Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Thiazole-based Chalcone Derivatives as Potential Anti-inflammatory Agents: Biological Evaluation and Molecular Modelling

Author(s): Christophe Tratrat*, Michelyne Haroun, Evangelia Tsolaki, Anthi Petrou, Antonis Gavalas and Athina Geronikaki*

Volume 21, Issue 4, 2021

Published on: 14 December, 2020

Page: [257 - 268] Pages: 12

DOI: 10.2174/1568026621999201214232458

Price: $65

Abstract

Background: Inflammation is a multifactorial process reflecting the response of the organism to various stimuli and is associated with a number of disorders such as arthritis, asthma and psoriasis, which require long-lasting or repeated treatment.

Objective: The aim of this paper is to evaluate the anti-inflammatory activity of previous synthesized thiazole-based chalcone derivatives.

Methods: Chalcones were synthesized via Cliazen-Schmidt condensation1-(4-methyl-2- alkylamino)thiazol-5-yl) ethanone with a corresponding aromatic aldehyde. For the evaluation of possible anti-inflammatory activity, carrageenan mouse paw edema was used.

Results: Eight out of thirteen tested chalcones showed anti-inflammatory activity in a range of 51- 55%. Prediction of toxicity revealed that these compounds are not toxic.

Conclusion: In general, it can be concluded that these compounds can be used for further modifications in order to develop more active and safe agents.

Keywords: Thiazole, Chalcone, NSAIDs, Toxicity, Docking, LOX.

Graphical Abstract

[1]
Bray, M.A.; Ford-Hutchinson, A.W.; Smith, M.J. Leukotriene B4: an inflammatory mediator in vivo. Prostaglandins, 1981, 22(2), 213-222.
[http://dx.doi.org/10.1016/0090-6980(81)90036-8] [PMID: 6270742]
[2]
Penrose, J.F.; Austen, K.F.; Lam, B.K. Leukotrienes: biosynthetic pathways, release and receptor-mediated actions with relevance to disease states. In: Inflammation: Basic Principles and Clinical Correlates; Gallin, J.L.; Snyderman, R., Eds.; Lippicort Williams & Wilkins: Philadelphia, PA, 1999; pp. 361-372.
[3]
Mostafa, M.S.; Abd El-Salam, N.M. Synthesis and biological evaluation of 3-methyl- 2-pyrazolin-5-one derivatives containing thiazole and indole moieties. Pharma Chem., 2013, 5, 1-7.
[4]
Geronikaki, A.; Vicini, P.; Theophilidis, G.; Poroikov, V.; Dabarakis, N.; Modarresi, H.; Dearden, J.C. Evaluation the local anaesthetic activity of derivatives of 3-amino-1,2- [d]benzoisothiazoles on sciatic nerve of rat. Eur. J. Med. Chem., 2009, 44(2), 473-481.
[http://dx.doi.org/10.1016/j.ejmech.2008.04.006] [PMID: 18534720]
[5]
Lagunin, A.A.; Geronikaki, A.; Eleftheriou, P.T.; Hadjipavlou-Litina, D.I.; Filimonov, D.A.; Poroikov, V.V. Computer-aided discovery of potential anti-inflammatory thiazolidinones with dual 5- LOX/COX Inhibition. J. Med. Chem., 2008, 51, 1601-1609.
[http://dx.doi.org/10.1021/jm701496h] [PMID: 18311898]
[6]
Kouatly, O.; Geronikaki, A.; Kamoutsis, C.; Hadjipavlou-Litina, D.; Eleftheriou, P. Adamantane derivatives of thiazolyl-N-substituted amide, as possible non-steroidal anti-inflammatory agents. Eur. J. Med. Chem., 2009, 44(3), 1198-1204.
[http://dx.doi.org/10.1016/j.ejmech.2008.05.029] [PMID: 18603333]
[7]
Pattan, S.R.; Hullolika, R.L.; Dighe, N.S.; Ingalagi, B.N.; Hole, M.B.; Gaware, V.M.; Chavan, P.A. Synthesis and evaluation of some new phenyl thiazole derivatives for their anti- inflammatory activities. J Pharm Sci & Res, 2009, 1(4), 96-102.
[8]
Apostolidis, I.; Liaras, K.; Geronikaki, A.; Hadjipavlou-Litina, D.; Gavalas, A.; Soković, M.; Glamočlija, J.; Ćirić, A. Synthesis and biological evaluation of some 5-arylidene-2-(1,3-thiazol-2-ylimino)-1,3-thiazolidin-4-ones as dual anti-inflammatory/antimicrobial agents. Bioorg. Med. Chem., 2013, 21(2), 532-539.
[http://dx.doi.org/10.1016/j.bmc.2012.10.046] [PMID: 23219856]
[9]
Saravanan, G.; Alagarsamy, V.; Prakash, C.R.; Kumar, P.D.; Selvam, T.P. Synthesis of novel thiazole derivatives as analgesic agents. Asian J Res Pharm Sci, 2011, 1(4), 134-138.
[10]
Pitta, E.; Geronikaki, A.; Surmava, S.; Eleftheriou, Ph.; Mehta, V.; Van der Eycken, E. Evaluation of hiv-1 reverse transcriptase inhibitory action of different thiazolidinone derivatives. J. Enzyme Inhib. Med. Chem., 2013, 28(1), 113-122.
[http://dx.doi.org/10.3109/14756366.2011.636362] [PMID: 22380777]
[11]
Madni, M.; Hameed, S.; Ahmed, M.N. Synthesis, crystal structure, anti-HIV, and antiproliferative activity of new pyrazolylthiazole derivatives. Med. Chem. Res., 2017, 26, 2653-2665.
[http://dx.doi.org/10.1007/s00044-017-1963-1]
[12]
Dawood, K.M.; Eldebss, T.M.; El-Zahabi, H.S.; Yousef, M.H. Synthesis and antiviral activity of some new bis-1,3-thiazole derivatives. Eur. J. Med. Chem., 2015, 102, 266-276.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.005] [PMID: 26291036]
[13]
Abu-Melha, S.; Edrees, M.M.; Salem, H.H.; Kheder, N.A.; Gomha, S.M.; Abdelaziz, M.R. Synthesis and biological evaluation of some novel thiazole-based heterocycles as potential anticancer and antimicrobial agents. Molecules, 2019, 24(3), 539.
[http://dx.doi.org/10.3390/molecules24030539] [PMID: 30717217]
[14]
Sravanthi, T.V.; Sajitha Lulu, S.; Vino, S.; Jayasri, M.A.; Mohanapriya, A.; Manju, S.L. Synthesis, docking, and evaluation of novel thiazoles for potentantidiabetic activity. Med. Chem. Res., 2017, 26, 1306-1315.
[http://dx.doi.org/10.1007/s00044-017-1851-8]
[15]
Vijaya Kumar, S.G.; Mishra, D.N. Analgesic, antiinflammatory, and ulcerogenic studies of meloxicam solid dispersion prepared with polyethylene glycol 6000. Methods Find. Exp. Clin. Pharmacol., 2006, 28(7), 419-422.
[http://dx.doi.org/10.1358/mf.2006.28.7.1003549] [PMID: 17003846]
[16]
Kilpatrick, M.E.; El Masry, N.A.; Bassily, S.; Farid, Z. Oxamniquine versus niridazole for treatment of uncomplicated Schistosoma mansoni infection. Am. J. Trop. Med. Hyg., 1982, 31(6), 1164-1167.
[http://dx.doi.org/10.4269/ajtmh.1982.31.1164] [PMID: 7149102]
[17]
Burmaoglu, S.; Algul, O.; Gobek, A.; Aktas Anil, D.; Ulger, M.; Erturk, B.G.; Kaplan, E.; Dogen, A.; Aslan, G. Design of potent fluoro-substituted chalcones as antimicrobial agents. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 490-495.
[http://dx.doi.org/10.1080/14756366.2016.1265517] [PMID: 28118738]
[18]
Henry, E.J.; Bird, S.J.; Gowland, P.; Collins, M.; Cassella, J.P. Ferrocenyl chalcone derivatives as possible antimicrobial agents. J. Antibiot. (Tokyo), 2020, 73(5), 299-308.
[http://dx.doi.org/10.1038/s41429-020-0280-y] [PMID: 31988484]
[19]
Ur Rashid, H.; Xu, Y.; Ahmad, N.; Muhammad, Y.; Wang, L. Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. Bioorg. Chem., 2019, 87, 335-365.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.033] [PMID: 30921740]
[20]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Chalcone derivatives: anti-inflammatory potential and molecular targets perspectives. Curr. Top. Med. Chem., 2017, 17(28), 3146-3169.
[http://dx.doi.org/10.2174/1568026617666170914160446] [PMID: 28914193]
[21]
Vásquez-Martínez, Y.A.; Osorio, M.E.; San Martín, D.A.; Carvajal, M.A.; Vergara, A.P.; Sanchez, S.A.; Mascayano, C.M.M.; Cortez-San, M.M. Antimicrobial, anti-inflammatory and antioxidant activities of polyoxygenated chalcones. J. Braz. Chem. Soc., 2019, 30(2), 286-304.
[22]
Khaled, R.A. Abdellatif, Heba A.H.; Elshemy, S.A.S.; Hany, A.O. Synthesis, characterization and biologicalevaluation of novel 4′-fluoro-2′-hydroxy-chalconederivatives as antioxidant, anti-inflammatory andanalgesic agents. J. Enzyme Inhib. Med. Chem., 2015, 30(3), 484-491.
[http://dx.doi.org/10.3109/14756366.2014.949255] [PMID: 25198887]
[23]
Wu, C.M.; Lin, K.W.; Teng, C.H.; Huang, A.M.; Chen, Y.C.; Yen, M.H.; Wu, W.B.; Pu, Y.S.; Lin, C.N. Chalcone derivatives inhibit human platelet aggregation and inhibit growth in human bladder cancer cells. Biol. Pharm. Bull., 2014, 37(7), 1191-1198.
[http://dx.doi.org/10.1248/bpb.b14-00099] [PMID: 24989010]
[24]
Hsieh, C.Y.; Ko, P.W.; Chang, Y.J.; Kapoor, M.; Liang, Y.C.; Lin, H.H.; Horng, J.C.; Hsu, M.H. Design and synthesis of benzimidazole-chalcone derivatives as potential anticancer agents. Molecules, 2019, 24(18), 3259.
[http://dx.doi.org/10.3390/molecules24183259] [PMID: 31500191]
[25]
Sinha, S.; Batovska, D.I.; Medhi, B.; Radotra, B.D.; Bhalla, A.; Markova, N.; Sehgal, R. In vitro anti-malarial efficacy of chalcones: cytotoxicity profile, mechanism of action and their effect on erythrocytes. Malar. J., 2019, 18(1), 421.
[http://dx.doi.org/10.1186/s12936-019-3060-z] [PMID: 31842914]
[26]
Ortalli, M.; Ilari, A.; Colotti, G.; De Ionna, I.; Battista, T.; Bisi, A.; Gobbi, S.; Rampa, A.; Di Martino, R.M.C.; Gentilomi, G.A.; Varani, S.; Belluti, F. Identification of chalcone-based antileishmanial agents targeting trypanothione reductase. Eur. J. Med. Chem., 2018, 152, 527-541.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.057] [PMID: 29758517]
[27]
de Mello, M.V.P.; Abrahim-Vieira, B.A.; Domingos, T.F.S.; de Jesus, J.B.; de Sousa, A.C.C.; Rodrigues, C.R.; Souza, A.M.T. A comprehensive review of chalcone derivatives as antileishmanial agents. Eur. J. Med. Chem., 2018, 150, 920-929.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.047] [PMID: 29602038]
[28]
Shaik, A.; Bhandare, R.R.; Palleapati, K.; Nissankararao, S.; Kancharlapalli, V.; Shaik, S. Antimicrobial, antioxidant, and anticancer activities of some novel isoxazole ring containing chalcone and dihydropyrazole derivatives. Molecules, 2020, 25(5), 1047.
[http://dx.doi.org/10.3390/molecules25051047] [PMID: 32110945]
[29]
Wang, J.; Huang, L.; Cheng, C.; Li, G.; Xie, J.; Shen, M.; Chen, Q.; Li, W.; He, W.; Qiu, P.; Wu, J. Design, synthesis and biological evaluation of chalcone analogues with novel dual antioxidant mechanisms as potential anti-ischemic stroke agents. Acta Pharm. Sin. B, 2019, 9(2), 335-350.
[http://dx.doi.org/10.1016/j.apsb.2019.01.003] [PMID: 30972281]
[30]
Zhou, D.; Xie, D.; He, F.; Song, B.; Hu, D. Antiviral properties and interaction of novel chalcone derivatives containing a purine and benzenesulfonamide moiety. Bioorg. Med. Chem. Lett., 2018, 28(11), 2091-2097.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.042] [PMID: 29724588]
[31]
Anandam, R.; Jadav, S.S.; Ala, V.B.; Ahsan, M.J.; Bollikolla, B.H. Synthesis of newC-dimethylated chalcones as potent antitubercularagents. Med. Chem. Res., 2018, 27, 1690-1704.
[http://dx.doi.org/10.1007/s00044-018-2183-z]
[32]
Sashidhara, K.V.; Avula, S.R.; Mishra, V.; Palnati, G.R.; Singh, L.R.; Singh, N.; Chhonker, Y.S.; Swami, P.; Bhatta, R.S.; Palit, G. Identification of quinoline-chalcone hybrids as potential antiulcer agents. Eur. J. Med. Chem., 2015, 89, 638-653.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.068] [PMID: 25462272]
[33]
Rocha, S.; Ribeiro, D.; Fernandes, E.; Freitas, M. A systematic review on anti-diabetic properties of chalcones. Curr. Med. Chem., 2020, 27(14), 2257-2321.
[http://dx.doi.org/10.2174/0929867325666181001112226] [PMID: 30277140]
[34]
Meng, C.Q.; Zheng, X.S.; Ni, L.; Ye, Z.; Simpson, J.E.; Worsencroft, K.J.; Hotema, M.R.; Weingarten, M.D.; Skudlarek, J.W.; Gilmore, J.M.; Hoong, L.K.; Hill, R.R.; Marino, E.M.; Suen, K-L.; Kunsch, C.; Wasserman, M.A.; Sikorski, J.A. Discovery of novel heteroaryl-substituted chalcones as inhibitors of TNF-alpha-induced VCAM-1 expression. Bioorg. Med. Chem. Lett., 2004, 14(6), 1513-1517.
[http://dx.doi.org/10.1016/j.bmcl.2004.01.021] [PMID: 15006393]
[35]
Tratrat, C.; Haroun, M.; Xenikakis, I.; Liaras, K.; Tsolaki, E.; Eleftheriou, P.; Petrou, A.; Aldhubiab, B.; Attimarad, M.; Venugopala, K.N.; Harsha, S.; Elsewedy, H.S.; Geronikaki, A.; Soković, M. Design, synthesis, evaluation of antimicrobial activity and docking studies of new thiazole-based chalcones. Curr. Top. Med. Chem., 2019, 19(5), 356-375.
[http://dx.doi.org/10.2174/1568026619666190129121933] [PMID: 30706816]
[36]
Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a Free Radical Method to Evaluate Antioxidant Activity. Lebensm. Wiss. Technol., 1995, 28, 25-30.
[http://dx.doi.org/10.1016/S0023-6438(95)80008-5]
[37]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[38]
Gilbert, N.C.; Bartlett, S.G.; Waight, M.T.; Neau, D.B.; Boeglin, W.E.; Brash, A.R.; Newcomer, M.E. The structure of human 5-lipoxygenase. Science, 2011, 331(6014), 217-219.
[http://dx.doi.org/10.1126/science.1197203] [PMID: 21233389]
[39]
Gilbert, N.C.; Gerstmeier, J.; Schexnaydre, E.E.; Börner, F.; Garscha, U.; Neau, D.B.; Werz, O.; Newcomer, M.E. Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products. Nat. Chem. Biol., 2020, 16(7), 783-790.
[http://dx.doi.org/10.1038/s41589-020-0544-7] [PMID: 32393899]
[40]
Toxicity Prediction Available at, http://www.opentox.org/toxicity-prediction
[41]
ToxPredict Available at, https://apps.ideaconsult.net/ToxPredict
[42]
Structural Bioinformatics Group Available at, http://tox.charite.de/tox
[43]
Sudheesh, S.; Soumya, K.; James, J. A novel chalcone derivative from Punica granatum peel inhibits LOX/COX enzyme activity Beni-Suef University. J. Basic Appl. Sci., 2018, 7(4), 593-597.
[44]
Liaras, K.; Fesatidou, M.; Geronikaki, A. Thiazoles and Thiazolidinones as COX/LOX Inhibitors. Molecules, 2018, 23(3), 685.
[http://dx.doi.org/10.3390/molecules23030685] [PMID: 29562646]
[45]
Stepanić, V.; Matijašić, M.; Horvat, T.; Verbanac, D.; Kučerová-Chlupáčová, M.; Saso, L.; Žarković, N. Antioxidant activities of alkyl substituted pyrazine derivatives of chalcones-in vitro and in silico study. Antioxidants, 2019, 8(4), 90.
[http://dx.doi.org/10.3390/antiox8040090] [PMID: 30959820]
[46]
Vogel, S.; Barbic, M.; Jürgenliemk, G.; Heilmann, J. Synthesis, cytotoxicity, anti-oxidative and anti-inflammatory activity of chalcones and influence of A-ring modifications on the pharmacological effect. Eur. J. Med. Chem., 2010, 45(6), 2206-2213.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.060] [PMID: 20153559]
[47]
Vogel, S.; Ohmayer, S.; Brunner, G.; Heilmann, J. Natural and non-natural prenylated chalcones: synthesis, cytotoxicity and anti-oxidative activity. Bioorg. Med. Chem., 2008, 16(8), 4286-4293.
[http://dx.doi.org/10.1016/j.bmc.2008.02.079] [PMID: 18343123]
[48]
Xu, S.; Mueser, T.C.; Marnett, L.J.; Funk, M.O. Jr Crystal structure of 12-lipoxygenase catalytic-domain-inhibitor complex identifies a substrate-binding channel for catalysis. Structure, 2012, 20(9), 1490-1497.
[http://dx.doi.org/10.1016/j.str.2012.06.003] [PMID: 22795085]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy