Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

阐明从淀粉样蛋白阴性的失忆轻度认知障碍发展为痴呆的危险因素

卷 17, 期 10, 2020

页: [893 - 903] 页: 11

弟呕挨: 10.2174/1567205017666201130094259

价格: $65

摘要

背景:淀粉样蛋白PET可以评估大脑中淀粉样β的状态,从而将真正的阿尔茨海默氏病与模仿阿尔茨海默氏病的疾病区分开来。已发现约15-20%的临床上可能患有阿尔茨海默氏病的患者在淀粉样蛋白PET上没有明显的阿尔茨海默氏病病理。然而,就临床进展而言,已经对该亚群进行了有限的研究。 目的:我们调查了可能影响淀粉样蛋白阴性轻度认知障碍(MCI)患者痴呆发展的危险因素。 方法:本研究是一项单机构,回顾性队列研究,研究对象为50岁以上患有淀粉样蛋白阴性的记忆删除MCI的患者,他们随访了36个月以上的Asan Medical Center记忆诊所。所有参与者均接受了脑磁共振成像(MRI),详细的神经心理学测试以及氟18 [F18] -florbetaben淀粉样蛋白PET。 结果:在随访期间,107例患者中有39例由记忆删除型MCI演变为痴呆。与静止组相比,进行中组的言语和视觉情景记忆功能和海马萎缩程度更为严重,尽管缺乏明显的阿尔茨海默氏病病理证据,但仍表现出阿尔茨海默氏病样模式。基于体素的核磁共振成像分析显示,进展的组双侧小脑皮层,右颞皮层和双侧岛状皮层的灰质体积减少。 结论:考虑到缺乏淀粉样蛋白病理学的证据,这些亚群的临床进展可能是由其他神经病理学引起的,例如TDP-43,tau异常或α突触核蛋白,它们导致独立于淀粉样蛋白驱动途径的神经变性。有必要进行进一步的前瞻性研究,纳入与阿尔茨海默氏症类似疾病的痴呆症的生物标志物。

关键词: 轻度认知障碍,淀粉样蛋白沉积,阿尔茨海默氏病,图像处理,疾病进展,神经心理测验,危险因素,小脑。

[1]
Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med 2004; 256(3): 183-94.
[http://dx.doi.org/10.1111/j.1365-2796.2004.01388.x ] [PMID: 15324362]
[2]
Petersen RC, Aisen P, Boeve BF, et al. Mild cognitive impairment due to Alzheimer disease in the community. Ann Neurol 2013; 74(2): 199-208.
[http://dx.doi.org/10.1002/ana.23931 ] [PMID: 23686697]
[3]
Arnáiz E, Almkvist O, Ivnik RJ, et al. Mild cognitive impairment: a cross-national comparison. J Neurol Neurosurg Psychiatry 2004; 75(9): 1275-80.
[http://dx.doi.org/10.1136/jnnp.2003.015032 ] [PMID: 15314114]
[4]
Tabert MH, Manly JJ, Liu X, et al. Neuropsychological prediction of conversion to Alzheimer disease in patients with mild cognitive impairment. Arch Gen Psychiatry 2006; 63(8): 916-24.
[http://dx.doi.org/10.1001/archpsyc.63.8.916 ] [PMID: 16894068]
[5]
Grundman M, Petersen RC, Ferris SH, et al. Alzheimer’s Disease Cooperative Study. Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch Neurol 2004; 61(1): 59-66.
[http://dx.doi.org/10.1001/archneur.61.1.59 ] [PMID: 14732621]
[6]
Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 2004; 256(3): 240-6.
[http://dx.doi.org/10.1111/j.1365-2796.2004.01380.x ] [PMID: 15324367]
[7]
Han JW, Kim TH, Lee SB, et al. Predictive validity and diagnostic stability of mild cognitive impairment subtypes Alzheimers Dement 2012; 8(6): 553-9.
[http://dx.doi.org/10.1016/j.jalz.2011.08.007] [PMID: 23102125]
[8]
Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999; 56(3): 303-8.
[http://dx.doi.org/10.1001/archneur.56.3.303] [PMID: 10190820]
[9]
Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, DeKosky ST. Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2001; 56(9): 1133-42.
[http://dx.doi.org/10.1212/WNL.56.9.1133] [PMID: 11342677]
[10]
Bischkopf J, Busse A, Angermeyer MC. Mild cognitive impairment--a review of prevalence, incidence and outcome according to current approaches. Acta Psychiatr Scand 2002; 106(6): 403-14.
[http://dx.doi.org/10.1034/j.1600-0447.2002.01417.x] [PMID: 12392483]
[11]
Petersen RC, Lopez O, Armstrong MJ, et al. Practice guideline update summary: Mild cognitive impairment: report of the guideline development, dissemination, and implementation subcommittee of the american academy of neurology. Neurology 2018; 90(3): 126-35.
[http://dx.doi.org/10.1212/WNL.0000000000004826] [PMID: 29282327]
[12]
Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992; 256(5054): 184-5.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[13]
Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 2011; 10(9): 698-712.
[http://dx.doi.org/10.1038/nrd3505] [PMID: 21852788]
[14]
Katzman R, Saitoh T. Advances in Alzheimer’s disease. FASEB J 1991; 5(3): 278-86.
[http://dx.doi.org/10.1096/fasebj.5.3.2001787] [PMID: 2001787]
[15]
Katzman R, Jackson JE. Alzheimer disease: basic and clinical advances. J Am Geriatr Soc 1991; 39(5): 516-25.
[http://dx.doi.org/10.1111/j.1532-5415.1991.tb02500.x] [PMID: 1673693]
[16]
Ong K, Villemagne VL, Bahar-Fuchs A, et al. (18)F-florbetaben Aβ imaging in mild cognitive impairment. Alzheimers Res Ther 2013; 5(1): 4.
[http://dx.doi.org/10.1186/alzrt158] [PMID: 23324163]
[17]
Sabri O, Seibyl J, Rowe C, Barthel H. Beta-amyloid imaging with florbetaben. Clin Transl Imaging 2015; 3(1): 13-26.
[http://dx.doi.org/10.1007/s40336-015-0102-6] [PMID: 25741488]
[18]
Bullich S, Seibyl J, Catafau AM, et al. Optimized classification of 18F-Florbetaben PET scans as positive and negative using an SUVR quantitative approach and comparison to visual assessment. Neuroimage Clin 2017; 15: 325-32.
[http://dx.doi.org/10.1016/j.nicl.2017.04.025] [PMID: 28560157]
[19]
Ossenkoppele R, Jansen WJ, Rabinovici GD, et al. Amyloid PET Study Group. Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. JAMA 2015; 313(19): 1939-49.
[http://dx.doi.org/10.1001/jama.2015.4669] [PMID: 25988463]
[20]
Pike KE, Savage G, Villemagne VL, et al. Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer’s disease. Brain 2007; 130(Pt 11): 2837-44.
[http://dx.doi.org/10.1093/brain/awm238] [PMID: 17928318]
[21]
Rowe CC, Ng S, Ackermann U, et al. Imaging beta-amyloid burden in aging and dementia. Neurology 2007; 68(20): 1718-25.
[http://dx.doi.org/10.1212/01.wnl.0000261919.22630.ea] [PMID: 17502554]
[22]
Wolk DA, Price JC, Saxton JA, et al. Amyloid imaging in mild cognitive impairment subtypes. Ann Neurol 2009; 65(5): 557-68.
[http://dx.doi.org/10.1002/ana.21598] [PMID: 19475670]
[23]
Jack CR Jr, Lowe VJ, Weigand SD, et al. Alzheimer’s Disease Neuroimaging Initiative. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain 2009; 132(Pt 5): 1355-65.
[http://dx.doi.org/10.1093/brain/awp062] [PMID: 19339253]
[24]
Landau SM, Horng A, Fero A, Jagust WJ. Alzheimer’s Disease Neuroimaging Initiative. Amyloid negativity in patients with clinically diagnosed Alzheimer disease and MCI. Neurology 2016; 86(15): 1377-85.
[http://dx.doi.org/10.1212/WNL.0000000000002576] [PMID: 26968515]
[25]
Maillard P, Seshadri S, Beiser A, et al. Effects of systolic blood pressure on white-matter integrity in young adults in the Framingham Heart Study: a cross-sectional study. Lancet Neurol 2012; 11(12): 1039-47.
[http://dx.doi.org/10.1016/S1474-4422(12)70241-7] [PMID: 23122892]
[26]
Petersen RC, Parisi JE, Dickson DW, et al. Neuropathologic features of amnestic mild cognitive impairment. Arch Neurol 2006; 63(5): 665-72.
[http://dx.doi.org/10.1001/archneur.63.5.665] [PMID: 16682536]
[27]
Bullich S, Villemagne VL, Catafau AM, et al. Optimal reference region to measure longitudinal amyloid-β change with 18F-florbetaben PET. J Nucl Med 2017; 58(8): 1300-6.
[http://dx.doi.org/10.2967/jnumed.116.187351] [PMID: 28183994]
[28]
Taki Y, Goto R, Evans A, et al. Voxel-based morphometry of human brain with age and cerebrovascular risk factors. Neurobiol Aging 2004; 25(4): 455-63.
[http://dx.doi.org/10.1016/j.neurobiolaging.2003.09.002] [PMID: 15013566]
[29]
Jack CR Jr, Petersen RC, Xu YC, et al. Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 1997; 49(3): 786-94.
[http://dx.doi.org/10.1212/WNL.49.3.786] [PMID: 9305341]
[30]
Kim GH, Kwon HJ, Go SA, Kim JE, Park KD, Choi KG, et al. T1-axial medial temporal atrophy visual rating: a comparable study with Schelten’s T1-coronal visual rating. Dement Neurocognitive Disord 2009; 8(1): 37-44.
[http://dx.doi.org/10.12779/dnd.2018.17.1.37]
[31]
Scheltens P, Launer LJ, Barkhof F, Weinstein HC, van Gool WA. Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability. J Neurol 1995; 242(9): 557-60.
[http://dx.doi.org/10.1007/BF00868807] [PMID: 8551316]
[32]
Kim JE, Park SH, Hong YJ, et al. Qualitative comparison of semantic memory impairment in patients with amnestic mild cognitive impairment based on β-amyloid status. J Clin Neurol 2019; 15(1): 27-37.
[http://dx.doi.org/10.3988/jcn.2019.15.1.27] [PMID: 30375759]
[33]
Tulving E. Multiple memory systems and consciousness. Hum Neurobiol 1987; 6(2): 67-80.
[PMID: 3305441]
[34]
Alzheimer’s A. Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 2016; 12(4): 459-509.
[http://dx.doi.org/10.1016/j.jalz.2016.03.001] [PMID: 27570871]
[35]
Jahn H. Memory loss in Alzheimer’s disease. Dialogues Clin Neurosci 2013; 15(4): 445-54.
[http://dx.doi.org/10.31887/DCNS.2013.15.4/hjahn] [PMID: 24459411]
[36]
Weller J, Budson A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000 Res 2018; 7: 7.
[http://dx.doi.org/10.12688/f1000research.14506.1] [PMID: 30135715]
[37]
Choi H, Kim JH, Lee CM, Kim JI. Features of semantic language impairment in patients with amnestic mild cognitive impairment. Dement Neurocognitive Disord 2013; 12(2): 33-40.
[http://dx.doi.org/10.12779/dnd.2013.12.2.33]
[38]
Daum I, Riesch G, Sartori G, Birbaumer N. Semantic memory impairment in Alzheimer’s disease. J Clin Exp Neuropsychol 1996; 18(5): 648-65.
[http://dx.doi.org/10.1080/01688639608408289] [PMID: 8941851]
[39]
Albert MS, Moss MB, Tanzi R, Jones K. Preclinical prediction of AD using neuropsychological tests. J Int Neuropsychol Soc 2001; 7(5): 631-9.
[http://dx.doi.org/10.1017/S1355617701755105] [PMID: 11459114]
[40]
Seo EH, Lee DY, Choo IH, et al. Performance on the Benton Visual Retention Test in an educationally diverse elderly population. J Gerontol B Psychol Sci Soc Sci 2007; 62(3): 191-3.
[http://dx.doi.org/10.1093/geronb/62.3.P191] [PMID: 17507588]
[41]
Coman E, Moses JA Jr, Kraemer HC, Friedman L, Benton AL, Yesavage J. Geriatric performance on the Benton Visual Retention Test: demographic and diagnostic considerations. Clin Neuropsychol 1999; 13(1): 66-77.
[http://dx.doi.org/10.1076/clin.13.1.66.1972] [PMID: 10937649]
[42]
Kawas CH, Corrada MM, Brookmeyer R, et al. Visual memory predicts Alzheimer’s disease more than a decade before diagnosis. Neurology 2003; 60(7): 1089-93.
[http://dx.doi.org/10.1212/01.WNL.0000055813.36504.BF] [PMID: 12682311]
[43]
Bird CM, Burgess N. The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci 2008; 9(3): 182-94.
[http://dx.doi.org/10.1038/nrn2335] [PMID: 18270514]
[44]
Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 1957; 20(1): 11-21.
[http://dx.doi.org/10.1136/jnnp.20.1.11] [PMID: 13406589]
[45]
Iachini I, Iavarone A, Senese VP, Ruotolo F, Ruggiero G. Visuospatial memory in healthy elderly, AD and MCI: a review. Curr Aging Sci 2009; 2(1): 43-59.
[http://dx.doi.org/10.2174/1874609810902010043] [PMID: 20021398]
[46]
Trojano L, Grossi D, Linden DE, et al. Coordinate and categorical judgements in spatial imagery. An fMRI study. Neuropsychologia 2002; 40(10): 1666-74.
[http://dx.doi.org/10.1016/S0028-3932(02)00021-0] [PMID: 11992655]
[47]
Trojano L, Conson M, Maffei R, Grossi D. Categorical and coordinate spatial processing in the imagery domain investigated by rTMS. Neuropsychologia 2006; 44(9): 1569-74.
[http://dx.doi.org/10.1016/j.neuropsychologia.2006.01.017] [PMID: 16529780]
[48]
Guo CC, Tan R, Hodges JR, Hu X, Sami S, Hornberger M. Network-selective vulnerability of the human cerebellum to Alzheimer’s disease and frontotemporal dementia. Brain 2016; 139(Pt 5): 1527-38.
[http://dx.doi.org/10.1093/brain/aww003] [PMID: 26912642]
[49]
Gellersen HM, Guo CC, O’Callaghan C, Tan RH, Sami S, Hornberger M. Cerebellar atrophy in neurodegeneration-a meta-analysis. J Neurol Neurosurg Psychiatry 2017; 88(9): 780-8.
[http://dx.doi.org/10.1136/jnnp-2017-315607] [PMID: 28501823]
[50]
Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci 2009; 32: 413-34.
[http://dx.doi.org/10.1146/annurev.neuro.31.060407.125606] [PMID: 19555291]
[51]
Toniolo S, Serra L, Olivito G, Marra C, Bozzali M, Cercignani M. Patterns of cerebellar gray matter atrophy across Alzheimer’s disease progression. Front Cell Neurosci 2018; 12: 430.
[http://dx.doi.org/10.3389/fncel.2018.00430] [PMID: 30515080]
[52]
Tanaka H, Harada M, Arai M, Hirata K. Cognitive dysfunction in cortical cerebellar atrophy correlates with impairment of the inhibitory system. Neuropsychobiology 2003; 47(4): 206-11.
[http://dx.doi.org/10.1159/000071216] [PMID: 12824744]
[53]
Chételat G, Ossenkoppele R, Villemagne VL, et al. Atrophy, hypometabolism and clinical trajectories in patients with amyloid-negative Alzheimer’s disease. Brain 2016; 139(Pt 9): 2528-39.
[http://dx.doi.org/10.1093/brain/aww159] [PMID: 27357349]
[54]
Ten Kate M, Barkhof F, Visser PJ, et al. Amyloid-independent atrophy patterns predict time to progression to dementia in mild cognitive impairment. Alzheimers Res Ther 2017; 9(1): 73.
[http://dx.doi.org/10.1186/s13195-017-0299-x] [PMID: 28899429]
[55]
Karas G, Sluimer J, Goekoop R, et al. Amnestic mild cognitive impairment: structural MR imaging findings predictive of conversion to Alzheimer disease. AJNR Am J Neuroradiol 2008; 29(5): 944-9.
[http://dx.doi.org/10.3174/ajnr.A0949] [PMID: 18296551]
[56]
Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 2009; 44(2): 489-501.
[http://dx.doi.org/10.1016/j.neuroimage.2008.08.039] [PMID: 18835452]
[57]
Guo W, Liu F, Zhang Z, et al. Increased cerebellar functional connectivity with the default-mode network in unaffected siblings of schizophrenia patients at rest. Schizophr Bull 2015; 41(6): 1317-25.
[http://dx.doi.org/10.1093/schbul/sbv062] [PMID: 25956897]
[58]
Guo W, Liu F, Liu J, et al. Increased cerebellar-default-mode-network connectivity in drug-naive major depressive disorder at rest. Medicine 2015; 94(9)e560
[http://dx.doi.org/10.1097/MD.0000000000000560] [PMID: 25738471]
[59]
Stoodley CJ. The cerebellum and cognition: evidence from functional imaging studies. Cerebellum 2012; 11(2): 352-65.
[http://dx.doi.org/10.1007/s12311-011-0260-7] [PMID: 21373864]
[60]
Jack CR Jr, Knopman DS, Chételat G, et al. Suspected non-Alzheimer disease pathophysiology--concept and controversy. Nat Rev Neurol 2016; 12(2): 117-24.
[http://dx.doi.org/10.1038/nrneurol.2015.251] [PMID: 26782335]
[61]
Dani M, Brooks DJ, Edison P. Suspected non-Alzheimer’s pathology - Is it non-Alzheimer’s or non-amyloid? Ageing Res Rev 2017; 36: 20-31.
[http://dx.doi.org/10.1016/j.arr.2017.02.003] [PMID: 28235659]
[62]
Chung JK, Plitman E, Nakajima S, et al. Alzheimer’s Disease Neuroimaging Initiative. Hippocampal and clinical trajectories of mild cognitive impairment with suspected non-Alzheimer’s disease pathology. J Alzheimers Dis 2017; 58(3): 747-62.
[http://dx.doi.org/10.3233/JAD-170201] [PMID: 28505977]
[63]
Jack CR Jr, Bennett DA, Blennow K, et al. Contributors. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14(4): 535-62.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[64]
Wennberg AM, Whitwell JL, Tosakulwong N, et al. The influence of tau, amyloid, alpha-synuclein, TDP-43, and vascular pathology in clinically normal elderly individuals. Neurobiol Aging 2019; 77: 26-36.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.01.008] [PMID: 30776649]
[65]
Mufson EJ, Binder L, Counts SE, et al. Mild cognitive impairment: pathology and mechanisms. Acta Neuropathol 2012; 123(1): 13-30.
[http://dx.doi.org/10.1007/s00401-011-0884-1] [PMID: 22101321]
[66]
Maass A, Lockhart SN, Harrison TM, et al. Entorhinal tau pathology, episodic memory decline, and neurodegeneration in aging. J Neurosci 2018; 38(3): 530-43.
[http://dx.doi.org/10.1523/JNEUROSCI.2028-17.2017] [PMID: 29192126]
[67]
Tanninen SE, Nouriziabari B, Morrissey MD, et al. Entorhinal tau pathology disrupts hippocampal-prefrontal oscillatory coupling during associative learning. Neurobiol Aging 2017; 58: 151-62.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.06.024] [PMID: 28735144]
[68]
Beach TG, Sue L, Scott S, et al. Hippocampal sclerosis dementia with tauopathy. Brain Pathol 2003; 13(3): 263-78.
[http://dx.doi.org/10.1111/j.1750-3639.2003.tb00027.x] [PMID: 12946017]
[69]
Zhang X, Sun B, Wang X, et al. Phosphorylated TDP-43 staging of primary age-related tauopathy. Neurosci Bull 2019; 35(2): 183-92.
[http://dx.doi.org/10.1007/s12264-018-0300-0] [PMID: 30382507]
[70]
Gregory JM, McDade K, Bak TH, et al. Executive, language and fluency dysfunction are markers of localised TDP-43 cerebral pathology in non-demented ALS. J Neurol Neurosurg Psychiatry 2020; 91(2): 149-57.
[http://dx.doi.org/10.1136/jnnp-2019-320807] [PMID: 31515300]
[71]
Nelson PT, Dickson DW, Trojanowski JQ, et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 2019; 142(6): 1503-27.
[http://dx.doi.org/10.1093/brain/awz099] [PMID: 31039256]
[72]
Rauramaa T, Pikkarainen M, Englund E, et al. TAR-DNA binding protein-43 and alterations in the hippocampus. J Neural Transm (Vienna) 2011; 118(5): 683-9.
[http://dx.doi.org/10.1007/s00702-010-0574-5] [PMID: 21210283]
[73]
Botha H, Mantyh WG, Murray ME, et al. FDG-PET in tau-negative amnestic dementia resembles that of autopsy-proven hippocampal sclerosis. Brain 2018; 141(4): 1201-17.
[http://dx.doi.org/10.1093/brain/awy049] [PMID: 29538658]
[74]
Probst A, Taylor KI, Tolnay M. Hippocampal sclerosis dementia: a reappraisal. Acta Neuropathol 2007; 114(4): 335-45.
[http://dx.doi.org/10.1007/s00401-007-0262-1] [PMID: 17639426]
[75]
Karas GB, Scheltens P, Rombouts SA, et al. Global and local gray matter loss in mild cognitive impairment and Alzheimer’s disease. Neuroimage 2004; 23(2): 708-16.
[http://dx.doi.org/10.1016/j.neuroimage.2004.07.006] [PMID: 15488420]
[76]
Davatzikos C. Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. Neuroimage 2004; 23(1): 17-20.
[http://dx.doi.org/10.1016/j.neuroimage.2004.05.010] [PMID: 15325347]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy