Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Mini-Review Article

Major Drugs Used in COVID-19 Treatment: Molecular Mechanisms, Validation and Current Progress in Trials

Author(s): Md. Asaduzzaman Khan*, Shad Bin Islam, Mejbah Uddin Rakib, Didarul Alam, Md. Munnaf Hossen, Mousumi Tania and Asaduzzaman Asad

Volume 3, Issue 2, 2022

Published on: 04 December, 2020

Article ID: e030821188723 Pages: 13

DOI: 10.2174/2666796701999201204122819

Price: $65

Abstract

Background: Currently, the present world is facing a new deadly challenge from a pandemic disease called COVID-19, which is caused by a coronavirus named SARS-CoV-2. To date, no drug or vaccine can treat COVID-19 completely, but some drugs have been used primarily, and they are in different stages of clinical trials. This review article discussed and compared those drugs which are running ahead in COVID-19 treatments.

Methods: We have explored PUBMED, SCOPUS, WEB OF SCIENCE, as well as press releases of WHO, NIH and FDA for articles related to COVID-19 and reviewed them.

Results: Drugs like favipiravir, remdesivir, lopinavir/ritonavir, hydroxychloroquine, azithromycin, ivermectin, corticosteroids and interferons have been found effective to some extent, and partially approved by FDA and WHO to treat COVID-19 at different levels. However, some of these drugs have been disapproved later, although clinical trials are going on. In parallel, plasma therapy has been found fruitful to some extent too, and a number of vaccine trials are going on.

Conclusions: This review article discussed the epidemiologic and mechanistic characteristics of SARS-CoV-2, and how drugs could act on this virus with the comparative discussion on progress and drawbacks of major drugs used till date, which might be beneficial for choosing therapies against COVID-19 in different countries.

Keywords: Antiviral drugs, Clinical trials, COVID-19, Molecular mechanisms, Pandemic, SARS-CoV-2.

Graphical Abstract

[1]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[2]
WHO. Coronavirus disease (COVID-19) pandemic https://www.who.int/emergencies/diseases/novel-coronavirus-2019
[3]
Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 2015; 1282: 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1] [PMID: 25720466]
[4]
Kin N, Miszczak F, Lin W, Gouilh MA, Vabret A. EPICOREM Consortium. Genomic Analysis of 15 Human Coronaviruses OC43 (HCoV-OC43s) Circulating in France from 2001 to 2013 Reveals a High Intra-Specific Diversity with New Recombinant Genotypes. Viruses 2015; 7(5): 2358-77.
[http://dx.doi.org/10.3390/v7052358] [PMID: 26008694]
[5]
de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 2016; 14(8): 523-34.
[http://dx.doi.org/10.1038/nrmicro.2016.81] [PMID: 27344959]
[6]
Khailany RA, Safdar M, Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene Rep 2020; 19: 100682.
[http://dx.doi.org/10.1016/j.genrep.2020.100682] [PMID: 32300673]
[7]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[8]
Gorbalenya AE, Baker SC, Baric RS, et al. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020; 5(4): 536-44.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[9]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[10]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[11]
Felsenstein S, Herbert JA, McNamara PS, Hedrich CM. COVID-19: Immunology and treatment options. Clin Immunol 2020; 215: 108448.
[http://dx.doi.org/10.1016/j.clim.2020.108448] [PMID: 32353634]
[12]
Kindler E, Thiel V, Weber F. Interaction of SARS and MERS Coronaviruses with the Antiviral Interferon Response. Adv Virus Res 2016; 96: 219-43.
[http://dx.doi.org/10.1016/bs.aivir.2016.08.006] [PMID: 27712625]
[13]
Hung IF, Lung KC, Tso EY, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet 2020; 395(10238): 1695-704.
[http://dx.doi.org/10.1016/S0140-6736(20)31042-4] [PMID: 32401715]
[14]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[15]
Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020; 323(18): 1824-36.
[http://dx.doi.org/10.1001/jama.2020.6019] [PMID: 32282022]
[16]
Andreani J, Le Bideau M, Duflot I, et al. in vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect. Microb Pathog 2020; 145
[http://dx.doi.org/10.1016/j.micpath.2020.104228] [PMID: 32344177]
[17]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[18]
Yin W, Mao C, Luan X, et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 2020; 368(6498): 1499-504.
[http://dx.doi.org/10.1126/science.abc1560] [PMID: 32358203]
[19]
Khambholja K, Asudani D. Potential repurposing of Favipiravir in COVID-19 outbreak based on current evidence. Travel Med Infect Dis 2020; 35: 101710.
[http://dx.doi.org/10.1016/j.tmaid.2020.101710] [PMID: 32360327]
[20]
Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res 2020; 178: 104787.
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[21]
Yousefi B, Valizadeh S, Ghaffari H, Vahedi A, Karbalaei M, Eslami M. A global treatments for coronaviruses including COVID-19. J Cell Physiol 2020; 235(12): 9133-42.
[http://dx.doi.org/10.1002/jcp.29785] [PMID: 32394467]
[22]
Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care 2020; 57: 279-83.
[http://dx.doi.org/10.1016/j.jcrc.2020.03.005] [PMID: 32173110]
[23]
Fantini J, Di Scala C, Chahinian H, Yahi N. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int J Antimicrob Agents 2020; 55(5): 105960.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105960] [PMID: 32251731]
[24]
Delvecchio R, Higa LM, Pezzuto P, et al. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models. Viruses 2016; 8(12): 322.
[http://dx.doi.org/10.3390/v8120322] [PMID: 27916837]
[25]
Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci USA 2004; 101(12): 4240-5.
[http://dx.doi.org/10.1073/pnas.0306446101] [PMID: 15010527]
[26]
Wang H, Yang P, Liu K, et al. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res 2008; 18(2): 290-301.
[http://dx.doi.org/10.1038/cr.2008.15] [PMID: 18227861]
[27]
Zhou D, Dai SM, Tong Q. COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J Antimicrob Chemother 2020; 75(7): 1667-70.
[http://dx.doi.org/10.1093/jac/dkaa114] [PMID: 32196083]
[28]
Chowdhury MS, Rathod J, Gernsheimer J. A Rapid Systematic Review of Clinical Trials Utilizing Chloroquine and Hydroxychloroquine as a Treatment for COVID-19. Acad Emerg Med 2020; 27(6): 493-504.
[http://dx.doi.org/10.1111/acem.14005] [PMID: 32359203]
[29]
[30]
[31]
FDA. FDA cautions against use of hydroxychloroquine or chloroquine for COVID-19 outside of the hospital setting or a clinical trial due to risk of heart rhythm problems 2020.https://www.fda.gov/drugs/drug-safety-and-availability/fda-cautions-against-use-hydroxychloroquine-or-chloroquine-covid-19-outside-hospital-setting-or
[32]
Damle B, Vourvahis M, Wang E, Leaney J, Corrigan B. Clinical Pharmacology Perspectives on the Antiviral Activity of Azithromycin and Use in COVID-19. Clin Pharmacol Ther 2020; 108(2): 201-11.
[http://dx.doi.org/10.1002/cpt.1857] [PMID: 32302411]
[33]
Pfizer NY. ZITHROMAX. Pfizer Biopharmaceuticals 2020.https://www.pfizer.com/products/product-detail/zithromax
[34]
Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1): 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[35]
Gautret P, Lagier JC, Parola P, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. Travel Med Infect Dis 2020; 34
[http://dx.doi.org/10.1016/j.tmaid.2020.101663] [PMID: 32289548]
[36]
Jean SS, Lee PI, Hsueh PR. Treatment options for COVID-19: The reality and challenges. J Microbiol Immunol Infect 2020; 53(3): 436-43.
[http://dx.doi.org/10.1016/j.jmii.2020.03.034] [PMID: 32307245]
[37]
Touret F, Gilles M, Barral K, et al. In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. Sci Rep 2020; 10(1): 13093.
[http://dx.doi.org/10.1038/s41598-020-70143-6] [PMID: 32753646]
[38]
Tyteca D, Van Der Smissen P, Mettlen M, et al. Azithromycin, a lysosomotropic antibiotic, has distinct effects on fluid-phase and receptor-mediated endocytosis, but does not impair phagocytosis in J774 macrophages. Exp Cell Res 2002; 281(1): 86-100.
[http://dx.doi.org/10.1006/excr.2002.5613] [PMID: 12441132]
[39]
Homolak J, Kodvanj I. Widely available lysosome targeting agents should be considered as potential therapy for COVID-19. Int J Antimicrob Agents 2020; 56(2): 106044.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106044] [PMID: 32522674]
[40]
Gielen V, Johnston SL, Edwards MR. Azithromycin induces anti-viral responses in bronchial epithelial cells. Eur Respir J 2010; 36(3): 646-54.
[http://dx.doi.org/10.1183/09031936.00095809] [PMID: 20150207]
[41]
Li C, Zu S, Deng Y-Q, et al. Azithromycin Protects against Zika virus Infection by Upregulating virus-induced Type I and III Interferon Responses. Antimicrob Agents Chemother 2019; 63: e00394-19.
[http://dx.doi.org/10.1128/AAC.00394-19] [PMID: 31527024]
[42]
Sandeep S, McGregor K. Energetics Based Modeling of Hydroxychloroquine and Azithromycin Binding to the SARS-CoV-2 Spike (S)Protein - ACE2 Complex. ChemRxiv 2020.
[http://dx.doi.org/10.26434/chemrxiv.12015792.v2]
[43]
Mercuro NJ, Yen CF, Shim DJ, et al. Risk of QT Interval Prolongation Associated With Use of Hydroxychloroquine With or Without Concomitant Azithromycin Among Hospitalized Patients Testing Positive for Coronavirus Disease 2019 (COVID-19). JAMA Cardiol 2020; 5(9): 1036-41.
[http://dx.doi.org/10.1001/jamacardio.2020.1834] [PMID: 32936252]
[44]
Saleh M, Gabriels J, Chang D, et al. Effect of Chloroquine, Hydroxychloroquine, and Azithromycin on the Corrected QT Interval in Patients With SARS-CoV-2 Infection. Circ Arrhythm Electrophysiol 2020; 13(6): e008662.
[http://dx.doi.org/10.1161/CIRCEP.120.008662] [PMID: 32347743]
[45]
Ramireddy A, Chugh H, Reinier K, et al. Experience With Hydroxychloroquine and Azithromycin in the Coronavirus Disease 2019 Pandemic: Implications for QT Interval Monitoring. J Am Heart Assoc 2020; 9(12): e017144.
[http://dx.doi.org/10.1161/JAHA.120.017144] [PMID: 32463348]
[46]
Jankelson L, Karam G, Becker ML, Chinitz LA, Tsai MC. QT prolongation, torsades de pointes, and sudden death with short courses of chloroquine or hydroxychloroquine as used in COVID-19: A systematic review. Heart Rhythm 2020; S1547-5271.
[47]
Chaccour C, Hammann F, Ramón-García S, Rabinovich NR. Ivermectin and COVID-19: Keeping Rigor in Times of Urgency. Am J Trop Med Hyg 2020; 102(6): 1156-7.
[http://dx.doi.org/10.4269/ajtmh.20-0271] [PMID: 32314704]
[48]
Sharun K, Dhama K, Patel SK, et al. Ivermectin, a new candidate therapeutic against SARS-CoV-2/COVID-19. Ann Clin Microbiol Antimicrob 2020; 19(1): 23.
[http://dx.doi.org/10.1186/s12941-020-00368-w] [PMID: 32473642]
[49]
Ménez C, Sutra JF, Prichard R, Lespine A. Relative neurotoxicity of ivermectin and moxidectin in Mdr1ab (-/-) mice and effects on mammalian GABA(A) channel activity. PLoS Negl Trop Dis 2012; 6(11): e1883.
[http://dx.doi.org/10.1371/journal.pntd.0001883] [PMID: 23133688]
[50]
FDA. FDA Letter to Stakeholders: Do Not Use Ivermectin Intended for Animals as Treatment for COVID-19 in Human. US Food   Drug Administration website 2020.https://www.fda.gov/animal-veterinary/product-safety-information/fda-letter-stakeholders- do-not-use-ivermectin-intended-animals-treatment-covid-19-humans
[51]
Siegel D, Hui HC, Doerffler E, et al. Discovery and Synthesis of a Phosphoramidate Prodrug of a Pyrrolo[2,1-f][triazin-4-amino] Adenine C-Nucleoside (GS-5734) for the Treatment of Ebola and Emerging Viruses. J Med Chem 2017; 60(5): 1648-61.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01594] [PMID: 28124907]
[52]
Warren TK, Jordan R, Lo MK, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 2016; 531(7594): 381-5.
[http://dx.doi.org/10.1038/nature17180] [PMID: 26934220]
[53]
Brown AJ, Won JJ, Graham RL, et al. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Res 2019; 169
[http://dx.doi.org/10.1016/j.antiviral.2019.104541] [PMID: 31233808]
[54]
de Wit E, Feldmann F, Cronin J, et al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci USA 2020; 117(12): 6771-6.
[http://dx.doi.org/10.1073/pnas.1922083117] [PMID: 32054787]
[55]
Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 2017; 9(396): eaal3653.
[http://dx.doi.org/10.1126/scitranslmed.aal3653] [PMID: 28659436]
[56]
Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020; 11(1): 222.
[http://dx.doi.org/10.1038/s41467-019-13940-6] [PMID: 31924756]
[57]
Morse JS, Lalonde T, Xu S, Liu WR. Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV. ChemBioChem 2020; 21(5): 730-8.
[http://dx.doi.org/10.1002/cbic.202000047] [PMID: 32022370]
[58]
Gordon CJ, Tchesnokov EP, Woolner E, et al. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J Biol Chem 2020; 295(20): 6785-97.
[http://dx.doi.org/10.1074/jbc.RA120.013679] [PMID: 32284326]
[59]
NIH. Antiviral remdesivir prevents disease progression in monkeys with COVID-19. National Institute of Health website 2020.https://www.nih.gov/news-events/news-releases/antiviral-remdesivirprevents-disease-progression-monkeys-covid-19
[60]
Beigel JH, Tomashek KM, Dodd LE. Remdesivir for the Treatment of Covid-19 - Preliminary Report. Reply. N Engl J Med 2020; 383(10): 994.
[http://dx.doi.org/10.1056/nejmc2022236] [PMID: 32649078]
[61]
Grein J, Ohmagari N, Shin D, et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med 2020; 382(24): 2327-36.
[http://dx.doi.org/10.1056/NEJMoa2007016] [PMID: 32275812]
[62]
Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med 2020; 382(19): 1787-99.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[63]
Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020; 395(10236): 1569-78.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[65]
Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF, Barnard DL. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res 2013; 100(2): 446-54.
[http://dx.doi.org/10.1016/j.antiviral.2013.09.015] [PMID: 24084488]
[66]
Sleeman K, Mishin VP, Deyde VM, Furuta Y, Klimov AI, Gubareva LV. In vitro antiviral activity of favipiravir (T-705) against drug-resistant influenza and 2009 A(H1N1) viruses. Antimicrob Agents Chemother 2010; 54(6): 2517-24.
[http://dx.doi.org/10.1128/AAC.01739-09] [PMID: 20350949]
[67]
Su S, Gu M, Liu D, et al. Epidemiology, Evolution, and Pathogenesis of H7N9 Influenza Viruses in Five Epidemic Waves since 2013 in China. Trends Microbiol 2017; 25(9): 713-28.
[http://dx.doi.org/10.1016/j.tim.2017.06.008] [PMID: 28734617]
[68]
Bai CQ, Mu JS, Kargbo D, et al. Clinical and Virological Characteristics of Ebola Virus Disease Patients Treated With Favipiravir (T-705)-Sierra Leone, 2014. Clin Infect Dis 2016; 63(10): 1288-94.
[http://dx.doi.org/10.1093/cid/ciw571] [PMID: 27553371]
[69]
Sissoko D, Laouenan C, Folkesson E, et al. JIKI Study Group. Experimental Treatment with Favipiravir for Ebola Virus Disease (the JIKI Trial): A Historically Controlled, Single-Arm Proof-of- Concept Trial in Guinea. PLoS Med 2016; 13(3): e1001967.
[http://dx.doi.org/10.1371/journal.pmed.1001967] [PMID: 26930627]
[70]
Cai Q, Yang M, Liu D, et al. Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study. Engineering (Beijing) 2020; 6(10): 1192-8.
[http://dx.doi.org/10.1016/j.eng.2020.03.007] [PMID: 32346491]
[71]
WHO. WHO R D Blueprint COVID-19: Informal consultation on the potential inclusion of Favipiravir in a clinical trial 2020.www.who.int/publications/i/item/who-r-d-blueprint-covid-19-informal-consultation-on-the-potential-inclusion-of-favipiravir-in-a-clinical-trial
[72]
Chen C, Huang J, Cheng Z, et al. Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial. medRxiv 2020.
[73]
Cvetkovic RS, Goa KL. Lopinavir/ritonavir: a review of its use in the management of HIV infection. Drugs 2003; 63(8): 769-802.
[http://dx.doi.org/10.2165/00003495-200363080-00004] [PMID: 12662125]
[74]
Croxtall JD, Perry CM. Lopinavir/Ritonavir: a review of its use in the management of HIV-1 infection. Drugs 2010; 70(14): 1885-915.
[http://dx.doi.org/10.2165/11204950-000000000-00000] [PMID: 20836579]
[75]
Nukoolkarn V, Lee VS, Malaisree M, Aruksakulwong O, Hannongbua S. Molecular dynamic simulations analysis of ritonavir and lopinavir as SARS-CoV 3CL(pro) inhibitors. J Theor Biol 2008; 254(4): 861-7.
[http://dx.doi.org/10.1016/j.jtbi.2008.07.030] [PMID: 18706430]
[76]
Chu CM, Cheng VC, Hung IF, et al. HKU/UCH SARS Study Group. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax 2004; 59(3): 252-6.
[http://dx.doi.org/10.1136/thorax.2003.012658] [PMID: 14985565]
[77]
Kim UJ, Won EJ, Kee SJ, Jung SI, Jang HC. Combination therapy with lopinavir/ritonavir, ribavirin and interferon-α for Middle East respiratory syndrome. Antivir Ther 2016; 21(5): 455-9.
[http://dx.doi.org/10.3851/IMP3002] [PMID: 26492219]
[78]
Park SY, Lee JS, Son JS, et al. Post-exposure prophylaxis for Middle East respiratory syndrome in healthcare workers. J Hosp Infect 2019; 101(1): 42-6.
[http://dx.doi.org/10.1016/j.jhin.2018.09.005] [PMID: 30240813]
[79]
Ye XT, Luo YL, Xia SC, et al. Clinical efficacy of lopinavir/ritonavir in the treatment of Coronavirus disease 2019. Eur Rev Med Pharmacol Sci 2020; 24(6): 3390-6.
[PMID: 32271456]
[80]
Young BE, Ong SWX, Kalimuddin S, et al. Singapore 2019 Novel Coronavirus Outbreak Research Team. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA 2020; 323(15): 1488-94.
[http://dx.doi.org/10.1001/jama.2020.3204] [PMID: 32125362]
[81]
WHO. WHO discontinues hydroxychloroquine and lopinavir/ritonavir treatment arms for COVID-19. 2020.https://www.who.int/news-room/detail/04-07-2020-who-discontinues-hydroxychloroquine-and-lopinavir-ritonavir-treatment-arms-for-covid-19
[82]
Becker DE. Basic and clinical pharmacology of glucocorticosteroids. Anesth Prog 2013; 60(1): 25-31.
[http://dx.doi.org/10.2344/0003-3006-60.1.25] [PMID: 23506281]
[83]
Adcock IM, Mumby S. Glucocorticoids. Handb Exp Pharmacol 2017; 237: 171-96.
[http://dx.doi.org/10.1007/164_2016_98] [PMID: 27864677]
[84]
Shang L, Zhao J, Hu Y, Du R, Cao B. On the use of corticosteroids for 2019-nCoV pneumonia. Lancet 2020; 395(10225): 683-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30361-5] [PMID: 32122468]
[85]
Fang X, Mei Q, Yang T, et al. Low-dose corticosteroid therapy does not delay viral clearance in patients with COVID-19. J Infect 2020; 81(1): 147-78.
[PMID: 32283153]
[86]
Zha L, Li S, Pan L, et al. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID-19). Med J Aust 2020; 212(9): 416-20.
[http://dx.doi.org/10.5694/mja2.50577] [PMID: 32266987]
[87]
Liu J, Zheng X, Huang Y, Shan H, Huang J. Successful use of methylprednisolone for treating severe COVID-19. J Allergy Clin Immunol 2020; S0091-6749.
[88]
WHO. WHO welcomes preliminary results about dexamethasone use in treating critically ill COVID-19 patients 2020.https://www.who.int/news-room/detail/16-06-2020-who-welcomes-preliminary-results-about-dexamethasone-use-in-treating- critically-ill-covid-19-patients
[89]
Ledford H. Coronavirus breakthrough: dexamethasone is first drug shown to save lives. Nature 2020; 582(7813): 469.
[http://dx.doi.org/10.1038/d41586-020-01824-5] [PMID: 32546811]
[90]
Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020; 395(10223): 473-5.
[http://dx.doi.org/10.1016/S0140-6736(20)30317-2] [PMID: 32043983]
[91]
Li H, Chen C, Hu F, et al. Impact of corticosteroid therapy on outcomes of persons with SARS-CoV-2, SARS-CoV, or MERS-CoV infection: a systematic review and meta-analysis. Leukemia 2020; 34(6): 1503-11.
[http://dx.doi.org/10.1038/s41375-020-0848-3] [PMID: 32372026]
[92]
Sichitiu J, Fakhouri F, Desseauve D. Antenatal corticosteroid therapy and COVID-19: Pathophysiological considerations. Acta Obstet Gynecol Scand 2020; 99(7): 952.
[http://dx.doi.org/10.1111/aogs.13887] [PMID: 32356302]
[93]
Tang C, Wang Y, Lv H, Guan Z, Gu J. Caution against corticosteroid-based COVID-19 treatment. Lancet 2020; 395(10239): 1759-60.
[http://dx.doi.org/10.1016/S0140-6736(20)30749-2] [PMID: 32464115]
[94]
Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev 2001; 14(4): 778-809.
[http://dx.doi.org/10.1128/CMR.14.4.778-809.2001] [PMID: 11585785]
[95]
Haagmans BL, Kuiken T, Martina BE, et al. Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat Med 2004; 10(3): 290-3.
[http://dx.doi.org/10.1038/nm1001] [PMID: 14981511]
[96]
Zhao Z, Zhang F, Xu M, et al. Description and clinical treatment of an early outbreak of severe acute respiratory syndrome (SARS) in Guangzhou, PR China. J Med Microbiol 2003; 52(Pt 8): 715-20.
[http://dx.doi.org/10.1099/jmm.0.05320-0] [PMID: 12867568]
[97]
Arabi YM, Shalhoub S, Mandourah Y, et al. Ribavirin and Interferon Therapy for Critically Ill Patients With Middle East Respiratory Syndrome: A Multicenter Observational Study. Clin Infect Dis 2020; 70(9): 1837-44.
[http://dx.doi.org/10.1093/cid/ciz544] [PMID: 31925415]
[98]
Omrani AS, Saad MM, Baig K, et al. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect Dis 2014; 14(11): 1090-5.
[http://dx.doi.org/10.1016/S1473-3099(14)70920-X] [PMID: 25278221]
[99]
Lokugamage KG, Hage A, de Vries M, et al. SARS-CoV-2 is sensitive to type I interferon pretreatment. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.03.07.982264] [PMID: 32511335]
[100]
Nile SH, Nile A, Qiu J, Li L, Jia X, Kai G. COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev 2020; 53: 66-70.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.002] [PMID: 32418715]
[101]
Zhou Q, Chen V, Shannon CP, et al. Interferon-α2b Treatment for COVID-19. Front Immunol 2020; 11: 1061.
[http://dx.doi.org/10.3389/fimmu.2020.01061] [PMID: 32574262]
[102]
Rojas M, Rodríguez Y, Monsalve DM, et al. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun Rev 2020; 19(7): 102554.
[http://dx.doi.org/10.1016/j.autrev.2020.102554] [PMID: 32380316]
[103]
Marano G, Vaglio S, Pupella S, et al. Convalescent plasma: new evidence for an old therapeutic tool? Blood Transfus 2016; 14(2): 152-7.
[PMID: 26674811]
[104]
Hung IF, To KK, Lee CK, et al. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin Infect Dis 2011; 52(4): 447-56.
[http://dx.doi.org/10.1093/cid/ciq106] [PMID: 21248066]
[105]
Garraud O, Heshmati F, Pozzetto B, et al. Plasma therapy against infectious pathogens, as of yesterday, today and tomorrow. Transfus Clin Biol 2016; 23(1): 39-44.
[http://dx.doi.org/10.1016/j.tracli.2015.12.003] [PMID: 26775794]
[106]
Ahn JY, Sohn Y, Lee SH, et al. Use of Convalescent Plasma Therapy in Two COVID-19 Patients with Acute Respiratory Distress Syndrome in Korea. J Korean Med Sci 2020; 35(14): e149.
[http://dx.doi.org/10.3346/jkms.2020.35.e149] [PMID: 32281317]
[107]
Shen C, Wang Z, Zhao F, et al. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA 2020; 323(16): 1582-9.
[http://dx.doi.org/10.1001/jama.2020.4783] [PMID: 32219428]
[108]
Li L, Zhang W, Hu Y, et al. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19: A Randomized Clinical Trial. JAMA 2020; 324(5): 460-70.
[http://dx.doi.org/10.1001/jama.2020.10044] [PMID: 32492084]
[109]
Joyner M, Wright RS, Fairweather D, et al. Early safety indicators of COVID-19 convalescent plasma in 5,000 patients. medRxiv 2020; 2020.05.12.20099879.
[http://dx.doi.org/10.1172/jci140200] [PMID: 32511566]
[110]
Craven J. COVID-19 vaccine tracker. Regulatory Affairs Professionals Society website 2020.https://www.raps.org/news-and-articles/news-articles/2020/3/covid-19-vaccine-tracker
[111]
Manohar P, Loh B, Nachimuthu R, Hua X, Welburn SC, Leptihn S. Secondary Bacterial Infections in Patients With Viral Pneumonia. Front Med (Lausanne) 2020; 7: 420.
[http://dx.doi.org/10.3389/fmed.2020.00420] [PMID: 32850912]
[112]
Pittet LA, Hall-Stoodley L, Rutkowski MR, Harmsen AG. Influenza virus infection decreases tracheal mucociliary velocity and clearance of Streptococcus pneumoniae. Am J Respir Cell Mol Biol 2010; 42(4): 450-60.
[http://dx.doi.org/10.1165/rcmb.2007-0417OC] [PMID: 19520922]
[113]
Nyangacha RM, Odongo D, Oyieke F, et al. Secondary bacterial infections and antibiotic resistance among tungiasis patients in Western, Kenya. PLoS Negl Trop Dis 2017; 11(9)
[http://dx.doi.org/10.1371/journal.pntd.0005901] [PMID: 28886013]
[114]
Handel A, Longini IM Jr, Antia R. Intervention strategies for an influenza pandemic taking into account secondary bacterial infections. Epidemics 2009; 1(3): 185-95.
[http://dx.doi.org/10.1016/j.epidem.2009.09.001] [PMID: 20161493]
[115]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[116]
Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020; 8(5): 475-81.
[http://dx.doi.org/10.1016/S2213-2600(20)30079-5] [PMID: 32105632]
[117]
Holshue ML, DeBolt C, Lindquist S, et al. Washington State 2019-nCoV Case Investigation Team. First Case of 2019 Novel Coronavirus in the United States. N Engl J Med 2020; 382(10): 929-36.
[http://dx.doi.org/10.1056/NEJMoa2001191] [PMID: 32004427]
[118]
Easom N, Moss P, Barlow G, et al. Sixty-eight consecutive patients assessed for COVID-19 infection: Experience from a UK Regional infectious diseases Unit. Influenza Other Respir Viruses 2020; 14(4): 374-9.
[http://dx.doi.org/10.1111/irv.12739] [PMID: 32223012]
[119]
Chong PY, Chui P, Ling AE, et al. Analysis of deaths during the severe acute respiratory syndrome (SARS) epidemic in Singapore: challenges in determining a SARS diagnosis. Arch Pathol Lab Med 2004; 128(2): 195-204.
[PMID: 14736283]
[120]
Lee N, Hui D, Wu A, et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 2003; 348(20): 1986-94.
[http://dx.doi.org/10.1056/NEJMoa030685] [PMID: 12682352]
[121]
Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020; 323(11): 1061-9.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[122]
Guan WJ, Ni ZY, Hu Y, et al. China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[123]
Wu J, Liu J, Zhao X, et al. Clinical Characteristics of Imported Cases of Coronavirus Disease 2019 (COVID-19) in Jiangsu Province: A Multicenter Descriptive Study. Clin Infect Dis 2020; 71(15): 706-12.
[http://dx.doi.org/10.1093/cid/ciaa199] [PMID: 32109279]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy