Review Article

循环肿瘤脱氧核糖核酸作为结直肠癌患者预后预测的生物标志物

卷 22, 期 9, 2021

发表于: 03 November, 2020

页: [1010 - 1020] 页: 11

弟呕挨: 10.2174/1389450121999201103194248

价格: $65

摘要

循环肿瘤脱氧核糖核酸(ctDNA)是一种新的工具,已经在几种类型的肿瘤中进行了研究,包括结直肠癌。事实上,基于液体活检的技术被认为是组织活检的有吸引力的非侵入性替代方法,增加了对肿瘤分子特征、异质性以及癌症检测和监测的更多见解。此外,一些分析表明,在结直肠癌患者中,结缔组织脱氧核糖核酸似乎作为一种生物标志物,能够预测结果(预后作用)和对治疗的反应(预测作用)。特别是,在早期结直肠癌(第一至第三阶段),它可以代表辅助治疗的时间标记,以及除了已经认识到的风险因素之外的最小残留疾病和复发风险的标记。在转移性结直肠癌中,通过结缔组织脱氧核糖核酸对分子肿瘤谱的分析显示出与诊断时的组织活检高度一致。此外,一些研究表明,治疗期间的ctDNA水平与治疗的早期反应和预后有关。最后,对ctDNA和拷贝数变化的定量分析可能有助于在疾病进展时检测对治疗的耐药性,并有助于寻找新的治疗靶点。

关键词: 分子特征,RAS,异质性,循环肿瘤脱氧核糖核酸,转移性,微小残留病,第二阶段,EGFR。

Next »
图形摘要

[1]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Howlader N, Noone AM, Krapcho M, et al. SSEER Cancer Statistics Review, 1975–2016 Bethesda, MD: National Cancer Institute https://seer.cancer.gov/csr/1975_2016 [April, 19th, 2020.]2020. Available at:
[3]
Van Cutsem E, Cervantes A, Nordlinger B, Arnold D. ESMO Guidelines Working Group. Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2014; 25(Suppl. 3): iii1-9.
[http://dx.doi.org/10.1093/annonc/mdu260] [PMID: 25190710]
[4]
Zare-Bandamiri M, Fararouei M, Zohourinia S, Daneshi N, Dianatinasab M. Risk factors predicting colorectal cancer recurrence following initial treatment: a 5-year Cohort Study. Asian Pac J Cancer Prev 2017; 18(9): 2465-70.
[PMID: 28952277]
[5]
Palmirotta R, Lovero D, Cafforio P, et al. Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Ther Adv Med Oncol 2018; 10: 1758835918794630.
[http://dx.doi.org/10.1177/1758835918794630] [PMID: 30181785]
[6]
Perakis S, Speicher MR. Emerging concepts in liquid biopsies. BMC Med 2017; 15(1): 75.
[http://dx.doi.org/10.1186/s12916-017-0840-6] [PMID: 28381299]
[7]
Jahr S, Hentze H, Englisch S, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 2001; 61(4): 1659-65.
[PMID: 11245480]
[8]
Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014; 6(224): 224ra24.
[http://dx.doi.org/10.1126/scitranslmed.3007094] [PMID: 24553385]
[9]
Benesova L, Belsanova B, Suchanek S, et al. Mutation-based detection and monitoring of cell-free tumor DNA in peripheral blood of cancer patients. Anal Biochem 2013; 433(2): 227-34.
[http://dx.doi.org/10.1016/j.ab.2012.06.018] [PMID: 22750103]
[10]
Wood-Bouwens CM, Ji HP. Single color multiplexed ddpcr copy number measurements and single nucleotide variant genotyping. Methods Mol Biol 2018; 1768: 323-33.
[http://dx.doi.org/10.1007/978-1-4939-7778-9_18] [PMID: 29717451]
[11]
Li M, Diehl F, Dressman D, Vogelstein B, Kinzler KW. BEAMing up for detection and quantification of rare sequence variants. Nat Methods 2006; 3(2): 95-7.
[http://dx.doi.org/10.1038/nmeth850] [PMID: 16432518]
[12]
Logan J, Edwards K, Saunders N, Eds. Real-Time PCR: Current Technology and Applications. Caister Academic Press 2009.978-1-904455-39-4.
[13]
Hendrix MM, Foster SL, Cordovado SK. Newborn screening quality assurance program for cftr mutation detection and gene sequencing to identify cystic fibrosis. J Inborn Errors Metab Screen 2016; 4
[http://dx.doi.org/10.1177/2326409816661358] [PMID: 28261631]
[14]
Little S. Amplification-refractory mutation system (ARMS) analysis of point mutations. Curr Protoc Hum Genet 2001 May; Chapter 9:Unit 9.8.
[15]
Song N, Zhong X, Li Q. Real-time bidirectional pyrophosphorolysis-activated polymerization for quantitative detection of somatic mutations. PLoS One 2014; 9(4): e96420.
[http://dx.doi.org/10.1371/journal.pone.0096420] [PMID: 24769870]
[16]
Guha M, Castellanos-Rizaldos E, Liu P, Mamon H, Makrigiorgos GM. Differential strand separation at critical temperature: a minimally disruptive enrichment method for low-abundance unknown DNA mutations. Nucleic Acids Res 2013; 41(3): e50.
[http://dx.doi.org/10.1093/nar/gks1250] [PMID: 23258702]
[17]
Ku JL, Jeon YK, Park JG. Methylation-specific PCR. Methods Mol Biol 2011; 791: 23-32.
[http://dx.doi.org/10.1007/978-1-61779-316-5_3] [PMID: 21913069]
[18]
Chiu RW, Chan KC, Gao Y, et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc Natl Acad Sci USA 2008; 105(51): 20458-63.
[http://dx.doi.org/10.1073/pnas.0810641105] [PMID: 19073917]
[19]
Behjati S, Tarpey PS. What is next generation sequencing? Arch Dis Child Educ Pract Ed 2013; 98(6): 236-8.
[http://dx.doi.org/10.1136/archdischild-2013-304340] [PMID: 23986538]
[20]
Gale D, Lawson ARJ, Howarth K, et al. Development of a highly sensitive liquid biopsy platform to detect clinically-relevant cancer mutations at low allele fractions in cell-free DNA. PLoS One 2018; 13(3): e0194630.
[http://dx.doi.org/10.1371/journal.pone.0194630] [PMID: 29547634]
[21]
Kivioja T, Vähärautio A, Karlsson K, et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods 2011; 9(1): 72-4.
[http://dx.doi.org/10.1038/nmeth.1778] [PMID: 22101854]
[22]
Labianca R, Nordlinger B, Beretta GD, et al. ESMO Guidelines Working Group. Early colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2013; 24(Suppl. 6): vi64-72.
[http://dx.doi.org/10.1093/annonc/mdt354] [PMID: 24078664]
[23]
Diehl F, Schmidt K, Choti MA, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med 2008; 14(9): 985-90.
[http://dx.doi.org/10.1038/nm.1789] [PMID: 18670422]
[24]
Tie J, Wang Y, Tomasetti C, et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med 2016; 8(346): 346ra92.
[http://dx.doi.org/10.1126/scitranslmed.aaf6219] [PMID: 27384348]
[25]
Tie J, Cohen JD, Wang Y, et al. Circulating tumor dna analyses as markers of recurrence risk and benefit of adjuvant therapy for stage iii colon cancer. JAMA Oncol 2019 Dec; 5(12): 1811.
[26]
Reinert T, Henriksen TV, Christensen E, et al. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancer. JAMA Oncol 2019; 5: 1124.
[http://dx.doi.org/10.1001/jamaoncol.2019.0528] [PMID: 31070691]
[27]
Wang Y, Li L, Cohen JD, et al. Prognostic potential of circulating tumor DNA measurement in postoperative surveillance of nonmetastatic colorectal cancer. JAMA Oncol 2019; 5: 1118.
[http://dx.doi.org/10.1001/jamaoncol.2019.0512] [PMID: 31070668]
[28]
Tie J, Cohen JD, Wang Y, et al. Serial circulating tumour DNA analysis during multimodality treatment of locally advanced rectal cancer: a prospective biomarker study. Gut 2019; 68(4): 663-71.
[http://dx.doi.org/10.1136/gutjnl-2017-315852] [PMID: 29420226]
[29]
Khakoo S, Carter PD, Brown G, et al. MRI tumor regression grade and circulating tumor dna as complementary tools to assess response and guide therapy adaptation in rectal cancer. Clin Cancer Res 2020; 26(1): 183-92.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1996] [PMID: 31852830]
[30]
Boysen AK, Schou JV, Spindler KG. Cell-free DNA and preoperative chemoradiotherapy for rectal cancer: a systematic review. Clin Transl Oncol 2019; 21(7): 874-80.
[http://dx.doi.org/10.1007/s12094-018-1997-y] [PMID: 30506526]
[31]
Parikh A, Van Seventer E, Boland GM, et al. A plasma-only integrated genomic and epigenomic circulating tumor DNA (ctDNA) assay to inform recurrence risk in colorectal cancer (CRC). J Clinical Oncol 2019; 37(15_suppl): 3602-2.
[32]
Arnold D, Lueza B, Douillard JY, et al. Prognostic and predictive value of primary tumour side in patients with RAS wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials. Ann Oncol 2017; 28(8): 1713-29.
[http://dx.doi.org/10.1093/annonc/mdx175] [PMID: 28407110]
[33]
Fanelli GN, Dal Pozzo CA, Depetris I, et al. The heterogeneous clinical and pathological landscapes of metastatic Braf-mutated colorectal cancer. Cancer Cell Int 2020; 2920(30): eCollection.
[http://dx.doi.org/10.1186/s12935-020-1117-2]
[34]
Garcia-Carbonero N, Martinez-Useros J, Li W, et al. KRAS and BRAF mutations as prognostic and predictive biomarkers for standard chemotherapy response in metastatic colorectal cancer: a single institutional study. Cells 2020; 9(1): E219.
[http://dx.doi.org/10.3390/cells9010219] [PMID: 31952366]
[35]
Grasselli J, Elez E, Caratù G, et al. Concordance of blood- and tumor-based detection of RAS mutations to guide anti-EGFR therapy in metastatic colorectal cancer. Ann Oncol 2017; 28(6): 1294-301.
[http://dx.doi.org/10.1093/annonc/mdx112] [PMID: 28368441]
[36]
Normanno N, Cervantes A, Ciardiello F, De Luca A, Pinto C. The liquid biopsy in the management of colorectal cancer patients: Current applications and future scenarios. Cancer Treat Rev 2018; 70: 1-8.
[http://dx.doi.org/10.1016/j.ctrv.2018.07.007] [PMID: 30053724]
[37]
Vidal J, Muinelo L, Dalmases A, et al. Plasma ctDNA RAS mutation analysis for the diagnosis and treatment monitoring of metastatic colorectal cancer patients. Ann Oncol 2017; 28(6): 1325-32.
[http://dx.doi.org/10.1093/annonc/mdx125] [PMID: 28419195]
[38]
Martinelli E, Cardone C, Troiani T, et al. Clinical activity and tolerability of FOLFIRI and cetuximab in elderly patients with metastatic colorectal cancer in the CAPRI-GOIM first-line trial. ESMO Open 2017; 1(6): e000086.
[http://dx.doi.org/10.1136/esmoopen-2016-000086] [PMID: 28848656]
[39]
Normanno N, Esposito Abate R, Lambiase M, et al. CAPRI-GOIM Investigators. RAS testing of liquid biopsy correlates with the outcome of metastatic colorectal cancer patients treated with first-line FOLFIRI plus cetuximab in the CAPRI-GOIM trial. Ann Oncol 2018; 29(1): 112-8.
[http://dx.doi.org/10.1093/annonc/mdx417] [PMID: 28950295]
[40]
El Messaoudi S, Mouliere F, Du Manoir S, et al. Circulating DNA as a strong multimarker prognostic tool for metastatic colorectal cancer patient management care. Clin Cancer Res 2016; 22(12): 3067-77.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0297] [PMID: 26847055]
[41]
Cohen SJ, Punt CJ, Iannotti N, et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 2008; 26(19): 3213-21.
[http://dx.doi.org/10.1200/JCO.2007.15.8923] [PMID: 18591556]
[42]
Elez E, Chianese C, Sanz-García E, et al. Impact of circulating tumor DNA mutant allele fraction on prognosis in RAS-mutant metastatic colorectal cancer. Mol Oncol 2019; 13(9): 1827-35.
[http://dx.doi.org/10.1002/1878-0261.12547] [PMID: 31322322]
[43]
Groot Koerkamp B, Rahbari NN, Büchler MW, Koch M, Weitz J. Circulating tumor cells and prognosis of patients with resectable colorectal liver metastases or widespread metastatic colorectal cancer: a meta-analysis. Ann Surg Oncol 2013; 20(7): 2156-65.
[http://dx.doi.org/10.1245/s10434-013-2907-8] [PMID: 23456317]
[44]
Huang X, Gao P, Song Y, et al. Meta-analysis of the prognostic value of circulating tumor cells detected with the cell search system in colorectal cancer. BMC Cancer 2015; 15: 202.
[http://dx.doi.org/10.1186/s12885-015-1218-9] [PMID: 25880692]
[45]
Fan G, Zhang K, Yang X, Ding J, Wang Z, Li J. Prognostic value of circulating tumor DNA in patients with colon cancer: Systematic review. PLoS One 2017; 12(2): e0171991.
[http://dx.doi.org/10.1371/journal.pone.0171991] [PMID: 28187169]
[46]
Chibaudel B. Extended ras mutational status analysis in circulating tumor dna from patients with advanced colorectal cancer in daily clinical practice. The Franco-British Institute Experience and Recommendations Biomed J Sci Tech Res 2018; 6.
[47]
Normanno N, Barone C, Maiello E, et al. Analysis of liquid biopsies from metastatic colorectal carcinoma (mCRC) patients (pts) enrolled in the ERMES clinical trial. J Clin Oncol 2018; 36: e15507.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.e15507]
[48]
Maurel J, Alonso V, Escudero P, et al. Clinical impact of circulating tumor ras and braf mutation dynamics in patients with metastatic colorectal cancer treated with first-line chemotherapy plus anti–epidermal growth factor receptor therapy. JCO Precis Oncol 2019; 1-16.
[49]
Vitiello PP, De Falco V, Giunta EF, et al. Clinical practice use of liquid biopsy to identify ras/braf mutations in patients with metastatic colorectal cancer (mCRC): A Single Institution Experience. Cancers (Basel) 2019; 11(10): E1504.
[http://dx.doi.org/10.3390/cancers11101504] [PMID: 31597339]
[50]
Vivancos A, Aranda E, Benavides M, et al. Comparison of the clinical sensitivity of the idylla platform and the oncobeam ras crc assay for kras mutation detection in liquid biopsy samples. Sci Rep 2019; 9(1): 8976.
[http://dx.doi.org/10.1038/s41598-019-45616-y] [PMID: 31222012]
[51]
Siravegna G, Mussolin B, Buscarino M, et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med 2015; 21(7): 795-801.
[http://dx.doi.org/10.1038/nm.3870] [PMID: 26030179]
[52]
Tie J, Kinde I, Wang Y, et al. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann Oncol 2015; 26(8): 1715-22.
[http://dx.doi.org/10.1093/annonc/mdv177] [PMID: 25851626]
[53]
Russo M, Siravegna G, Blaszkowsky LS, et al. Tumor heterogeneity and lesionspecific response to targeted therapy in colorectal cancer. Cancer Discov 2016; 6(2): 147-53.
[http://dx.doi.org/10.1158/2159-8290.CD-15-1283] [PMID: 26644315]
[54]
Corcoran RB, Chabner BA. Application of cell-free dna analysis to cancer treatment. N Engl J Med 2018; 379(18): 1754-65.
[http://dx.doi.org/10.1056/NEJMra1706174] [PMID: 30380390]
[55]
Garraway LA, Jänne PA. Circumventing cancer drug resistance in the era of personalized medicine. Cancer Discov 2012; 2(3): 214-26.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0012] [PMID: 22585993]
[56]
Bach S, Sluiter NR, Beagan J, et al. Circulating tumor DNA analysis: clinical implications for colorectal cancer patients. A systematic review JNCI Cancer Spectrum 2019; 3(3): pkz042.
[57]
Yamauchi M, Urabe Y, Ono A, Miki D, Ochi H, Chayama K. Serial profiling of circulating tumor DNA for optimization of anti-VEGF chemotherapy in metastatic colorectal cancer patients. Int J Cancer 2018; 142(7): 1418-26.
[http://dx.doi.org/10.1002/ijc.31154] [PMID: 29134647]
[58]
Yamada T, Hirai S, Katayama Y, et al. Retrospective efficacy analysis of immune checkpoint inhibitors in patients with EGFR-mutated non-small cell lung cancer. Cancer Med 2019; 8(4): 1521-9.
[http://dx.doi.org/10.1002/cam4.2037] [PMID: 30790471]
[59]
Kim ST, Lee WS, Lanman RB, et al. Prospective blinded study of somatic mutation detection in cell-free DNA utilizing a targeted 54-gene next generation sequencing panel in metastatic solid tumor patients. Oncotarget 2015; 6(37): 40360-9.
[http://dx.doi.org/10.18632/oncotarget.5465] [PMID: 26452027]
[60]
Khan KH, Cunningham D, Werner B, et al. Longitudinal liquid biopsy and mathematical modeling of clonal evolution forecast time to treatment failure in the prospect-c phase ii colorectal cancer clinical trial. Cancer Discov 2018; 8(10): 1270-85.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0891] [PMID: 30166348]
[61]
Cao H, Liu X, Chen Y, et al. Circulating Tumor DNA Is Capable of Monitoring the Therapeutic Response and Resistance in Advanced Colorectal Cancer Patients Undergoing Combined Target and Chemotherapy. Front Oncol 2020; 10: 466.
[http://dx.doi.org/10.3389/fonc.2020.00466] [PMID: 32318348]
[62]
Strickler JH, Loree JM, Ahronian LG, et al. Genomic landscape of cell-free DNA in patients with colorectal cancer. Cancer Discov 2018; 8(2): 164-73.
[http://dx.doi.org/10.1158/2159-8290.CD-17-1009] [PMID: 29196463]
[63]
Thierry AR, Pastor B, Jiang ZQ, et al. Circulating DNA demonstrates convergent evolution and common resistance mechanisms during treatment of colorectal cancer. Clin Cancer Res 2017; 23(16): 4578-91.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0232] [PMID: 28400427]
[64]
Fernandes MS, Carneiro F, Oliveira C, Seruca R. Colorectal cancer and RASSF family--a special emphasis on RASSF1A. Int J Cancer 2013; 132(2): 251-8.
[http://dx.doi.org/10.1002/ijc.27696] [PMID: 22733432]
[65]
van Engeland M, Roemen GM, Brink M, et al. K-ras mutations and RASSF1A promoter methylation in colorectal cancer. Oncogene 2002; 21(23): 3792-5.
[http://dx.doi.org/10.1038/sj.onc.1205466] [PMID: 12032847]
[66]
Parseghian CM, Napolitano S, Loree JM, Kopetz S. Mechanisms of innate and acquired resistance to anti-egfr therapy: a review of current knowledge with a focus on rechallenge therapies. Clin Cancer Res 2019; 25(23): 6899-908.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0823] [PMID: 31263029]
[67]
Choi IS, Kato S, Fanta PT, et al. Genomic profiling of blood-derived circulating tumor dna from patients with colorectal cancer: implications for response and resistance to targeted therapeutics. Mol Cancer Ther 2019; 18(10): 1852-62.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0965] [PMID: 31320401]
[68]
Liao HW, Hsu JM, Xia W, et al. PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response. J Clin Invest 2015; 125(12): 4529-43.
[http://dx.doi.org/10.1172/JCI82826] [PMID: 26571401]
[69]
Garrido-Laguna I, Hong DS, Janku F, et al. KRASness and PIK3CAness in patients with advanced colorectal cancer: outcome after treatment with early-phase trials with targeted pathway inhibitors. PLoS One 2012; 7(5): e38033.
[http://dx.doi.org/10.1371/journal.pone.0038033] [PMID: 22675430]
[70]
Montagut C, Argilés G, Ciardiello F, et al. Efficacy of sym004 in patients with metastatic colorectal cancer with acquired resistance to anti-egfr therapy and molecularly selected by circulating tumor dna analyses: a phase 2 randomized clinical trial. JAMA Oncol 2018; 4(4): e175245.
[http://dx.doi.org/10.1001/jamaoncol.2017.5245] [PMID: 29423521]
[71]
Peeters M, Price TJ, Cervantes A, et al. Final results from a randomized phase 3 study of FOLFIRI +/- panitumumab for second-line treatment of metastatic colorectal cancer. Ann Oncol 2014; 25(1): 107-16.
[http://dx.doi.org/10.1093/annonc/mdt523] [PMID: 24356622]
[72]
Price TJ, Peeters M, Kim TW, et al. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): a randomised, multicentre, open-label, non-inferiority phase 3 study. Lancet Oncol 2014; 15(6): 569-79.
[http://dx.doi.org/10.1016/S1470-2045(14)70118-4] [PMID: 24739896]
[73]
Kim TW, Peeters M, Thomas A, et al. Impact of emergent circulating tumor dna ras mutation in panitumumab-treated chemoresistant metastatic colorectal cancer. Clin Cancer Res 2018; 24(22): 5602-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3377] [PMID: 29898991]
[74]
Cremolini C, Rossini D, Dell’Aquila E, et al. Rechallenge for patients with ras and braf wild-type metastatic colorectal cancer with acquired resistance to first-line cetuximab and irinotecan: a phase 2 single-arm clinical trial. JAMA Oncol 2019; 5(3): 343-50.
[http://dx.doi.org/10.1001/jamaoncol.2018.5080] [PMID: 30476968]
[75]
Kilgour E, Rothwell DG, Brady G, Dive C. Liquid biopsy-based biomarkers of treatment response and resistance. Cancer Cell 2020; 37(4): 485-95.
[http://dx.doi.org/10.1016/j.ccell.2020.03.012] [PMID: 32289272]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy