Review Article

用于癌症治疗的两亲性聚乙二醇化药物的自组装胶束

卷 22, 期 8, 2021

发表于: 31 December, 2020

页: [870 - 881] 页: 12

弟呕挨: 10.2174/1389450122666201231130702

价格: $65

摘要

通常,化疗药物的溶解度差和不精确递送会损害其临床癌症治疗的功效。为了解决这些问题,将水溶性较差的药物与聚乙二醇(PEG)偶联得到聚乙二醇化药物,该药物具有提高的水溶性,并且还可以在水溶液中自组装形成胶束(PEGylated drug micelles)。 )。表面 PEG 层增强了胶束的胶体稳定性并减少了与生理环境的相互作用。同时,与游离药物相比,聚乙二醇化药物胶束通过增强渗透和保留 (EPR) 效应实现肿瘤靶向,以提高抗肿瘤功效。聚乙二醇化药物胶束以药物作为载体介质的一部分,相对增加了胶束的载药量。刺激响应性聚乙二醇化药物胶束的发展促进了药物释放的智能和可控性。此外,聚乙二醇化药物胶束在克服多药耐药(MDR)、血管生成、免疫抑制等癌症治疗挑战方面显示出巨大潜力。在这篇综述中,我们重点介绍了聚乙二醇化药物胶束的研究进展,包括结构和性质、智能刺激响应型聚乙二醇化药物胶束,以及聚乙二醇化药物胶束所克服的挑战。

关键词: 胶束、聚乙二醇化药物、癌症治疗、刺激响应、血管生成、多药耐药、血脑屏障、免疫抑制。

图形摘要

[1]
Liu J, Li F, Zheng J, Li B, Zhang D, Jia L. Redox/NIR dual-responsive MoS2 for synergetic chemo-photothermal therapy of cancer. J Nanobiotechnology 2019; 17(1): 78.
[http://dx.doi.org/10.1186/s12951-019-0510-2] [PMID: 31269964]
[2]
Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin 2019; 69(5): 363-85.
[http://dx.doi.org/10.3322/caac.21565] [PMID: 31184787]
[3]
Dang Y, Guan JJ. Nanoparticle-based drug delivery systems for cancer therapy. Smart Materials in Medicine 2020; 1: 10-9.
[http://dx.doi.org/10.1016/j.smaim.2020.04.001]
[4]
Wang SY, Hu HZ, Qing XC, Zhang ZC, Shao ZW. Recent advances of drug delivery nanocarriers in osteosarcoma treatment. J Cancer 2020; 11(1): 69-82.
[http://dx.doi.org/10.7150/jca.36588] [PMID: 31892974]
[5]
Maran A, Yaszemski MJ, Kohut A, Voronov A. Curcumin and osteosarcoma: can invertible polymeric micelles help? Materials (Basel) 2016; 9(7): 520.
[http://dx.doi.org/10.3390/ma9070520] [PMID: 28773642]
[6]
Avramović N, Mandić B, Savić-Radojević A, Simić T. Polymeric nanocarriers of drug delivery systems in cancer therapy. Pharmaceutics 2020; 12(4): 298.
[http://dx.doi.org/10.3390/pharmaceutics12040298] [PMID: 32218326]
[7]
Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater 2019; 2019: 3702518.
[http://dx.doi.org/10.1155/2019/3702518]
[8]
Fam SY, Chee CF, Yong CY, Ho KL. Mariatulqabtiah ar, tan ws. stealth coating of nanoparticles in drug-delivery systems. Nanomaterials (Basel) 2020; 10(4): 787.
[http://dx.doi.org/10.3390/nano10040787] [PMID: 32325941]
[9]
Hoang Thi TT, Pilkington EH, Nguyen DH, Lee JS, Park KD, Truong NP. The importance of poly(ethylene glycol) alternatives for overcoming peg immunogenicity in drug delivery and bioconjugation. Polymers (Basel) 2020; 12(2): 298.
[http://dx.doi.org/10.3390/polym12020298] [PMID: 32024289]
[10]
Xu H, Ma B, Jiang J, et al. Integrated prodrug micelles with two-photon bioimaging and pH-triggered drug delivery for cancer theranostics. Regen Biomater 2020; 7(2): 171-80.
[http://dx.doi.org/10.1093/rb/rbz035] [PMID: 32296536]
[11]
Mishra P, Nayak B, Dey R. PEGylation in anti-cancer therapy: An overview. Asian J Pharm Sci 2016; 11(3): 337-48.
[http://dx.doi.org/10.1016/j.ajps.2015.08.011]
[12]
Li W, Zhan P, De Clercq E, Lou H, Liu X. Current drug research on PEGylation with small molecular agents. Prog Polym Sci 2013; 38(3-4): 421-44.
[http://dx.doi.org/10.1016/j.progpolymsci.2012.07.006]
[13]
Li Y, Zhang T, Liu Q, He J. PEG-derivatized dual-functional nanomicelles for improved cancer therapy. Front Pharmacol 2019; 10: 808.
[http://dx.doi.org/10.3389/fphar.2019.00808] [PMID: 31379579]
[14]
Zhang Y, Huang Y, Li S. Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech 2014; 15(4): 862-71.
[http://dx.doi.org/10.1208/s12249-014-0113-z] [PMID: 24700296]
[15]
Movassaghian S, Merkel OM, Torchilin VP. Applications of polymer micelles for imaging and drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015; 7(5): 691-707.
[http://dx.doi.org/10.1002/wnan.1332] [PMID: 25683687]
[16]
Senevirathne SA, Washington KE, Biewer MC, Stefan MC. PEG based anti-cancer drug conjugated prodrug micelles for the delivery of anti-cancer agents. J Mater Chem B Mater Biol Med 2016; 4(3): 360-70.
[http://dx.doi.org/10.1039/C5TB02053K] [PMID: 32263202]
[17]
Zhou Q, Zhang L, Yang T, Wu H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomedicine 2018; 13: 2921-42.
[http://dx.doi.org/10.2147/IJN.S158696] [PMID: 29849457]
[18]
Cheetham AG, Chakroun RW, Ma W, Cui H. Self-assembling prodrugs. Chem Soc Rev 2017; 46(21): 6638-63.
[http://dx.doi.org/10.1039/C7CS00521K] [PMID: 29019492]
[19]
Sarin H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res 2010; 2(1): 14.
[http://dx.doi.org/10.1186/2040-2384-2-14] [PMID: 20701757]
[20]
Rios-Doria J, Carie A, Costich T, et al. A versatile polymer micelle drug delivery system for encapsulation and in vivo stabilization of hydrophobic anticancer drugs. J Drug Deliv 2012; 2012: 951741.
[http://dx.doi.org/10.1155/2012/951741] [PMID: 22518317]
[21]
Kim Y, Pourgholami MH, Morris DL, Lu H, Stenzel MH. Effect of shell-crosslinking of micelles on endocytosis and exocytosis: acceleration of exocytosis by crosslinking. Biomater Sci 2013; 1(3): 265-75.
[http://dx.doi.org/10.1039/C2BM00096B] [PMID: 32481852]
[22]
Paul D, Achouri S, Yoon YZ, Herre J, Bryant CE, Cicuta P. Phagocytosis dynamics depends on target shape. Biophys J 2013; 105(5): 1143-50.
[http://dx.doi.org/10.1016/j.bpj.2013.07.036] [PMID: 24010657]
[23]
Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012; 14: 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[24]
Li H, Hu D, Liang F, Huang X, Zhu Q. Influence factors on the critical micelle concentration determination using pyrene as a probe and a simple method of preparing samples. R Soc Open Sci 2020; 7(3): 192092.
[http://dx.doi.org/10.1098/rsos.192092] [PMID: 32269815]
[25]
Su H, Wang F, Ran W, et al. The role of critical micellization concentration in efficacy and toxicity of supramolecular polymers. Proc Natl Acad Sci USA 2020; 117(9): 4518-26.
[http://dx.doi.org/10.1073/pnas.1913655117] [PMID: 32071209]
[26]
Lombardo D, Kiselev MA, Magazù S, Calandra P. Amphiphiles self-assembly: basic concepts and future perspectives of supramolecular approaches. Adv Condens Matter Phys 2015; 2015: 151683.
[http://dx.doi.org/10.1155/2015/151683]
[27]
Ponta A, Bae Y. PEG-poly(amino acid) block copolymer micelles for tunable drug release. Pharm Res 2010; 27(11): 2330-42.
[http://dx.doi.org/10.1007/s11095-010-0120-z] [PMID: 20372992]
[28]
Gu Y, Zhong Y, Meng F, Cheng R, Deng C, Zhong Z. Acetal-linked paclitaxel prodrug micellar nanoparticles as a versatile and potent platform for cancer therapy. Biomacromolecules 2013; 14(8): 2772-80.
[http://dx.doi.org/10.1021/bm400615n] [PMID: 23777504]
[29]
Fathi M, Abdolahinia ED, Barar J. Smart stimuli-responsive biopolymeric nanomedicines for targeted therapy of solid tumors. Nanomedicine 2020; 22(15): 2171-200.
[30]
Yan L, Li X. Biodegradable stimuli-responsive polymeric micelles for treatment of malignancy. Curr Pharm Biotechnol 2016; 17(3): 227-36.
[http://dx.doi.org/10.2174/138920101703160206142821] [PMID: 26873075]
[31]
Nair HA, Rajawat GS, Nagarsenker MS. Stimuli-responsive micelles: A nanoplatform for therapeutic and diagnostic applications.Drug Targeting and Stimuli Sensitive Drug Delivery Systems. Elsevier 2018; pp. 303-42.
[http://dx.doi.org/10.1016/B978-0-12-813689-8.00008-2]
[32]
Li Y, Yu A, Li L, Zhai G. The development of stimuli-responsive polymeric micelles for effective delivery of chemotherapeutic agents. J Drug Target 2018; 26(9): 753-65.
[http://dx.doi.org/10.1080/1061186X.2017.1419477] [PMID: 29256633]
[33]
Huang S, Liu J, Zhu H, et al. PEGylated doxorubicin micelles loaded with curcumin exerting synergic effects on multidrug resistant tumor cells. J Nanosci Nanotechnol 2017; 17(5): 2873-80.
[http://dx.doi.org/10.1166/jnn.2017.13047]
[34]
Bao Y, Yin M, Hu X, et al. A safe, simple and efficient doxorubicin prodrug hybrid micelle for overcoming tumor multidrug resistance and targeting delivery. J Control Release 2016; 235: 182-94.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.003] [PMID: 27264552]
[35]
Chang S, Wang Y, Zhang T, et al. Redox-responsive disulfide bond-bridged mPEG-PBLA prodrug micelles for enhanced paclitaxel biosafety, targeting and antitumor efficacy. Front Oncol 2019; 9: 823.
[http://dx.doi.org/10.3389/fonc.2019.00823] [PMID: 31508374]
[36]
Zhou Z, Tang J, Sun Q, Murdoch WJ, Shen Y. A multifunctional PEG-PLL drug conjugate forming redox-responsive nanoparticles for intracellular drug delivery. J Mater Chem B Mater Biol Med 2015; 3(38): 7594-603.
[http://dx.doi.org/10.1039/C5TB01027F] [PMID: 32262643]
[37]
Oddone N, Boury F, Garcion E, et al. Synthesis, characterization, and in vitro studies of an reactive oxygen species (ros)-responsive methoxy polyethylene glycol-thioketal-melphalan prodrug for glioblastoma treatment. Front Pharmacol 2020; 11: 574.
[http://dx.doi.org/10.3389/fphar.2020.00574] [PMID: 32425795]
[38]
Chen K, Liao SS, Guo SW, et al. Multistimuli-responsive PEGylated polymeric bioconjugate-based nano-aggregate for cancer therapy. Chem Eng J 2020; 391: 123543.
[http://dx.doi.org/10.1016/j.cej.2019.123543]
[39]
Zhang Z, Yu M, An T, et al. Tumor microenvironment stimuli-responsive polymeric prodrug micelles for improved cancer therapy. Pharm Res 2019; 37(1): 4.
[http://dx.doi.org/10.1007/s11095-019-2709-1] [PMID: 31823030]
[40]
Liu X, Huang Q, Yang C, et al. A multi-stimuli responsive nanoparticulate SN38 prodrug for cancer chemotherapy. J Mater Chem B Mater Biol Med 2017; 5(4): 661-70.
[http://dx.doi.org/10.1039/C6TB02262F] [PMID: 32263833]
[41]
Zhai Y, Zhou X, Zhang Z, et al. Design, synthesis, and characterization of Schiff base bond-linked pH-responsive doxorubicin prodrug based on functionalized mPEG-PCL for targeted cancer therapy. Polymers (Basel) 2018; 10(10): 1127.
[http://dx.doi.org/10.3390/polym10101127] [PMID: 30961052]
[42]
Dai Y, Chen X, Zhang X. Recent advances in stimuli-responsive polymeric micelles via click chemistry. Polym Chem 2019; 10(1): 34-44.
[http://dx.doi.org/10.1039/C8PY01174E]
[43]
Kong L, Poulcharidis D, Schneider GF, Campbell F, Kros A. Spatiotemporal control of doxorubicin delivery from “stealth-like” prodrug micelles. Int J Mol Sci 2017; 18(10): 2033.
[http://dx.doi.org/10.3390/ijms18102033] [PMID: 28937592]
[44]
Dao HM, Pillai AR, Thakkar R, Parajuli S, Urena-Benavides E, Jo S. Near infrared light-induced disassembly of polymeric micelles based on methylene blue conjugated polyethylene glycol. J Appl Polym Sci 2020; e49665.
[45]
Zhang C, Wang Y, Zhao Y, et al. Biodegradable micelles for nir/gsh-triggered chemophototherapy of cancer. Nanomaterials (Basel) 2019; 9(1): 91.
[http://dx.doi.org/10.3390/nano9010091] [PMID: 30641981]
[46]
Gala UH, Miller DA, Williams RO III. Harnessing the therapeutic potential of anticancer drugs through amorphous solid dispersions. Biochim Biophys Acta Rev Cancer 2020; 1873(1): 188319.
[http://dx.doi.org/10.1016/j.bbcan.2019.188319] [PMID: 31678141]
[47]
Hu X, Li J, Lin W, Huang Y, Jing X, Xie Z. Paclitaxel prodrug nanoparticles combining chemical conjugation and physical entrapment for enhanced antitumor efficacy. RSC Advances 2014; 4(72): 38405-11.
[http://dx.doi.org/10.1039/C4RA06270A]
[48]
Shi Y, Lammers T, Storm G, Hennink WE. Physico-chemical strategies to enhance stability and drug retention of polymeric micelles for tumor-targeted drug delivery. Macromol Biosci 2017; 17(1): 1600160.
[http://dx.doi.org/10.1002/mabi.201600160] [PMID: 27413999]
[49]
Lu Y, Zhang E, Yang J, Cao Z. Strategies to improve micelle stability for drug delivery. Nano Res 2018; 11(10): 4985-98.
[http://dx.doi.org/10.1007/s12274-018-2152-3] [PMID: 30370014]
[50]
Lai TC, Cho H, Kwon GS. Reversibly core cross-linked polymeric micelles with pH-and reduction-sensitivities: effects of cross-linking degree on particle stability, drug release kinetics, and anti-tumor efficacy. Polym Chem 2014; 5(5): 1650-61.
[http://dx.doi.org/10.1039/C3PY01112G]
[51]
Zhang Y, Chen M, Luo X, et al. Tuning multiple arms for camptothecin and folate conjugations on star-shaped copolymers to enhance glutathione-mediated intracellular drug delivery. Polym Chem 2015; 6(12): 2192-203.
[http://dx.doi.org/10.1039/C4PY01607F]
[52]
Kim KH, Cui GH, Lim HJ, Huh J, Ahn CH, Jo WH. Synthesis and Micellization of Star-Shaped Poly (ethylene glycol)-block-Poly (ε-caprolactone). Macromol Chem Phys 2004; 205(12): 1684-92.
[http://dx.doi.org/10.1002/macp.200400084]
[53]
Ma G, Zhang C, Zhang L, et al. Doxorubicin-loaded micelles based on multiarm star-shaped PLGA-PEG block copolymers: influence of arm numbers on drug delivery. J Mater Sci Mater Med 2016; 27(1): 17.
[http://dx.doi.org/10.1007/s10856-015-5610-4] [PMID: 26676863]
[54]
Zhao X, Si J, Huang D, Li K, Xin Y, Sui M. Application of star poly(ethylene glycol) derivatives in drug delivery and controlled release. J Control Release 2020; 323: 565-77.
[http://dx.doi.org/10.1016/j.jconrel.2020.04.039] [PMID: 32343992]
[55]
Lu Y, Yue Z, Xie J, et al. Micelles with ultralow critical micelle concentration as carriers for drug delivery. Nat Biomed Eng 2018; 2(5): 318-25.
[http://dx.doi.org/10.1038/s41551-018-0234-x] [PMID: 30936455]
[56]
Shuai Q, Cai Y, Zhao G, Sun X. Cell-penetrating peptide modified peg-pla micelles for efficient ptx delivery. Int J Mol Sci 2020; 21(5): 1856.
[http://dx.doi.org/10.3390/ijms21051856] [PMID: 32182734]
[57]
Zhang Y, Yang C, Wang W, et al. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci Rep 2016; 6(1): 21225.
[http://dx.doi.org/10.1038/srep21225] [PMID: 26876480]
[58]
Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008; 5(4): 505-15.
[http://dx.doi.org/10.1021/mp800051m] [PMID: 18672949]
[59]
Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist 2019; 2: 141-60.
[http://dx.doi.org/10.20517/cdr.2019.10]
[60]
Wang H, Huang Y. Combination therapy based on nano codelivery for overcoming cancer drug resistance. Med Drug Discov 2020; 6: 100024.
[http://dx.doi.org/10.1016/j.medidd.2020.100024]
[61]
Pei X, Zhu Z, Gan Z, et al. PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Sci Rep 2020; 10(1): 2717.
[http://dx.doi.org/10.1038/s41598-020-59624-w] [PMID: 32066812]
[62]
Jiang Y, Zhou Y, Zhang CY, Fang T. Co-delivery of paclitaxel and doxorubicin by ph-responsive prodrug micelles for cancer therapy. Int J Nanomedicine 2020; 15: 3319-31.
[http://dx.doi.org/10.2147/IJN.S249144] [PMID: 32494132]
[63]
Tian W, Liu J, Guo Y, Shen Y, Zhou D, Guo S. Self-assembled micelles of amphiphilic PEGylated rapamycin for loading paclitaxel and resisting multidrug resistant cancer cells†Electronic supplementary information (ESI) available: Chemicals and reagents, detailed experimental procedures for materials synthesis, characterization, cellular evaluations and supporting figures and tables. J Mater Chem B Mater Biol Med 2015; 3(7): 1204-7.
[http://dx.doi.org/10.1039/C4TB01633E] [PMID: 25717377]
[64]
Wang H, Zhang F, Wen H, et al. Tumor- and mitochondria-targeted nanoparticles eradicate drug resistant lung cancer through mitochondrial pathway of apoptosis. J Nanobiotechnology 2020; 18(1): 8.
[http://dx.doi.org/10.1186/s12951-019-0562-3] [PMID: 31918714]
[65]
Yamaguchi S, Ito S, Masuda T, Couraud P-O, Ohtsuki S. Novel cyclic peptides facilitating transcellular blood-brain barrier transport of macromolecules in vitro and in vivo. J Control Release 2020; 321: 744-55.
[http://dx.doi.org/10.1016/j.jconrel.2020.03.001] [PMID: 32135226]
[66]
Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol 2015; 7(1): a020412.
[http://dx.doi.org/10.1101/cshperspect.a020412] [PMID: 25561720]
[67]
Mulvihill JJ, Cunnane EM, Ross AM, Duskey JT, Tosi G, Grabrucker AM. Drug delivery across the blood-brain barrier: recent advances in the use of nanocarriers. Nanomedicine (Lond) 2020; 15(2): 205-14.
[http://dx.doi.org/10.2217/nnm-2019-0367] [PMID: 31916480]
[68]
Gorick CM, Mathew AS, Garrison WJ, et al. Sonoselective transfection of cerebral vasculature without blood–brain barrier disruption. P Natl A Sci 2020; 117(11): 5644-4.
[69]
Ahlawat J, Guillama Barroso G, Masoudi Asil S, et al. Nanocarriers as potential drug delivery candidates for overcoming the blood-brain barrier: challenges and possibilities. ACS Omega 2020; 5(22): 12583-95.
[http://dx.doi.org/10.1021/acsomega.0c01592] [PMID: 32548442]
[70]
Yin Y, Wang J, Yang M, et al. Penetration of the blood-brain barrier and the anti-tumour effect of a novel PLGA-lysoGM1/DOX micelle drug delivery system. Nanoscale 2020; 12(5): 2946-60.
[http://dx.doi.org/10.1039/C9NR08741A] [PMID: 31994576]
[71]
Lu L, Zhao X, Fu T, et al. An iRGD-conjugated prodrug micelle with blood-brain-barrier penetrability for anti-glioma therapy. Biomaterials 2020; 230: 119666.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119666] [PMID: 31831222]
[72]
Hu L, Wang Y, Zhang Y, et al. Angiopep-2 modified PEGylated 2-methoxyestradiol micelles to treat the PC12 cells with oxygen-glucose deprivation/reoxygenation. Colloids Surf B Biointerfaces 2018; 171: 638-46.
[http://dx.doi.org/10.1016/j.colsurfb.2018.08.009] [PMID: 30107337]
[73]
Min HS, Kim HJ, Naito M, et al. Systemic brain delivery of antisense oligonucleotides across the blood-brain barrier with a glucose-coated polymeric nanocarrier. Angew Chem Int Ed Engl 2020; 59(21): 8173-80.
[http://dx.doi.org/10.1002/anie.201914751] [PMID: 31995252]
[74]
Secord A, Siamakpour-Reihani S. Angiogenesis.Translational advances in gynecologic cancers. Elsevier 2017; pp. 79-109.
[http://dx.doi.org/10.1016/B978-0-12-803741-6.00005-7]
[75]
Ribatti D, Marimpietri D, Pastorino F, et al. Angiogenesis in neuroblastoma. Ann N Y Acad Sci 2004; 1028(1): 133-42.
[http://dx.doi.org/10.1196/annals.1322.014] [PMID: 15650239]
[76]
Iruela-Arispe ML, Zovein A. Angiogenesis.fetal and neonatal physiology. Elsevier 2017; pp. 85-9.
[77]
Nyberg P, Xie L, Kalluri R. Endogenous inhibitors of angiogenesis. Cancer Res 2005; 65(10): 3967-79.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2427] [PMID: 15899784]
[78]
Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci 2020; 77(9): 1745-70.
[http://dx.doi.org/10.1007/s00018-019-03351-7] [PMID: 31690961]
[79]
Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther 2020; 5(1): 28.
[http://dx.doi.org/10.1038/s41392-020-0134-x] [PMID: 32296047]
[80]
Wang J, Zhang L, Pan X, et al. Discovery of multi-target receptor tyrosine kinase inhibitors as novel anti-angiogenesis agents. Sci Rep 2017; 7: 45145.
[http://dx.doi.org/10.1038/srep45145] [PMID: 28332573]
[81]
Sonpavde G, Hutson TE. Pazopanib: a novel multitargeted tyrosine kinase inhibitor. Curr Oncol Rep 2007; 9(2): 115-9.
[http://dx.doi.org/10.1007/s11912-007-0007-2] [PMID: 17288876]
[82]
Polena H, Creuzet J, Dufies M, et al. The tyrosine-kinase inhibitor sunitinib targets vascular endothelial (VE)-cadherin: a marker of response to antitumoural treatment in metastatic renal cell carcinoma. Br J Cancer 2018; 118(9): 1179-88.
[http://dx.doi.org/10.1038/s41416-018-0054-5] [PMID: 29563634]
[83]
Tsuji-Tamura K, Ogawa M. Inhibition of the PI3K-Akt and mTORC1 signaling pathways promotes the elongation of vascular endothelial cells. J Cell Sci 2016; 129(6): 1165-78.
[http://dx.doi.org/10.1242/jcs.178434] [PMID: 26826185]
[84]
Garcia J, Hurwitz HI, Sandler AB, et al. Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat Rev 2020; 86(11): 102017.
[http://dx.doi.org/10.1016/j.ctrv.2020.102017] [PMID: 32335505]
[85]
Zhang W, Ran S, Sambade M, Huang X, Thorpe PE. A monoclonal antibody that blocks VEGF binding to VEGFR2 (KDR/Flk-1) inhibits vascular expression of Flk-1 and tumor growth in an orthotopic human breast cancer model. Angiogenesis 2002; 5(1-2): 35-44.
[http://dx.doi.org/10.1023/A:1021540120521] [PMID: 12549858]
[86]
Li G, Zhao L. Sorafenib-loaded hydroxyethyl starch-TG100-115 micelles for the treatment of liver cancer based on synergistic treatment. Drug Deliv 2019; 26(1): 756-64.
[http://dx.doi.org/10.1080/10717544.2019.1642418] [PMID: 31357893]
[87]
Uyttenhove C, Pilotte L, Théate I, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 2003; 9(10): 1269-74.
[http://dx.doi.org/10.1038/nm934] [PMID: 14502282]
[88]
Zamanakou M, Germenis AE, Karanikas V. Tumor immune escape mediated by indoleamine 2,3-dioxygenase. Immunol Lett 2007; 111(2): 69-75.
[http://dx.doi.org/10.1016/j.imlet.2007.06.001] [PMID: 17644189]
[89]
Brincks EL, Adams J, Wang L, et al. Indoximod opposes the immunosuppressive effects mediated by IDO and TDO via modulation of AhR function and activation of mTORC1. Oncotarget 2020; 11(25): 2438-61.
[http://dx.doi.org/10.18632/oncotarget.27646] [PMID: 32637034]
[90]
Gabrilovich DI. Myeloid-derived suppressor cells. Cancer Immunol Res 2017; 5(1): 3-8.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0297] [PMID: 28052991]
[91]
Zheng Y. Overview of tumor environment responsive nano-drug delivery systems in tumor immunotherapy IOP Conference Series: Earth Environ Sci. 4
[http://dx.doi.org/10.1088/1755-1315/512/1/012096]
[92]
Chen Y, Xia R, Huang Y, et al. An immunostimulatory dual-functional nanocarrier that improves cancer immunochemotherapy. Nat Commun 2016; 7(1): 13443.
[http://dx.doi.org/10.1038/ncomms13443] [PMID: 27819653]
[93]
Chen Y, Sun J, Huang Y, Lu B, Li S. Improved cancer immunochemotherapy via optimal co-delivery of chemotherapeutic and immunomodulatory agents. Mol Pharm 2018; 15(11): 5162-73.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00717] [PMID: 30222360]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy