Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Properties of Ethnomedicinal Plants and Their Bioactive Compounds: Possible Use for COVID-19 Prevention and Treatment

Author(s): Ambreen Shoaib, Lubna Azmi, Ila Shukla, Saad S. Alqahtani, Ibrahim A. Alsarra and Faiyaz Shakeel*

Volume 27, Issue 13, 2021

Published on: 06 November, 2020

Page: [1579 - 1587] Pages: 9

DOI: 10.2174/1381612826666201106092021

Price: $65

Abstract

Background: The coronavirus disease 2019 (COVID-19) pandemic has changed the global scenario. To date, there are no treatment or preventive options. The discovery of a new drug will take time. In addition, the new drug will have side effects, and the virus will gradually become resistant to it. Therefore, it is important to search for a drug with a natural origin.

Objective: In this review, we analyzed and summarized various ethnomedicinal plants and their bioactive compounds as a source of antiviral agents for COVID-19 prevention and treatment.

Methods: From the literature, we selected different natural compounds that can act as potential targets at low cost with broad-spectrum antiviral activity.

Results: Of the 200 Chinese herbal extracts tested for their possible role against SARS-CoV, Lycoris radiata, Artemisia annua, Pyrrosia lingua, and Lindera aggregate showed anti-SARS-CoV effects with the median effective concentration = 2.4-88.2 μg/mL.

Conclusion: Ethnomedicinal herbs can be used as an alternative source of novel, promising antiviral agents that might directly or indirectly inhibit the COVID-19 progression.

Keywords: Anthocyanins, COVID-19, Middle East respiratory syndrome, Nigella sativa, Pandemic, SARS-CoV.

[1]
WHO. Coronavirus disease (COVID-19) outbreak. Emergencies-Diseases 2020.
[2]
Sohrabi C, Alsafi Z, O’Neill N, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg 2020; 76: 71-6.
[http://dx.doi.org/10.1016/j.ijsu.2020.02.034] [PMID: 32112977]
[3]
Epstein JM. Modelling to contain pandemics. Nature 2009; 460(7256): 687.
[http://dx.doi.org/10.1038/460687a] [PMID: 19661897]
[4]
MPHOnline Staff. Outbreak: 10 of the Worst Pandemics in History. 2019.
[5]
Trilla A, Trilla G, Daer C. The 1918 “Spanish flu” in Spain. Clin Infect Dis 2008; 47(5): 668-73.
[http://dx.doi.org/10.1086/590567] [PMID: 18652556]
[6]
Averting HIV. Global HIV and AIDS statistics. AVERT 2015.
[7]
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17(3): 181-92.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[8]
Li Y, Li J, Fang C. Inhibitory effects of anti-SARS traditional Chinese medicines on the UV irradiation of λ-lysogen. Am J Chin Med 2006; 34(1): 147-55.
[http://dx.doi.org/10.1142/S0192415X06003710] [PMID: 16437747]
[9]
Li RC, Xiao CT, Qian X, et al. Occurrence of Streptococcus dysgalactiae subsp. equisimilis in masked palm civet (Paguma larvata). J Anim Vet Adv 2012; 11: 2020-3.
[http://dx.doi.org/10.3923/javaa.2012.2020.2023]
[10]
Lau MWN, Fellowes JR, Chan BPL. Carnivores (Mammalia: Carnivora) in South China: A status review with notes on the commercial trade. Mammal Rev 2010; 40: 247-92.
[http://dx.doi.org/10.1111/j.1365-2907.2010.00163.x]
[11]
Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, evaluation and treatment Coronavirus (COVID-19). StatPearls 2020.
[12]
Sahu KK, Mishra AK, Lal A. Novel coronavirus (2019-nCoV): Update on 3rd coronavirus outbreak of 21st century. QJM Int J Med 2020; 113: 384-6.
[http://dx.doi.org/10.1093/qjmed/hcaa081] [PMID: 32125418]
[13]
Sun K, Chen J, Viboud C. Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: a population-level observational study. Lancet Digit Health 2020; 2(4): e201-8.
[http://dx.doi.org/10.1016/S2589-7500(20)30026-1] [PMID: 32309796]
[14]
Mackay IM, Arden KE. MERS coronavirus: diagnostics, epidemiology and transmission. Virol J 2015; 12: 222.
[http://dx.doi.org/10.1186/s12985-015-0439-5] [PMID: 26695637]
[15]
Ni L, Zhou L, Zhou M, Zhao J, Wang DW. Combination of western medicine and Chinese traditional patent medicine in treating a family case of COVID-19. Front Med 2020; 14(2): 210-4.
[http://dx.doi.org/10.1007/s11684-020-0757-x] [PMID: 32170559]
[16]
He F, Deng Y, Li W. Coronavirus disease 2019: What we know? J Med Virol 2020; 92(7): 719-25.
[http://dx.doi.org/10.1002/jmv.25766] [PMID: 32170865]
[17]
Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J Gen Intern Med 2020; 35(5): 1545-9.
[http://dx.doi.org/10.1007/s11606-020-05762-w] [PMID: 32133578]
[18]
Kannan S, Shaik Syed Ali P, Sheeza A, Hemalatha K. COVID-19 (Novel Coronavirus 2019) - recent trends. Eur Rev Med Pharmacol Sci 2020; 24(4): 2006-11.
[PMID: 32141569]
[19]
WHO. WHO Director-General’s opening remarks at the mission briefing on COVID-19 WHO Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020https://doi.org/112020
[20]
Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res 2020; 178104787
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[21]
Arora R, Chawla R, Marwah R, et al. Potential of complementary and alternative medicine in preventive management of novel H1N1 flu (swine flu) pandemic: Thwarting potential disasters in the bud. Evidence-based Complement. Altern Med 2011; 2011E586506
[http://dx.doi.org/10.1155/2011/586506]
[22]
Maroyi A. Alternative medicines for HIV/AIDS in resource-poor settings: Insight from traditional medicines use in sub-Saharan Africa. Trop J Pharm Res 2014; 13: 1527-36.
[http://dx.doi.org/10.4314/tjpr.v13i9.21]
[23]
Luo H, Tang QL, Shang YX, et al. Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin J Integr Med 2020; 26(4): 243-50.
[http://dx.doi.org/10.1007/s11655-020-3192-6] [PMID: 32065348]
[24]
Kiyohara H, Nagai T, Munakata K, et al. Stimulating effect of Japanese herbal (kampo) medicine, hochuekkito on upper respiratory mucosal immune system. Altern Med 2006; 3(4): 459-67.
[http://dx.doi.org/10.1093/ecam/nel030] [PMID: 17173109]
[25]
Liu JP, Manheimer E, Yang M. Herbal medicines for treating HIV infection and AIDS. Cochrane Database Syst Rev 2005; 3(3)CD003937
[http://dx.doi.org/10.1002/14651858.CD003937.pub2] [PMID: 16034917]
[26]
Ma LL, Ge M, Wang HQ, Yin JQ, Jiang JD, Li YH. Antiviral activities of several oral traditional Chinese medicines against influenza viruses. Evid-based Complement Altern Med 2015; 2015E367250
[27]
Redeploying plant defences. Nat Plants 2020; 6(3): 177.
[http://dx.doi.org/10.1038/s41477-020-0628-0] [PMID: 32170291]
[28]
Jonas WB. Do homeopathic nosodes protect against infection? An experimental test. Altern Ther Health Med 1999; 5(5): 36-40.
[PMID: 10484829]
[29]
Ghasemi Pirbalouti A, Siahpoosh A, Setayesh M, Craker L. Antioxidant activity, total phenolic and flavonoid contents of some medicinal and aromatic plants used as herbal teas and condiments in Iran. J Med Food 2014; 17(10): 1151-7.
[http://dx.doi.org/10.1089/jmf.2013.0057] [PMID: 25084312]
[30]
Zhang DH, Wu KL, Zhang X, Deng SQ, Peng B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J Integr Med 2020; 18(2): 152-8.
[http://dx.doi.org/10.1016/j.joim.2020.02.005] [PMID: 32113846]
[31]
Ahmad A, Husain A, Mujeeb M, et al. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac J Trop Biomed 2013; 3(5): 337-52.
[http://dx.doi.org/10.1016/S2221-1691(13)60075-1] [PMID: 23646296]
[32]
Bouchentouf S, Missoum N. Identification of compounds from Nigella sativa as new potential inhibitors of 2019 novel coronas virus (Covid-19): Molecular docking study. Chem Rxiv https://doi.org/http://doi.org/10.26434/chemrxiv.12055716.v12020
[33]
Huo T, Fang Y, Zhang Y, et al. Plasma metabolomics study of the hepatoprotective effect of glycyrrhetinic acid on realgar-induced sub-chronic hepatotoxicity in mice via 1H NMR analysis. J Ethnopharmacol 2017; 208: 36-43.
[http://dx.doi.org/10.1016/j.jep.2017.06.043] [PMID: 28673699]
[34]
Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 2003; 361(9374): 2045-6.
[http://dx.doi.org/10.1016/S0140-6736(03)13615-X] [PMID: 12814717]
[35]
Chen GL, Tian YQ, Wu JL, Li N, Guo MQ. Antiproliferative activities of Amaryllidaceae alkaloids from Lycoris radiata targeting DNA topoisomerase I. Sci Rep 2016; 6: 38284.
[http://dx.doi.org/10.1038/srep38284] [PMID: 27922057]
[36]
Li SY, Chen C, Zhang HQ, et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res 2005; 67(1): 18-23.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.007] [PMID: 15885816]
[37]
Kumar AP, Kumud U. Preliminary phytochemical screening and physico-chemical parameters of artemisia absinthium and Artemisia annua. J Pharmacogn Phytochem 2013; 1: 229-35.
[38]
Sehailia M, Chemat S. In-silico studies of antimalarial-agent artemisinin and derivatives portray more potent binding to Lys353 and Lys31-binding hotspots of SARS-CoV-2 spike protein than hydroxychloroquine: potential repurposing of artenimol for COVID-19. ChemRxiv 2020.
[http://dx.doi.org/10.26434/chemrxiv.12098652]
[39]
Luo L, Zhang L, Tian JK, Yang SL. Chemical constituents from leaves of Lindera aggregate. Chin Tradit Herbal Drugs 2009; 6E6
[40]
Gan LS, Yao W, Mo JX, Zhou CX. Alkaloids from Lindera aggregata. Nat Prod Commun 2009; 4(1): 43-6.
[http://dx.doi.org/10.1177/1934578X0900400111] [PMID: 19370873]
[41]
Moyo M, Van Staden J. Medicinal properties and conservation of Pelargonium sidoides DC. J Ethnopharmacol 2014; 152(2): 243-55.
[http://dx.doi.org/10.1016/j.jep.2014.01.009] [PMID: 24463034]
[42]
Kolodziej H. Antimicrobial, antiviral and immunomodulatory activity studies of pelargonium sidoides (EPs® 7630) in the context of health promotion. Pharmaceuticals 2011; 4(10): 1295-314.
[http://dx.doi.org/10.3390/ph4101295] [PMID: 27721327]
[43]
Lissiman E, Bhasale AL, Cohen M. Garlic for the common cold. Cochrane Database Syst Rev 2014; 11(11)CD006206
[PMID: 25386977]
[44]
Thuy BTP, My TTA, Hai NTT, et al. Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil. ACS Omega 2020; 5(14): 8312-20.
[http://dx.doi.org/10.1021/acsomega.0c00772] [PMID: 32363255]
[45]
Wang JH, Bose S, Shin NR, Chin YW, Choi YH, Kim H. Pharmaceutical impact of houttuynia cordata and metformin combination on high-fat-diet-induced metabolic disorders: Link to intestinal microbiota and metabolic endotoxemia. Front Endocrinol (Lausanne) 2018; 9: 620.
[http://dx.doi.org/10.3389/fendo.2018.00620] [PMID: 30405531]
[46]
Lau KM, Lee KM, Koon CM, et al. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J Ethnopharmacol 2008; 118(1): 79-85.
[http://dx.doi.org/10.1016/j.jep.2008.03.018] [PMID: 18479853]
[47]
Chiow KH, Phoon MC, Putti T, Tan BKH, Chow VT. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pac J Trop Med 2016; 9(1): 1-7.
[http://dx.doi.org/10.1016/j.apjtm.2015.12.002] [PMID: 26851778]
[48]
Kimura S, Sinha N. Tomato (Solanum lycopersicum): A model fruit-bearing crop. CSH Protoc 2008.
[49]
Khorsandi L, Mansouri E, Rashno M, Karami MA, Ashtari A. Myricetin loaded solid lipid nanoparticles upregulate MLKL and RIPK3 in human lung adenocarcinoma. Int J Pept Res Ther 2019; 26: 899-910.
[http://dx.doi.org/10.1007/s10989-019-09895-3]
[50]
Dar NJ, Hamid A, Ahmad M. Pharmacologic overview of Withania somnifera, the Indian Ginseng. Cell Mol Life Sci 2015; 72(23): 4445-60.
[http://dx.doi.org/10.1007/s00018-015-2012-1] [PMID: 26306935]
[51]
Balkrishna A, Pokhrel S, Singh J, Varshney A. Withanone from Withania somnifera may inhibit Novel coronavirus (COVID-19) entry by disrupting interactions between viral S-protein receptor binding domain and host ACE2 receptor. Resaerch Square 2020.
[52]
Gilbert KG, Maule HG, Rudolph B, et al. Quantitative analysis of indigo and indigo precursors in leaves of Isatis spp. and Polygonum tinctorium. Biotechnol Prog 2004; 20(4): 1289-92.
[http://dx.doi.org/10.1021/bp0300624] [PMID: 15296465]
[53]
Lin CW, Tsai FJ, Tsai CH, et al. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res 2005; 68(1): 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[54]
Ryu YB, Jeong HJ, Kim JH, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg Med Chem 2010; 18(22): 7940-7.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[55]
Zhao T, Tang H, Xie L, et al. Scutellaria baicalensis Georgi. (Lamiaceae): a review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J Pharm Pharmacol 2019; 71(9): 1353-69.
[http://dx.doi.org/10.1111/jphp.13129] [PMID: 31236960]
[56]
Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020; 10(5): 766-88.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[57]
Yang Y, Islam MS, Wang J, Li Y, Chen X. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): A review and perspective. Int J Biol Sci 2020; 16(10): 1708-17.
[http://dx.doi.org/10.7150/ijbs.45538] [PMID: 32226288]
[58]
Lau TW, Sahota DS, Lau CH, et al. An in vivo investigation on the wound-healing effect of two medicinal herbs using an animal model with foot ulcer. Eur Surg Res 2008; 41(1): 15-23.
[http://dx.doi.org/10.1159/000122834] [PMID: 18382110]
[59]
Yang JM, Jiang H, Dai HL, Wang ZW, Jia GZ, Meng XC. Polysaccharide enhances Radix Saposhnikoviae efficacy through inhibiting chromones decomposition in intestinal tract. Sci Rep 2016; 6: 32698.
[http://dx.doi.org/10.1038/srep32698] [PMID: 27595868]
[60]
Yang F, Dong X, Yin X, Wang W, You L, Ni J. Radix Bupleuri: A review of traditional uses, botany, phytochemistry, pharmacology, and toxicology. BioMed Res Int 2017; 20177597596
[http://dx.doi.org/10.1155/2017/7597596] [PMID: 28593176]
[61]
Bermejo P, Abad MJ, Díaz AM, et al. Antiviral activity of seven iridoids, three saikosaponins and one phenylpropanoid glycoside extracted from Bupleurum rigidum and Scrophularia scorodonia. Planta Med 2002; 68(2): 106-10.
[http://dx.doi.org/10.1055/s-2002-20238] [PMID: 11859457]
[62]
Cao G, Li Q, Cai H, Tu S, Cai B. Investigation of the chemical changes from crude and processed paeoniae radix Alba-Atractylodis macrocephalae rhizoma herbal pair extracts by using Q exactive high-performance benchtop quadrupole-orbitrap LC-MS/MS. Evidence-based Complement Altern Med 2014; 2014E170959
[http://dx.doi.org/10.1155/2014/170959]
[63]
Li Y, Cai W, Weng X, et al. Lonicerae Japonicae Flos and Lonicerae Flos: A systematic pharmacology review. Evidence-based Complement. Altern Med 2015; 2015E905063
[64]
Wang Q, Quan Q, Zhou X, et al. A comparative study of Lonicera japonica with related species: Morphological characteristics, ITS sequences and active compounds. Biochem Syst Ecol 2014; 54: 198-207.
[http://dx.doi.org/10.1016/j.bse.2014.02.002] [PMID: 32287929]
[65]
Ahmad A, Rehman MU, Alkharfy KM. An alternative approach to minimize the risk of coronavirus (Covid-19) and similar infections. Eur Rev Med Pharmacol Sci 2020; 24(7): 4030-4.
[PMID: 32329879]
[66]
Cheng PW, Ng LT, Chiang LC, Lin CC. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin Exp Pharmacol Physiol 2006; 33(7): 612-6.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04415.x] [PMID: 16789928]
[67]
Islam MT, Sarkar C, El-Kersh DM, et al. Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytother Res 2020.
[http://dx.doi.org/10.1002/ptr.6700] [PMID: 32248575]
[68]
Sharma M. COVID-19 (an international trauma): A brief analysis on research trends, impacts and solutions. Int J Res Appl Sci Biotechnol 2020; 7: 1-8.
[69]
Tanne J. Paracetamol causes most liver failure in UK and US. BMJ 2006; 332E628
[http://dx.doi.org/10.1136/bmj.332.7542.628-a]
[70]
Hay EM, Paterson SM, Lewis M, Hosie G, Croft P. Pragmatic randomised controlled trial of local corticosteroid injection and naproxen for treatment of lateral epicondylitis of elbow in primary care. BMJ 1999; 319(7215): 964-8.
[http://dx.doi.org/10.1136/bmj.319.7215.964] [PMID: 10514160]
[71]
Rainsford KD. Ibuprofen: pharmacology, efficacy and safety. Inflammopharmacology 2009; 17(6): 275-342.
[http://dx.doi.org/10.1007/s10787-009-0016-x] [PMID: 19949916]
[72]
Dixit M, Doan T, Kirschner R, Dixit N. Significant acute kidney injury due to non-steroidal antiinflammatory drugs: Inpatient setting. Pharmaceuticals 2010; 3(4): 1279-85.
[http://dx.doi.org/10.3390/ph3041279] [PMID: 27713300]
[73]
Vcev A. Management of side effects during antiviral therapy. Acta Med Croatica 2009; 63(5): 463-7.
[PMID: 20198909]
[74]
Vlietinck AJ, Vanden Berghe DA. Can ethnopharmacology contribute to the development of antiviral drugs? J Ethnopharmacol 1991; 32(1-3): 141-53.
[http://dx.doi.org/10.1016/0378-8741(91)90112-Q] [PMID: 1652667]
[75]
Premanathan M, Arakaki R, Izumi H, et al. Antiviral properties of a mangrove plant, Rhizophora apiculata Blume, against human immunodeficiency virus. Antiviral Res 1999; 44(2): 113-22.
[http://dx.doi.org/10.1016/S0166-3542(99)00058-3] [PMID: 10669261]
[76]
Sokmen M, Angelova M, Krumova E, et al. In vitro antioxidant activity of polyphenol extracts with antiviral properties from Geranium sanguineum L. Life Sci 2005; 76(25): 2981-93.
[http://dx.doi.org/10.1016/j.lfs.2004.11.020] [PMID: 15820508]
[77]
Simões C, de Castro TC, da Silva CL, Albarello N, Mansur E, Romanos MTV. Antiviral activity of Cleome rosea extracts from field-grown plants and tissue culture-derived materials against acyclovir-resistant Herpes simplex viruses type 1 (ACVr-HSV-1) and type 2 (ACVr-HSV-2). World J Microbiol Biotechnol 2010; 26: 387-8.
[http://dx.doi.org/10.1007/s11274-009-0173-5]
[78]
Bharti R, Ahuja G, Sujan G, Dakappa S. A review on medicinal plants having antioxidant potential. J Pharm Res 2012; 5: 4278-87.
[79]
Dickschat JS. Terpenes. Beilstein J Org Chem 2019; 15: 2966-7.
[http://dx.doi.org/10.3762/bjoc.15.292] [PMID: 31921368]
[80]
Ozçelik B, Kartal M, Orhan I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm Biol 2011; 49(4): 396-402.
[http://dx.doi.org/10.3109/13880209.2010.519390] [PMID: 21391841]
[81]
Han H, de Vrueh RLA, Rhie JK, et al. 5′-Amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter. Pharm Res 1998; 15(8): 1154-9.
[http://dx.doi.org/10.1023/A:1011919319810] [PMID: 9706043]
[82]
Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod 2007; 70(3): 461-77.
[http://dx.doi.org/10.1021/np068054v] [PMID: 17309302]
[83]
Chen F, Chan KH, Jiang Y, et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol 2004; 31(1): 69-75.
[http://dx.doi.org/10.1016/j.jcv.2004.03.003] [PMID: 15288617]
[84]
Li W, Wong SK, Li F, et al. Animal origins of the severe acute respiratory syndrome coronavirus: insight from ACE2-S-protein interactions. J Virol 2006; 80(9): 4211-9.
[http://dx.doi.org/10.1128/JVI.80.9.4211-4219.2006] [PMID: 16611880]
[85]
Kim MK, Yang DH, Jung M, et al. Simultaneous determination of chromones and coumarins in Radix Saposhnikoviae by high performance liquid chromatography with diode array and tandem mass detectors. J Chromatogr A 2011; 1218(37): 6319-30.
[http://dx.doi.org/10.1016/j.chroma.2011.06.103] [PMID: 21807369]
[86]
Li BQ, Fu T, Dongyan Y, Mikovits JA, Ruscetti FW, Wang JM. Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry. Biochem Biophys Res Commun 2000; 276(2): 534-8.
[http://dx.doi.org/10.1006/bbrc.2000.3485] [PMID: 11027509]
[87]
Lee JS, Kim HJ, Lee YS. A new anti-HIV flavonoid glucuronide from Chrysanthemum morifolium. Planta Med 2003; 69(9): 859-61.
[http://dx.doi.org/10.1055/s-2003-43207] [PMID: 14598216]
[88]
Kitamura K, Honda M, Yoshizaki H, et al. Baicalin, an inhibitor of HIV-1 production in vitro. Antiviral Res 1998; 37(2): 131-40.
[http://dx.doi.org/10.1016/S0166-3542(97)00069-7] [PMID: 9588845]
[89]
Miller WH, Miller RL. Phosphorylation of acyclovir diphosphate by cellular enzymes. Biochem Pharmacol 1982; 31(23): 3879-84.
[http://dx.doi.org/10.1016/0006-2952(82)90305-7] [PMID: 7159465]
[90]
Rukachaisirikul V, Pailee P, Hiranrat A, et al. Anti-HIV-1 protostane triterpenes and digeranylbenzophenone from trunk bark and stems of Garcinia speciosa. Planta Med 2003; 69(12): 1141-6.
[http://dx.doi.org/10.1055/s-2003-818006] [PMID: 14750032]
[91]
Ahangarpour A, Heidari H, Junghani MS, Absari R, Khoogar M, Ghaedi E. Effects of hydroalcoholic extract of Rhus coriaria seed on glucose and insulin related biomarkers, lipid profile, and hepatic enzymes in nicotinamide-streptozotocin-induced type II diabetic male mice. Res Pharm Sci 2017; 12(5): 416-24.
[http://dx.doi.org/10.4103/1735-5362.213987] [PMID: 28974980]
[92]
Yu D, Morris-Natschke SL, Lee KH. New developments in natural products-based anti-AIDS research. Med Res Rev 2007; 27(1): 108-32.
[http://dx.doi.org/10.1002/med.20075] [PMID: 16888749]
[93]
Kudo E, Taura M, Matsuda K, et al. Inhibition of HIV-1 replication by a tricyclic coumarin GUT-70 in acutely and chronically infected cells. Bioorg Med Chem Lett 2013; 23(3): 606-9.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.034] [PMID: 23290051]
[94]
Smith DB, Kalayanov G, Sund C, et al. The design, synthesis, and antiviral activity of monofluoro and difluoro analogues of 4′-azidocytidine against hepatitis C virus replication: the discovery of 4′-azido-2′-deoxy-2′-fluorocytidine and 4′-azido-2′-dideoxy-2′,2′-difluorocytidine. J Med Chem 2009; 52(9): 2971-8.
[http://dx.doi.org/10.1021/jm801595c] [PMID: 19341305]
[95]
Krawitz C, Mraheil MA, Stein M, et al. Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses. BMC Complement Altern Med 2011; 11: 16.
[http://dx.doi.org/10.1186/1472-6882-11-16] [PMID: 21352539]
[96]
Dao TT, Dang TT, Nguyen PH, Kim E, Thuong PT, Oh WK. Xanthones from Polygala karensium inhibit neuraminidases from influenza A viruses. Bioorg Med Chem Lett 2012; 22(11): 3688-92.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.028] [PMID: 22552195]
[97]
Cheng Y, Mai JY, Hou TL, Ping J, Chen JJ. Antiviral activities of atractylon from Atractylodis Rhizoma. Mol Med Rep 2016; 14(4): 3704-10.
[http://dx.doi.org/10.3892/mmr.2016.5713] [PMID: 27600871]
[98]
Rechtman MM, Har-Noy O, Bar-Yishay I, et al. Curcumin inhibits hepatitis B virus via down-regulation of the metabolic coactivator PGC-1α. FEBS Lett 2010; 584(11): 2485-90.
[http://dx.doi.org/10.1016/j.febslet.2010.04.067] [PMID: 20434445]
[99]
Liang N, Kong Z, Lu CL, et al. Radix Sophorae flavescentis versus other drugs or herbs for chronic hepatitis B. Cochrane Database Syst Rev 2019; 6CD013106
[http://dx.doi.org/10.1002/14651858.CD013106.pub2] [PMID: 31232459]
[100]
Calland N, Dubuisson J, Rouillé Y, Séron K. Hepatitis C virus and natural compounds: a new antiviral approach? Viruses 2012; 4(10): 2197-217.
[http://dx.doi.org/10.3390/v4102197] [PMID: 23202460]
[101]
Lin LT, Chen TY, Lin SC, et al. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry. BMC Microbiol 2013; 13: 187.
[http://dx.doi.org/10.1186/1471-2180-13-187] [PMID: 23924316]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy