Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

COVID-19 Impacts, Diagnosis and Possible Therapeutic Techniques: A Comprehensive Review

Author(s): Ayesha Aziz, Muhammad Asif, Ghazala Ashraf, Qiaoli Yang and Shenqi Wang*

Volume 27, Issue 9, 2021

Published on: 04 December, 2020

Page: [1170 - 1184] Pages: 15

DOI: 10.2174/1874467213666201204154239

Price: $65

Abstract

Background: The spread of COVID-19 has become a growing cause of mortalities over the globe since its major outbreak in December 2019. The scientific and medical communities are rallying to study different strains and probable mutations to develop more rapid and reliable molecular diagnostic tests and possible therapeutic approaches for SARS-CoV-2.

Introduction: In the first section, following the introductory part, we shed light on structural and pathogenic features of SARS-CoV-2 and risk factors related to age, gender, neonatal and comorbidities. The next section summarizes the current diagnostic tests for COVID-19, such as nucleic acid and computed tomography (CT) techniques, with further emphasis on emerging diagnostic approaches for COVID-19.

Methods: Further, we also review the ongoing therapeutic practices which can block virus-host interaction, cease viral proliferation or inhibit hyperbolic host immune response with subsections on drug therapy, cell therapy, immunotherapy and herbal medicines that are being used for the possible treatment of patients.

Results and Conclusion: Among the different promising drugs, remdesivir, by inhibiting the RNA-dependent RNA-Polymerase activity, gives much better results, including declined viral load and quick lung tissue recovery. The long-lasting repercussions of COVID-19 have also been discussed at the end. In this review, we have also critically discussed the progress in several vaccines that are under development.

Keywords: Pandemic, SARS-CoV-2, COVID-19, genome studies, pathogenicity, non-structural proteins, diagnostics, therapeutic approaches, repercussions.

[1]
Aberth J. Plagues in world history. Rowman & Littlefield Publishers 2011.
[2]
Peset JL. Plagues and Diseases in History. International Encyclopedia of the Social Behavioral Sciences 2015; pp. 174-9.
[http://dx.doi.org/10.1016/B978-0-08-097086-8.62050-0]
[3]
Poon LC, Yang H, Lee JCS, et al. ISUOG Interim Guidance on 2019 novel coronavirus infection during pregnancy and puerperium: information for healthcare professionals. Ultrasound Obstet Gynecol 2020; 55(5): 700-8.
[http://dx.doi.org/10.1002/uog.22013] [PMID: 32160345]
[4]
Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016; 24(6): 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[5]
Zhu N, Zhang D, Wang W, et al. China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[6]
Hilgenfeld R, Peiris M. From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Antiviral Res 2013; 100(1): 286-95.
[http://dx.doi.org/10.1016/j.antiviral.2013.08.015] [PMID: 24012996]
[7]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[8]
Organization WH. Coronavirus disease 2019 (COVID-19): situation report, 72. Available at:. https://apps.who.int/iris/handle/10665/331685
[9]
Di Mascio D, Khalil A, Saccone G, et al. .Outcome of Coronavirus spectrum infections (SARS, MERS, COVID 1-19) during pregnancy: a systematic review and meta-analysis. American Journal of Obstetrics Gynecology MFM 2020; 100107..
[10]
Wu A, Peng Y, Huang B, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 2020; 27(3): 325-8.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[11]
Perlman S. Another decade, another coronavirus. Mass Medical Soc. 2020.
[http://dx.doi.org/10.1056/NEJMe2001126]
[12]
Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367(6483): 1260-3.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[13]
Mullis L, Saif LJ, Zhang Y, Zhang X, Azevedo MS. Stability of bovine coronavirus on lettuce surfaces under household refrigeration conditions. Food Microbiol 2012; 30(1): 180-6.
[http://dx.doi.org/10.1016/j.fm.2011.12.009] [PMID: 22265299]
[14]
Shigematsu S, Dublineau A, Sawoo O, et al. Influenza A virus survival in water is influenced by the origin species of the host cell. Influenza Other Respir Viruses 2014; 8(1): 123-30.
[http://dx.doi.org/10.1111/irv.12179] [PMID: 24112132]
[15]
Yépiz-Gómez MS, Gerba CP, Bright KR. Survival of respiratory viruses on fresh produce. Food Environ Virol 2013; 5: 150-6.
[http://dx.doi.org/10.1007/s12560-013-9114-4] [PMID: 23681671]
[16]
Nghiem LD, Morgan B, Donner E, Short MD. The COVID-19 pandemic: considerations for the waste and wastewater services sector. Case Studies in Chemical and Environmental Engineering 2020; p. 100006.
[17]
Otter JA, Yezli S, French GL. The role of contaminated surfaces in the transmission of nosocomial pathogensUse of biocidal surfaces for reduction of healthcare acquired infections. Springer 2014; pp. 27-58.
[http://dx.doi.org/10.1007/978-3-319-08057-4_3]
[18]
Huang R, Xia J, Chen Y, Shan C, Wu C. A family cluster of SARS-CoV-2 infection involving 11 patients in Nanjing. Lancet Infectious Disease 2020.
[19]
Pan X, Chen D, Xia Y, et al. Asymptomatic cases in a family cluster with SARS-CoV-2 infection. Lancet Infect Dis 2020; 20(4): 410-1.
[http://dx.doi.org/10.1016/S1473-3099(20)30114-6] [PMID: 32087116]
[20]
Liu J, Liao X, Qian S, et al. Community Transmission of Severe Acute Respiratory Syndrome Coronavirus 2, Shenzhen, China, 2020. Emerg Infect Dis 2020; 26(6): 1320-3.
[http://dx.doi.org/10.3201/eid2606.200239] [PMID: 32125269]
[21]
Song Z, Xu Y, Bao L, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses 2019; 11(1): 59.
[http://dx.doi.org/10.3390/v11010059] [PMID: 30646565]
[22]
Malik YS, Sircar S, Bhat S, et al. Emerging novel coronavirus (2019-nCoV)-current scenario, evolutionary perspective based on genome analysis and recent developments. Vet Q 2020; 40(1): 68-76.
[http://dx.doi.org/10.1080/01652176.2020.1727993] [PMID: 32036774]
[23]
Tang X, Wu C, Li X, et al. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev 2020.
[http://dx.doi.org/10.1093/nsr/nwaa036]
[24]
Zumla A, Chan JF, Azhar EI, Hui DS, Yuen K-Y. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov 2016; 15(5): 327-47.
[http://dx.doi.org/10.1038/nrd.2015.37] [PMID: 26868298]
[25]
Tong TR. Drug targets in severe acute respiratory syndrome (SARS) virus and other coronavirus infections. Infectious Disorders- Drug Targets (Formerly Current Drug Targets-Infectious Disorders) 2009; 9: 223-45..
[26]
Ton AT, Gentile F, Hsing M, Ban F, Cherkasov A. Rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking of 1.3 billion compounds. Mol Inform 2020; 39(8)
[http://dx.doi.org/10.1002/minf.202000028] [PMID: 32162456]
[27]
Zhang L, Lin D, Sun X, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020; 368(6489): 409-12.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[28]
Shamsi A, Mohammad T, Anwar S, et al. Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: possible implication in COVID-19 therapy. Biosci Rep 2020; 40(6): 40.
[http://dx.doi.org/10.1042/BSR20201256] [PMID: 32441299]
[29]
Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020; 581(7807): 221-4.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[30]
Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med 2020; 27(2)
[http://dx.doi.org/10.1093/jtm/taaa021] [PMID: 32052846]
[31]
Xia S, Zhu Y, Liu M, et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol 2020; 17(7): 765-7.
[http://dx.doi.org/10.1038/s41423-020-0374-2] [PMID: 32047258]
[32]
Yu F, Du L, Ojcius DM, Pan C, Jiang S. Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. Microbes Infect 2020; 22(2): 74-9.
[http://dx.doi.org/10.1016/j.micinf.2020.01.003] [PMID: 32017984]
[33]
Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5(4): 562-9.
[http://dx.doi.org/10.1038/s41564-020-0688-y] [PMID: 32094589]
[34]
Perrier A, Bonnin A, Desmarets L, et al. The C-terminal domain of the MERS coronavirus M protein contains a trans-Golgi network localization signal. J Biol Chem 2019; 294(39): 14406-21.
[http://dx.doi.org/10.1074/jbc.RA119.008964] [PMID: 31399512]
[35]
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol 2020; 94(7): 94.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[36]
Lin W, Wen J, Chen G. Epidemiological and clinical characteristics of SARS-CoV-2 and SARS-CoV: a system review. medRxiv 2020.
[37]
Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect 2020; 26(6): 729-34.
[http://dx.doi.org/10.1016/j.cmi.2020.03.026] [PMID: 32234451]
[38]
Huang L, Zhang X, Zhang X, et al. Rapid asymptomatic transmission of COVID-19 during the incubation period demonstrating strong infectivity in a cluster of youngsters aged 16-23 years outside Wuhan and characteristics of young patients with COVID-19: A prospective contact-tracing study. J Infect 2020; 80(6): e1-e13.
[http://dx.doi.org/10.1016/j.jinf.2020.03.006] [PMID: 32283156]
[39]
Phelan AL, Katz R, Gostin LO. The novel coronavirus originating in Wuhan, China: challenges for global health governance. JAMA 2020; 323(8): 709-10.
[http://dx.doi.org/10.1001/jama.2020.1097] [PMID: 31999307]
[40]
Wu D, Wu T, Liu Q, Yang Z. The SARS-CoV-2 outbreak: What we know. Int J Infect Dis 2020; 94: 44-8.
[http://dx.doi.org/10.1016/j.ijid.2020.03.004] [PMID: 32171952]
[41]
Rahman HS, Aziz MS, Hussein RH, et al. The Transmission Modes and Sources of COVID-19: A Systematic Review. Inter J Surgery Open 2020; 26: 125-36.
[42]
JESPERS V, ROBERFROID D. AEROSOL-GENERATING PROCEDURE. 2020. Available at:. https://kce.fgov.be/sites/default/files/atoms/files/202051_COVID_Aerosol%20KCE_FINAL_19052020_4.pdf
[43]
Belser JA, Rota PA, Tumpey TM. Ocular tropism of respiratory viruses. Microbiol Mol Biol Rev 2013; 77(1): 144-56.
[http://dx.doi.org/10.1128/MMBR.00058-12] [PMID: 23471620]
[44]
Ong SWX, Tan YK, Chia PY, et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA 2020; 323(16): 1610-2.
[http://dx.doi.org/10.1001/jama.2020.3227] [PMID: 32129805]
[45]
Gundy PM, Gerba CP, Pepper IL. Survival of coronaviruses in water and wastewater. Food Environ Virol 2009; 1: 10.
[http://dx.doi.org/10.1007/s12560-008-9001-6]
[46]
Wang Y, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol 2020; 92(6): 568-76.
[http://dx.doi.org/10.1002/jmv.25748] [PMID: 32134116]
[47]
Basile C, Combe C, Pizzarelli F, et al. Recommendations for the prevention, mitigation and containment of the emerging SARS-CoV-2 (COVID-19) pandemic in haemodialysis centres. Nephrol Dial Transplant 2020; 35(5): 737-41.
[http://dx.doi.org/10.1093/ndt/gfaa069] [PMID: 32196116]
[48]
Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020; 323(18): 1843-4.
[http://dx.doi.org/10.1001/jama.2020.3786] [PMID: 32159775]
[49]
Lu Q, Shi Y. Coronavirus disease (COVID-19) and neonate: What neonatologist need to know. J Med Virol 2020; 92(6): 564-7.
[http://dx.doi.org/10.1002/jmv.25740] [PMID: 32115733]
[50]
Woodward A. A pregnant mother infected with the coronavirus gave birth, and her baby tested positive 30 hours later 2020 Available at:.https://www.businessinsider.in/science/news/a-pregnant-mother-infected-with-the-coronavirus-gave-birth-and-her-baby-tested-positive-30-hours-later/articleshow/73969524.cms
[51]
Murphy S. Newborn baby tests positive for coronavirus in London. Guardian 2020; p. 14.
[52]
Grech V. Unknown unknowns - COVID-19 and potential global mortality. Early Hum Dev 2020; 144.
[http://dx.doi.org/10.1016/j.earlhumdev.2020.105026] [PMID: 32247898]
[53]
Meo SA, Alhowikan AM, Al-Khlaiwi T, et al. Novel coronavirus 2019-nCoV: prevalence, biological and clinical characteristics comparison with SARS-CoV and MERS-CoV. Eur Rev Med Pharmacol Sci 2020; 24(4): 2012-9.
[PMID: 32141570]
[54]
Thompson R. Pandemic potential of 2019-nCoV. Lancet Infect Dis 2020; 20(3): 280.
[http://dx.doi.org/10.1016/S1473-3099(20)30068-2] [PMID: 32043978]
[55]
Wang W, Tang J, Wei F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J Med Virol 2020; 92(4): 441-7.
[http://dx.doi.org/10.1002/jmv.25689] [PMID: 31994742]
[56]
Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol 2020; 146(1): 110-8.
[http://dx.doi.org/10.1016/j.jaci.2020.04.006] [PMID: 32294485]
[57]
Bai Y, Yao L, Wei T, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA 2020; 323(14): 1406-7.
[http://dx.doi.org/10.1001/jama.2020.2565] [PMID: 32083643]
[58]
Wang J, Qi H, Bao L, Li F, Shi Y. National Clinical Research Center for Child Health and Disorders and Pediatric Committee of Medical Association of Chinese People’s Liberation Army. A contingency plan for the management of the 2019 novel coronavirus outbreak in neonatal intensive care units. Lancet Child Adolesc Health 2020; 4(4): 258-9.
[http://dx.doi.org/10.1016/S2352-4642(20)30040-7] [PMID: 32043976]
[59]
Taneja V. Sex hormones determine immune response. Front Immunol 2018; 9: 1931.
[http://dx.doi.org/10.3389/fimmu.2018.01931] [PMID: 30210492]
[60]
Kovacs EJ, Messingham KA. Influence of alcohol and gender on immune response. Alcohol Res Health 2002; 26(4): 257-63.
[PMID: 12875035]
[61]
Gubbels Bupp MR, Potluri T, Fink AL, Klein SL. The confluence of sex hormones and aging on immunity. Front Immunol 2018; 9: 1269.
[http://dx.doi.org/10.3389/fimmu.2018.01269] [PMID: 29915601]
[62]
Fan H, Dong G, Zhao G, et al. Gender differences of B cell signature in healthy subjects underlie disparities in incidence and course of SLE related to estrogen. Journal of immunology research 2014.
[http://dx.doi.org/10.1155/2014/814598]
[63]
Bansal M. Cardiovascular disease and COVID-19. Diabetes Metab Syndr 2020; 14(3): 247-50.
[http://dx.doi.org/10.1016/j.dsx.2020.03.013] [PMID: 32247212]
[64]
Li B, Yang J, Zhao F, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol 2020; 109(5): 531-8.
[http://dx.doi.org/10.1007/s00392-020-01626-9] [PMID: 32161990]
[65]
Arentz M, Yim E, Klaff L, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA 2020; 323(16): 1612-4.
[http://dx.doi.org/10.1001/jama.2020.4326] [PMID: 32191259]
[66]
Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-2019 infection. Clin Chem Lab Med 2020; 58(7): 1131-4.
[http://dx.doi.org/10.1515/cclm-2020-0198] [PMID: 32119647]
[67]
Tang B, Li S, Xiong Y, et al. Coronavirus Disease 2019 (COVID-19) Pneumonia in a Hemodialysis Patient. Kidney Medicine 2020; 99(27)e20956
[68]
Newman KL, Lynch RJ, Adams AB, Zhang R, Pastan SO, Patzer RE. Hospitalization among individuals waitlisted for kidney transplant. Transplantation 2017; 101(12): 2913-23.
[http://dx.doi.org/10.1097/TP.0000000000001839] [PMID: 28590946]
[69]
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8(4): 420-2.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[70]
Tang B, Li S, Xiong Y, et al. Coronavirus Disease 2019 (COVID- 19) Pneumonia in a Hemodialysis Patient. Kidney Med 2020; 99(27)..
[http://dx.doi.org/10.1016/j.xkme.2020.03.001]
[71]
Meisner M, Lohs T, Huettemann E, Schmidt J, Hueller M, Reinhart K. The plasma elimination rate and urinary secretion of procalcitonin in patients with normal and impaired renal function. Eur J Anaesthesiol 2001; 18(2): 79-87.
[http://dx.doi.org/10.1097/00003643-200102000-00004] [PMID: 11270029]
[72]
Erić Ž. Proinflammatory cytokines in a newborn: a literature review. Signa Vitae-A Journal In Intensive Care And Emergency Medicine 2019; 13(Suppl. 4): 10-3.
[73]
Zeng H, Xu C, Fan J, et al. Antibodies in infants born to mothers with COVID-19 pneumonia. JAMA 2020; 323(18): 1848-9.
[http://dx.doi.org/10.1001/jama.2020.4861] [PMID: 32215589]
[74]
Yu N, Li W, Kang Q, et al. Clinical features and obstetric and neonatal outcomes of pregnant patients with COVID-19 in Wuhan, China: a retrospective, single-centre, descriptive study. Lancet Infect Dis 2020; 20(5): 559-64.
[http://dx.doi.org/10.1016/S1473-3099(20)30176-6] [PMID: 32220284]
[75]
Liu H, Wang L-L, Zhao S-J, Kwak-Kim J, Mor G, Liao A-H. Why are pregnant women susceptible to COVID-19? An immunological viewpoint. J Reprod Immunol 2020; 139.
[http://dx.doi.org/10.1016/j.jri.2020.103122] [PMID: 32244166]
[76]
Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 2020; 395(10226): 809-15.
[http://dx.doi.org/10.1016/S0140-6736(20)30360-3] [PMID: 32151335]
[77]
Baldwin R, Weder di Mauro B. Economics in the Time of COVID-19. CEPR. Available at:. https://voxeu.org/debates/economics-time-covid-19
[78]
Galanakis CM. The Food Systems in the Era of the Coronavirus (COVID-19) Pandemic Crisis. Foods 2020; 9(4): 523.
[http://dx.doi.org/10.3390/foods9040523] [PMID: 32331259]
[79]
Wang J, Zhou M, Liu F. Reasons for healthcare workers becoming infected with novel coronavirus disease 2019 (COVID-19) in China. J Hosp Infect 2020; 105(1): 100-1.
[http://dx.doi.org/10.1016/j.jhin.2020.03.002] [PMID: 32147406]
[80]
Fernandes N. .Economic effects of coronavirus outbreak (COVID- 19) on the world economy. 2020. Available at:. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3557504
[81]
Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020; 323(13): 1239-42.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[82]
Tiberi M, Piepoli MF. Regular physical activity only associated with low sedentary time increases survival in post myocardial infarction patient. .England: SAGE Publications Sage UK: London 2019..
[http://dx.doi.org/10.1177/2047487318811180]
[83]
Cheng W, Zhang Z, Cheng W, Yang C, Diao L, Liu W. Associations of leisure-time physical activity with cardiovascular mortality: A systematic review and meta-analysis of 44 prospective cohort studies. Eur J Prev Cardiol 2018; 25(17): 1864-72.
[http://dx.doi.org/10.1177/2047487318795194] [PMID: 30157685]
[84]
Guan WJ, Ni ZY, Hu Y, et al. China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[85]
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579(7798): 265-9.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[86]
Miller S, Chiu C, Rodino KG, Miller MB. Point-Counterpoint: Should We Be Performing Metagenomic Next-Generation Sequencing for Infectious Disease Diagnosis in the Clinical Laboratory? J Clin Microbiol 2020; 58(3): 58.
[PMID: 31619533]
[87]
Control CfD, Prevention. CDC 2019-Novel Coronavirus (2019 nCoV) Real-Time RT-PCR Diagnostic Panel. 2020. Available at:. https://www.fda.gov/media/134919/download
[88]
Freeman WM, Walker SJ, Vrana KE. Quantitative RT-PCR: pitfalls and potential. Biotechniques 1999; 26(1): 112-122, 124-125.
[http://dx.doi.org/10.2144/99261rv01] [PMID: 9894600]
[89]
Kageyama T, Kojima S, Shinohara M, et al. Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. J Clin Microbiol 2003; 41(4): 1548-57.
[http://dx.doi.org/10.1128/JCM.41.4.1548-1557.2003] [PMID: 12682144]
[90]
Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill 2020; 25(3): 1560-7917.
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.3.2000045] [PMID: 31992387]
[91]
Wong ML, Medrano JF. Real-time PCR for mRNA quantitation. Biotechniques 2005; 39(1): 75-85.
[http://dx.doi.org/10.2144/05391RV01] [PMID: 16060372]
[92]
Bustin S. AZ of Quantitative PCR. San Diego, CA: International University Line 2004.
[93]
Yang W, Yan F. Patients with RT-PCR-confirmed COVID-19 and Normal Chest CT. Radiology 2020; 295(2)
[http://dx.doi.org/10.1148/radiol.2020200702] [PMID: 32142398]
[94]
Asif M, Ajmal M, Ashraf G, et al. The role of biosensors in COVID-19 outbreak. Current Opinion in Electrochemistry 2020.
[95]
Lee EYP, Ng M-Y, Khong P-L. COVID-19 pneumonia: what has CT taught us? Lancet Infect Dis 2020; 20(4): 384-5.
[http://dx.doi.org/10.1016/S1473-3099(20)30134-1] [PMID: 32105641]
[96]
Bernheim A, Mei X, Huang M, et al. Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology 2020; 295(3)
[http://dx.doi.org/10.1148/radiol.2020200463] [PMID: 32077789]
[97]
Pan F, Ye T, Sun P, et al. Time Course of Lung Changes On Chest CT During Recovery From 2019 Novel Coronavirus (COVID-19) Pneumonia. Radiology 2020; 13.
[98]
Kobayashi Y, Mitsudomi T. Management of ground-glass opacities: should all pulmonary lesions with ground-glass opacity be surgically resected? Transl Lung Cancer Res 2013; 2(5): 354-63.
[PMID: 25806254]
[99]
Fang Y, Zhang H, Xie J, et al. Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiology 2020; 296(2): E115-7.
[http://dx.doi.org/10.1148/radiol.2020200432] [PMID: 32073353]
[100]
Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for Typical 2019-nCoV Pneumonia: Relationship to Negative RT-PCR Testing. Radiology 2020; 296(2)
[101]
Yu L, Wu S, Hao X, et al. Rapid Detection of COVID-19 Coronavirus Using a Reverse Transcriptional Loop-Mediated Isothermal Amplification (RT-LAMP) Diagnostic Platform. Clinical Chemistry 2020.
[102]
Seo G, Lee G, Kim MJ, et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano 2020; 14(4): 5135-42.
[http://dx.doi.org/10.1021/acsnano.0c02823] [PMID: 32293168]
[103]
Asif M, Aziz A, Wang H, et al. Superlattice stacking by hybridizing layered double hydroxide nanosheets with layers of reduced graphene oxide for electrochemical simultaneous determination of dopamine, uric acid and ascorbic acid. Mikrochim Acta 2019; 186(2): 61.
[http://dx.doi.org/10.1007/s00604-018-3158-y] [PMID: 30627779]
[104]
Asif M, Aziz A, Wang Z, et al. Hierarchical CNTs@CuMn Layered Double Hydroxide Nanohybrid with Enhanced Electrochemical Performance in H2S Detection from Live Cells. Anal Chem 2019; 91(6): 3912-20.
[http://dx.doi.org/10.1021/acs.analchem.8b04685] [PMID: 30761890]
[105]
Qiu G, Gai Z, Tao Y, Schmitt J, Kullak-Ublick GA, Wang J. Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection. ACS Nano 2020; 14(5): 5268-77.
[http://dx.doi.org/10.1021/acsnano.0c02439] [PMID: 32281785]
[106]
Mahari S, Roberts A, Shahdeo D, Gandhi S. eCovSens-Ultrasensitive Novel In-House Built Printed Circuit Board Based Electrochemical Device for Rapid Detection of nCovid-19. bioRxiv 2020.
[107]
Wang Y, Fan G, Salam A, et al. Comparative effectiveness of combined favipiravir and oseltamivir therapy versus oseltamivir monotherapy in critically ill patients with influenza virus infection. J Infect Dis 2020; 221(10): 1688-98.
[http://dx.doi.org/10.1093/infdis/jiz656] [PMID: 31822885]
[108]
Jean S-S, Lee P-I, Hsueh P-R. Treatment options for COVID-19: The reality and challenges. J Microbiol Immunol Infect 2020; 53(3): 436-43.
[http://dx.doi.org/10.1016/j.jmii.2020.03.034] [PMID: 32307245]
[109]
Hoque MN, Chaudhury A, Akanda MAM, Hossain MA, Islam MT. Genomic Diversity and Evolution, Diagnosis, Prevention, and Therapeutics of the Pandemic COVID-19 Disease..
[110]
Haagmans BL, Kuiken T, Martina BE, et al. Pegylated interferon-α protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat Med 2004; 10(3): 290-3.
[http://dx.doi.org/10.1038/nm1001] [PMID: 14981511]
[111]
Ströher U, DiCaro A, Li Y, et al. Severe acute respiratory syndrome-related coronavirus is inhibited by interferon- α. J Infect Dis 2004; 189(7): 1164-7.
[http://dx.doi.org/10.1086/382597] [PMID: 15031783]
[112]
Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 2020; 19(3): 149-50.
[113]
Agostini ML, Andres EL, Sims AC, et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio 2018; 9(2): e00221-18.
[http://dx.doi.org/10.1128/mBio.00221-18] [PMID: 29511076]
[114]
Falzarano D, de Wit E, Rasmussen AL, et al. Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques. Nat Med 2013; 19(10): 1313-7.
[http://dx.doi.org/10.1038/nm.3362] [PMID: 24013700]
[115]
Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 2017; 9(396): 9.
[http://dx.doi.org/10.1126/scitranslmed.aal3653] [PMID: 28659436]
[116]
Martinez MA. Compounds with therapeutic potential against novel respiratory 2019 coronavirus. Antimicrob Agents Chemother 2020; 64(5): 64.
[http://dx.doi.org/10.1128/AAC.00399-20] [PMID: 32152082]
[117]
Ko W-C, Rolain J-M, Lee N-Y, et al. Arguments in favour of remdesivir for treating SARS-CoV-2 infections. Int J Antimicrob Agents 2020; 55(4)
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105933] [PMID: 32147516]
[118]
de Wit E, Feldmann F, Cronin J, et al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci USA 2020; 117(12): 6771-6.
[http://dx.doi.org/10.1073/pnas.1922083117] [PMID: 32054787]
[119]
Chan JF-W, Yao Y, Yeung M-L, et al. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J Infect Dis 2015; 212(12): 1904-13.
[http://dx.doi.org/10.1093/infdis/jiv392] [PMID: 26198719]
[120]
Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N Engl J Med 2020; 382(19): 1787-99.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[121]
Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020; 11(1): 222.
[http://dx.doi.org/10.1038/s41467-019-13940-6] [PMID: 31924756]
[122]
Jones BM, Ma ES, Peiris JS, et al. Prolonged disturbances of in vitro cytokine production in patients with severe acute respiratory syndrome (SARS) treated with ribavirin and steroids. Clin Exp Immunol 2004; 135(3): 467-73.
[http://dx.doi.org/10.1111/j.1365-2249.2003.02391.x] [PMID: 15008980]
[123]
Peiris JS, Lai ST, Poon LL, et al. SARS study group. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 2003; 361(9366): 1319-25.
[http://dx.doi.org/10.1016/S0140-6736(03)13077-2] [PMID: 12711465]
[124]
Arabi YM, Mandourah Y, Al-Hameed F, et al. Saudi Critical Care Trial Group. Corticosteroid therapy for critically ill patients with Middle East respiratory syndrome. Am J Respir Crit Care Med 2018; 197(6): 757-67.
[http://dx.doi.org/10.1164/rccm.201706-1172OC] [PMID: 29161116]
[125]
Wang Z, Chen X, Lu Y, Chen F, Zhang W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Biosci Trends 2020; 14(1): 64-8.
[http://dx.doi.org/10.5582/bst.2020.01030] [PMID: 32037389]
[126]
Zhang J, Zhou L, Yang Y, Peng W, Wang W, Chen X. Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics. Lancet Respir Med 2020; 8(3): e11-2.
[http://dx.doi.org/10.1016/S2213-2600(20)30071-0] [PMID: 32061335]
[127]
Xu X-W, Wu X-X, Jiang X-G, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov- 2) outside of Wuhan. China: retrospective case series 2020; 368..
[128]
Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care 2020; 57: 279-83.
[http://dx.doi.org/10.1016/j.jcrc.2020.03.005] [PMID: 32173110]
[129]
Kono M, Tatsumi K, Imai AM, Saito K, Kuriyama T, Shirasawa H. Inhibition of human coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: involvement of p38 MAPK and ERK. Antiviral Res 2008; 77(2): 150-2.
[http://dx.doi.org/10.1016/j.antiviral.2007.10.011] [PMID: 18055026]
[130]
Sahraei Z, Shabani M, Shokouhi S, Saffaei A. Aminoquinolines against coronavirus disease 2019 (COVID-19): chloroquine or hydroxychloroquine. Int J Antimicrob Agents 2020; 55(4)
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105945] [PMID: 32194152]
[131]
Brañas P, Villa J, Viedma E, Mingorance J, Orellana MA, Chaves F. Molecular epidemiology of carbapenemase-producing Klebsiella pneumoniae in a hospital in Madrid: Successful establishment of an OXA-48 ST11 clone. Int J Antimicrob Agents 2015; 46(1): 111-6.
[http://dx.doi.org/10.1016/j.ijantimicag.2015.02.019] [PMID: 25914088]
[132]
Colson P, Rolain J-M, Lagier J-C, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents 2020; 55(4)
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105932] [PMID: 32145363]
[133]
Gautret P, Lagier J-C, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1)
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[134]
Singh AK, Singh A, Shaikh A, Singh R, Misra A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab Syndr 2020; 14(3): 241-6.
[http://dx.doi.org/10.1016/j.dsx.2020.03.011] [PMID: 32247211]
[135]
Retallack H, Di Lullo E, Arias C, et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Natl Acad Sci USA 2016; 113(50): 14408-13.
[http://dx.doi.org/10.1073/pnas.1618029113] [PMID: 27911847]
[136]
Bacharier LB, Guilbert TW, Mauger DT, et al. Early administration of azithromycin and prevention of severe lower respiratory tract illnesses in preschool children with a history of such illnesses: a randomized clinical trial. JAMA 2015; 314(19): 2034-44.
[http://dx.doi.org/10.1001/jama.2015.13896] [PMID: 26575060]
[137]
Colson P, Rolain J-M, Raoult D. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int J Antimicrob Agents 2020; 55(3)
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105923] [PMID: 32070753]
[138]
Fantini J, Di Scala C, Chahinian H, Yahi N. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int J Antimicrob Agents 2020; 55(5)
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105960] [PMID: 32251731]
[139]
Oldenburg CE, Doan T. Azithromycin for severe COVID-19. Lancet 2020; 396(10256): 936-7.
[http://dx.doi.org/10.1016/S0140-6736(20)31863-8] [PMID: 32896293]
[140]
Hammer Q, Rückert T, Romagnani C. Natural killer cell specificity for viral infections. Nat Immunol 2018; 19(8): 800-8.
[http://dx.doi.org/10.1038/s41590-018-0163-6] [PMID: 30026479]
[141]
National Research Project for SARS BG. The involvement of natural killer cells in the pathogenesis of severe acute respiratory syndrome. Am J Clin Pathol 2004; 121(4): 507-11.
[http://dx.doi.org/10.1309/WPK7Y2XKNF4CBF3R] [PMID: 15080302]
[142]
Li H, Liu S-M, Yu X-H, Tang S-L, Tang C-K. Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int J Antimicrob Agents 2020; 55(5)
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105951] [PMID: 32234466]
[143]
Ortiz LA, Dutreil M, Fattman C, et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA 2007; 104(26): 11002-7.
[http://dx.doi.org/10.1073/pnas.0704421104] [PMID: 17569781]
[144]
Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 2007; 179(3): 1855-63.
[http://dx.doi.org/10.4049/jimmunol.179.3.1855] [PMID: 17641052]
[145]
Moodley Y, Atienza D, Manuelpillai U, et al. Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. Am J Pathol 2009; 175(1): 303-13.
[http://dx.doi.org/10.2353/ajpath.2009.080629] [PMID: 19497992]
[146]
Matthay MA, Goolaerts A, Howard JP, Lee JW. Mesenchymal stem cells for acute lung injury: preclinical evidence. Crit Care Med 2010; 38(10)(Suppl.): S569-73.
[http://dx.doi.org/10.1097/CCM.0b013e3181f1ff1d] [PMID: 21164399]
[147]
Luke TC, Kilbane EM, Jackson JL, Hoffman SL. Meta-analysis: convalescent blood products for Spanish influenza pneumonia: a future H5N1 treatment? Ann Intern Med 2006; 145(8): 599-609.
[http://dx.doi.org/10.7326/0003-4819-145-8-200610170-00139] [PMID: 16940336]
[148]
Hung IFN, To KKW, Lee C-K, et al. Hyperimmune IV immunoglobulin treatment: a multicenter double-blind randomized controlled trial for patients with severe 2009 influenza A(H1N1) infection. Chest 2013; 144(2): 464-73.
[http://dx.doi.org/10.1378/chest.12-2907] [PMID: 23450336]
[149]
Piao W, Shirey KA, Ru LW, et al. A decoy peptide that disrupts TIRAP recruitment to TLRs is protective in a murine model of influenza. Cell Rep 2015; 11(12): 1941-52.
[http://dx.doi.org/10.1016/j.celrep.2015.05.035] [PMID: 26095366]
[150]
Karthik L, Kumar G, Keswani T, Bhattacharyya A, Chandar SS, Bhaskara Rao KV. Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PLoS One 2014; 9(3)
[http://dx.doi.org/10.1371/journal.pone.0090972] [PMID: 24618707]
[151]
Hoever G, Baltina L, Michaelis M, et al. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J Med Chem 2005; 48(4): 1256-9.
[http://dx.doi.org/10.1021/jm0493008] [PMID: 15715493]
[152]
LU H. HUO N, WANG G, LI H, NIE L, XU X Clinical Observation of Therapeutic Effect of Compound Glycyrrhizin on SARS. China Pharmacy 2003; p. 10.
[153]
Chen H, Du Q. Potential natural compounds for preventing 2019-nCoV infection. Preprints 2020; 2020(1)..
[154]
Chen L, Li J, Luo C, et al. Binding interaction of quercetin-3-β-galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): structure-activity relationship studies reveal salient pharmacophore features. Bioorg Med Chem 2006; 14(24): 8295-306.
[http://dx.doi.org/10.1016/j.bmc.2006.09.014] [PMID: 17046271]
[155]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[156]
Li X, Hu C, Su F, Dai J. Hypokalemia and clinical implications in patients with coronavirus disease. 2019.(COVID-19). medRxiv 2020. In press.
[157]
Corrales-Medina VF, Alvarez KN, Weissfeld LA, et al. Association between hospitalization for pneumonia and subsequent risk of cardiovascular disease. JAMA 2015; 313(3): 264-74.
[http://dx.doi.org/10.1001/jama.2014.18229] [PMID: 25602997]
[158]
Wu Q, Zhou L, Sun X, et al. Altered lipid metabolism in recovered sars patients twelve years after infection. Sci Rep 2017; 7(1): 9110.
[http://dx.doi.org/10.1038/s41598-017-09536-z] [PMID: 28831119]
[159]
Lamers MM, Beumer J, van der Vaart J, et al. SARS-CoV-2 productively infects human gut enterocytes. Science 2020; 369(6499): 50-4.
[http://dx.doi.org/10.1126/science.abc1669] [PMID: 32358202]
[160]
Chai X, Hu L, Zhang Y, et al. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. bioRxiv 2020 In press
[161]
Li Z, Wu M, Yao J, et al. Caution on kidney dysfunctions of COVID-19 patients. MedRxiv 2020 In press
[162]
Fan C, Li K, Ding Y, Lu WL, Wang J. ACE2 expression in kidney and testis may cause kidney and testis damage after 2019-nCoV infection. medRxiv 2020. In press..
[163]
Organization WH. DRAFT landscape of COVID-19 candidate vaccines Available at: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
[164]
Gao Q, Bao L, Mao H, et al. Rapid development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020.
[http://dx.doi.org/10.1126/science.abc1932]
[165]
Zhu F-C, Guan X-H, Li Y-H, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2020; 396(10249): 479-88.
[http://dx.doi.org/10.1016/S0140-6736(20)31605-6] [PMID: 32702299]
[166]
Folegatti PM, Ewer KJ, Aley PK, et al. Oxford COVID Vaccine Trial Group. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020; 396(10249): 467-78.
[http://dx.doi.org/10.1016/S0140-6736(20)31604-4] [PMID: 32702298]
[167]
Lin S-R, Ke M-Y, Luo J-Y, et al. A randomized, double-blind, placebo-controlled trial assessing the efficacy and safety of tegaserod in patients from China with chronic constipation. World J Gastroenterol 2007; 13(5): 732-9.
[http://dx.doi.org/10.3748/wjg.v13.i5.732] [PMID: 17278196]
[168]
Kaur SP, Gupta V. COVID-19 Vaccine: A comprehensive status report. Virus Res 2020; 288.
[http://dx.doi.org/10.1016/j.virusres.2020.198114] [PMID: 32800805]
[169]
Guebre-Xabier M, Patel N, Tian JH, et al. NVX-CoV2373 vaccine protects cynomolgus macaque upper and lower airways against SARS-CoV-2 challenge. Vaccine 2020; 38(50): 7892-6.
[http://dx.doi.org/10.1016/j.vaccine.2020.10.064] [PMID: 33139139]
[170]
Sharpe HR, Gilbride C, Allen E, et al. The early landscape of COVID-19 vaccine development in the UK and rest of the world. Immunology 2020; 160(3 PMC7283842)
[171]
Anderson EJ, Rouphael NG, Widge AT, et al. mRNA-1273 Study Group. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N Engl J Med 2020; 383: 2427-38.
[http://dx.doi.org/10.1056/NEJMoa2028436] [PMID: 32991794]
[172]
Baviskar T, Raut D, Bhatt LK. Deciphering Vaccines for COVID-19: where do we stand today? Immunopharmacol Immunotoxicol 2020; 43(1): 8-21.
[http://dx.doi.org/10.1080/08923973.2020.1837867] [PMID: 33054486]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy