56]
Preuss S, Demchuk A, Stuke M. Sub-picosecond UV laser ablation of metals. Appl Phys, A Mater Sci Process 1995; 61(1): 33-7.
[http://dx.doi.org/10.1007/BF01538207]
[57]
Feng Y, Hung TP, Lu YT, et al. Flank tool wear prediction of laser-assisted milling 2019; 292-9.
[58]
Feng Y, Hung T-P, Lu Y-T, et al. Residual stress prediction in laser-assisted milling considering recrystallization effects. Int J Adv Manuf Technol 2019; 102(1): 393-402.
[http://dx.doi.org/10.1007/s00170-018-3207-z]
[59]
Feng Y, Lu Y-T, Lin Y-F, et al. Inverse analysis of the cutting force in laser-assisted milling on Inconel 718. Int J Adv Manuf Technol 2018; 96(1): 905-14.
[http://dx.doi.org/10.1007/s00170-018-1670-1]
[60]
Feng Y, Hung T-P, Lu Y-T, et al. Inverse Analysis of Inconel 718 Laser-Assisted Milling to Achieve Machined Surface Roughness. Int J Precis Eng Manuf 2018; 19(11): 1611-8.
[http://dx.doi.org/10.1007/s12541-018-0188-7]
[61]
Feng Y, Hung T-P, Lu Y-T, et al. Inverse analysis of the residual stress in laser-assisted milling. Int J Adv Manuf Technol 2020; 106(5): 2463-75.
[http://dx.doi.org/10.1007/s00170-019-04794-9]
[62]
Askari M, Hutchins DA, Thomas PJ, et al. Additive Manufacturing of Metamaterials: A Review. Additive Manufacturing 2020; p. 101562.
[63]
Aboulkhair NT, Simonelli M, Parry L, Ashcroft I, Tuck CR. Hague, 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. PrMS 2019; 106100578
[64]
Nagarajan B, Hu Z, Song X, Zhai W, Wei J. Development of Micro Selective Laser Melting: The State of the Art and Future Perspectives. Engineering 2019; 5(4): 702-20.
[http://dx.doi.org/10.1016/j.eng.2019.07.002]
[65]
Tucho WM, Lysne VH, Austbø H, Sjolyst-Kverneland A, Hansen V. Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L. JAllC 2018; 740: 910-25.
[http://dx.doi.org/10.1016/j.jallcom.2018.01.098]
[66]
Huang Y, Leu MC, Mazumder J, Donmez A. Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations. J Manuf Sci Eng 2015; 137(1)
[http://dx.doi.org/10.1115/1.4028725]
[67]
Chen H, Roco MC, Li X, Lin Y. Trends in nanotechnology patents. Nat Nanotechnol 2008; 3(3): 123-5.
[http://dx.doi.org/10.1038/nnano.2008.51] [PMID: 18654475]
[68]
Tian Y, Lu K, Wang F, et al. Design of a novel 3D tip-based nanofabrication system with high precision depth control capability. IJMS 2020; 169105328
[http://dx.doi.org/10.1016/j.ijmecsci.2019.105328]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy