Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

General Research Article

轻度认知障碍中脑脊液脂联素水平与脑葡萄糖代谢的关联:一项初步研究

卷 17, 期 12, 2020

页: [1126 - 1132] 页: 7

弟呕挨: 10.2174/1567205017666201109150358

价格: $65

摘要

背景:脂联素与痴呆症,尤其是阿尔茨海默氏病的病理生理学有关。然而,脑脊液(CSF)脂联素水平与正电子发射断层扫描(PET)成像之间的关联仍不清楚。 目的:探讨失忆症轻度认知障碍(MCI)受试者中CSF脂联素水平是否与11C-匹兹堡化合物B(PiB)或18F-氟脱氧葡萄糖(FDG)摄取有关。 方法:对34例记忆MCI受试者进行PiB-PET,FDG-PET和CSF分析。使用Bio-Plex 200悬浮阵列系统测量CSF脂联素水平。参照小脑皮层,评估了额叶和颞顶叶和后扣带回的PET摄入量。增加的脑淀粉样蛋白负担定义为平均摄取值比率大于1.4。 Spearman的等级相关分析和多元回归模型用于检验CSF脂联素水平与PiB或FDG摄取之间的关联。 结果:平均年龄为76.3岁。男性为38.2%,女性为61.8%。在18名(52.9%)受试者中发现了很高的淀粉样蛋白负担。脑脊液脂联素水平与整体FDG摄取呈正相关(β= 0.45; 95%置信区间(CI),0.13至0.76,p <0.01),尤其在顶颞叶和后扣带回(β= 0.70; 95%CI,0.41)调整为年龄,性别,受教育年限,体重指数,血管危险因素,ApoEε4状态和所有健忘MCI受试者的PiB状态。 结论:脑脊液脂联素水平与皮层葡萄糖代谢有关,特别是在与内侧颞叶相关的特定区域,但与记忆性MCI受试者的脑淀粉样蛋白负荷无关。

关键词: 脂联素,脑脊液,11C-匹兹堡化合物B正电子发射断层显像,18F氟脱氧葡萄糖正电子发射断层显像,轻度认知障碍,初步研究。

[1]
Gauthier S, Reisberg B, Zaudig M, et al. International psychogeriatric association expert conference on mild cognitive impairment. Mild cognitive impairment. Lancet 2006; 367(9518): 1262-70.
[http://dx.doi.org/10.1016/S0140-6736(06)68542-5] [PMID: 16631882]
[2]
Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999; 56(3): 303-8.
[http://dx.doi.org/10.1001/archneur.56.3.303] [PMID: 10190820]
[3]
Daviglus ML, Plassman BL, Pirzada A, et al. Risk factors and preventive interventions for Alzheimer disease: state of the science. Arch Neurol 2011; 68(9): 1185-90.
[http://dx.doi.org/10.1001/archneurol.2011.100] [PMID: 21555601]
[4]
Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential for primary prevention of Alzheimer’s disease: An analysis of population-based data. Lancet Neurol 2014; 13(8): 788-94.
[http://dx.doi.org/10.1016/S1474-4422(14)70136-X] [PMID: 25030513]
[5]
Whitmer RA. Type 2 diabetes and risk of cognitive impairment and dementia. Curr Neurol Neurosci Rep 2007; 7(5): 373-80.
[http://dx.doi.org/10.1007/s11910-007-0058-7] [PMID: 17764626]
[6]
van Himbergen TM, Beiser AS, Ai M, et al. Biomarkers for insulin resistance and inflammation and the risk for all-cause dementia and Alzheimer disease: Results from the Framingham Heart Study. Arch Neurol 2012; 69(5): 594-600.
[http://dx.doi.org/10.1001/archneurol.2011.670] [PMID: 22213409]
[7]
Song J, Lee JE. Adiponectin as a new paradigm for approaching Alzheimer’s disease. Anat Cell Biol 2013; 46(4): 229-34.
[http://dx.doi.org/10.5115/acb.2013.46.4.229] [PMID: 24386594]
[8]
Bloemer J, Pinky PD, Govindarajulu M, et al. Role of adiponectin in central nervous system disorders. Neural Plast 2018; 20184593530
[http://dx.doi.org/10.1155/2018/4593530] [PMID: 30150999]
[9]
Forny-Germano L, De Felice FG, Vieira MNDN. The role of leptin and adiponectin in obesity-associated cognitive decline and Alzheimer’s disease. Front Neurosci 2019; 12: 1027.
[http://dx.doi.org/10.3389/fnins.2018.01027] [PMID: 30692905]
[10]
Kiliaan AJ, Arnoldussen IA, Gustafson DR. Adipokines: A link between obesity and dementia? Lancet Neurol 2014; 13(9): 913-23.
[http://dx.doi.org/10.1016/S1474-4422(14)70085-7] [PMID: 25142458]
[11]
Spranger J, Verma S, Göhring I, et al. Adiponectin does not cross the blood-brain barrier but modifies cytokine expression of brain endothelial cells. Diabetes 2006; 55(1): 141-7.
[http://dx.doi.org/10.2337/diabetes.55.01.06.db05-1077] [PMID: 16380487]
[12]
Letra L, Rodrigues T, Matafome P, Santana I, Seiça R. Adiponectin and sporadic Alzheimer’s disease: Clinical and molecular links. Front Neuroendocrinol 2019; 52: 1-11.
[http://dx.doi.org/10.1016/j.yfrne.2017.10.002] [PMID: 29038028]
[13]
Ng RC, Chan KH. Potential neuroprotective effects of adiponectin in Alzheimer’s disease. Int J Mol Sci 2017; 18(3): 592.
[http://dx.doi.org/10.3390/ijms18030592] [PMID: 28282917]
[14]
Yau SY, Li A, Hoo RL, et al. Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin. Proc Natl Acad Sci USA 2014; 111(44): 15810-5.
[http://dx.doi.org/10.1073/pnas.1415219111] [PMID: 25331877]
[15]
Zhang D, Wang X, Wang B, et al. Adiponectin regulates contextual fear extinction and intrinsic excitability of dentate gyrus granule neurons through AdipoR2 receptors. Mol Psychiatry 2017; 22(7): 1044-55.
[http://dx.doi.org/10.1038/mp.2016.58] [PMID: 27137743]
[16]
Une K, Takei YA, Tomita N, et al. Adiponectin in plasma and cerebrospinal fluid in MCI and Alzheimer’s disease. Eur J Neurol 2011; 18(7): 1006-9.
[http://dx.doi.org/10.1111/j.1468-1331.2010.03194.x] [PMID: 20727007]
[17]
Waragai M, Adame A, Trinh I, et al. Possible involvement of adiponectin, the anti-diabetes molecule, in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis 2016; 52(4): 1453-9.
[http://dx.doi.org/10.3233/JAD-151116] [PMID: 27079710]
[18]
Khemka VK, Bagchi D, Bandyopadhyay K, et al. Altered serum levels of adipokines and insulin in probable Alzheimer’s disease. J Alzheimers Dis 2014; 41(2): 525-33.
[http://dx.doi.org/10.3233/JAD-140006] [PMID: 24625795]
[19]
Teixeira AL, Diniz BS, Campos AC, et al. Decreased levels of circulating adiponectin in mild cognitive impairment and Alzheimer’s disease. Neuromolecular Med 2013; 15(1): 115-21.
[http://dx.doi.org/10.1007/s12017-012-8201-2] [PMID: 23055000]
[20]
Ma J, Zhang W, Wang HF, et al. Peripheral blood adipokines and insulin levels in patients with Alzheimer’s disease: A replication study and meta-analysis. Curr Alzheimer Res 2016; 13(3): 223-33.
[http://dx.doi.org/10.2174/156720501303160217111434] [PMID: 26906354]
[21]
Wennberg AM, Gustafson D, Hagen CE, et al. Serum adiponectin levels, neuroimaging, and cognition in the Mayo Clinic study of aging. J Alzheimers Dis 2016; 53(2): 573-81.
[http://dx.doi.org/10.3233/JAD-151201] [PMID: 27163809]
[22]
Molgaard CA. Multivariate analysis of Hachinski’s Scale for discriminating senile dementia of the Alzheimer’s Type from multiinfarct dementia. Neuroepidemiology 1987; 6(3): 153-60.
[http://dx.doi.org/10.1159/000110111] [PMID: 3658084]
[23]
Di Domenico F, Pupo G, Giraldo E, et al. Oxidative signature of cerebrospinal fluid from mild cognitive impairment and Alzheimer disease patients. Free Radic Biol Med 2016; 91: 1-9.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.12.004] [PMID: 26675344]
[24]
Taddei K, Clarnette R, Gandy SE, Martins RN. Increased plasma apolipoprotein E (apoE) levels in Alzheimer’s disease. Neurosci Lett 1997; 223(1): 29-32.
[http://dx.doi.org/10.1016/S0304-3940(97)13394-8] [PMID: 9058415]
[25]
Gupta VB, Laws SM, Villemagne VL, et al. AIBL Research Group. Plasma apolipoprotein E and Alzheimer disease risk: The AIBL study of aging. Neurology 2011; 76(12): 1091-8.
[http://dx.doi.org/10.1212/WNL.0b013e318211c352] [PMID: 21422459]
[26]
Eguchi A, Kimura N, Aso Y, et al. Relationship between the Japanese version of the Montreal cognitive assessment and PET imaging in subjects with mild cognitive impairment. Curr Alzheimer Res 2019; 16(9): 852-60.
[http://dx.doi.org/10.2174/1567205016666190805155230] [PMID: 31385770]
[27]
Herholz K, Salmon E, Perani D, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 2002; 17(1): 302-16.
[http://dx.doi.org/10.1006/nimg.2002.1208] [PMID: 12482085]
[28]
Jack CR Jr, Lowe VJ, Senjem ML, et al. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain 2008; 131(Pt 3): 665-80.
[http://dx.doi.org/10.1093/brain/awm336] [PMID: 18263627]
[29]
Kimura N, Aso Y, Yabuuchi K, et al. Association of modifiable lifestyle factors with cortical amyloid burden and cerebral glucose metabolism in older adults with mild cognitive impairment. JAMA Netw Open 2020; 3(6)e205719
[http://dx.doi.org/10.1001/jamanetworkopen.2020.5719] [PMID: 32515796]
[30]
Jicha GA, Parisi JE, Dickson DW, et al. Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia. Arch Neurol 2006; 63(5): 674-81.
[http://dx.doi.org/10.1001/archneur.63.5.674] [PMID: 16682537]
[31]
Waragai M, Ho G, Takamatsu Y, et al. Importance of adiponectin activity in the pathogenesis of Alzheimer’s disease. Ann Clin Transl Neurol 2017; 4(8): 591-600.
[http://dx.doi.org/10.1002/acn3.436] [PMID: 28812049]
[32]
Ng RCL, Cheng OY, Jian M, et al. Chronic adiponectin deficiency leads to Alzheimer’s disease-like cognitive impairments and pathologies through AMPK inactivation and cerebral insulin resistance in aged mice. Mol Neurodegener 2016; 11(1): 71.
[http://dx.doi.org/10.1186/s13024-016-0136-x] [PMID: 27884163]
[33]
Mullins RJ, Diehl TC, Chia CW, Kapogiannis D. Insulin resistance as a link between amyloid-beta and tau pathologies in Alzheimer’s disease. Front Aging Neurosci 2017; 9: 118.
[http://dx.doi.org/10.3389/fnagi.2017.00118]
[34]
Toda N, Ayajiki K, Okamura T. Obesity-induced cerebral hypoperfusion derived from endothelial dysfunction: One of the risk factors for Alzheimer’s disease. Curr Alzheimer Res 2014; 11(8): 733-44.
[http://dx.doi.org/10.2174/156720501108140910120456] [PMID: 25212912]
[35]
Nishimura M, Izumiya Y, Higuchi A, et al. Adiponectin prevents cerebral ischemic injury through endothelial nitric oxide synthase dependent mechanisms. Circulation 2008; 117(2): 216-23.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.725044] [PMID: 18158361]
[36]
Ali T, Yoon GH, Shah SA, Lee HY, Kim MO. Osmotin attenuates amyloid beta-induced memory impairment, tau phosphorylation and neurodegeneration in the mouse hippocampus. Sci Rep 2015; 5: 11708.
[http://dx.doi.org/10.1038/srep11708]
[37]
Desgranges B, Baron JC, de la Sayette V, et al. The neural substrates of memory systems impairment in Alzheimer’s disease. A PET study of resting brain glucose utilization. Brain 1998; 121(Pt 4): 611-31.
[http://dx.doi.org/10.1093/brain/121.4.611] [PMID: 9577389]
[38]
Pousti F, Ahmadi R, Mirahmadi F, Hosseinmardi N, Rohampour K. Adiponectin modulates synaptic plasticity in hippocampal dentate gyrus. Neurosci Lett 2018; 662: 227-32.
[PMID: 29079430]
[39]
Cisternas P, Martinez M, Ahima RS, William Wong G, Inestrosa NC. Modulation of glucose metabolism in hippocampal neurons by adiponectin and resistin. Mol Neurobiol 56(4): 3024-37.
[http://dx.doi.org/10.1007/s12035-018-1271-x]
[40]
Mosconi L, Sorbi S, de Leon MJ, et al. Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer’s disease. J Nucl Med 2006; 47(11): 1778-86.
[PMID: 17079810]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy