Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Targeting Tumor Immunosuppressive Microenvironment for the Prevention of Hepatic Cancer: Applications of Traditional Chinese Medicines in Targeted Delivery

Author(s): Le-Yi Zhang, Jun-Gang Zhang, Xue Yang, Mao-Hua Cai, Cheng-Wu Zhang* and Zhi-Ming Hu*

Volume 20, Issue 30, 2020

Page: [2789 - 2800] Pages: 12

DOI: 10.2174/1568026620666201019111524

Price: $65

Abstract

Traditional Chinese Medicine (TCM) is one of the ancient and most accepted alternative medicinal systems in the world for the treatment of health ailments. World Health Organization recognizes TCM as one of the primary healthcare practices followed across the globe. TCM utilizes a holistic approach for the diagnosis and treatment of cancers. The tumor microenvironment (TME) surrounds cancer cells and plays pivotal roles in tumor development, growth, progression, and therapy resistance. TME is a hypoxic and acidic environment that includes immune cells, pericytes, fibroblasts, endothelial cells, various cytokines, growth factors, and extracellular matrix components. Targeting TME using targeted drug delivery and nanoparticles is an attractive strategy for the treatment of solid tumors and recently has received significant research attention under precise medicine concept. TME plays a pivotal role in the overall survival and metastasis of a tumor by stimulating cell proliferation, preventing the tumor clearance by the immune cells, enhancing the oncogenic potential of the cancer cells, and promoting tumor invasion. Hepatocellular Carcinoma (HCC) is one of the major causes of cancer-associated deaths affecting millions of individuals worldwide each year. TCM herbs contain several bioactive phytoconstituents with a broad range of biological, physiological, and immunological effects on the system. Several TCM herbs and their monomers have shown inhibitory effects in HCC by controlling the TME. This study reviews the fundamentals and applications of targeting strategies for immunosuppressing TME to treat cancers. This study focuses on TME targeting strategies using TCM herbs and the molecular mechanisms of several TCM herbs and their monomers on controlling TME.

Keywords: Traditional chinese medicine, Immunosuppressing, Targeting strategies, Tumor microenvironment, Hepatocellular carcinoma, Immunomodulation, Angiogenesis inhibitors.

Graphical Abstract

[1]
Fitzmaurice, C.; Abate, D.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdel-Rahman, O.; Abdelalim, A.; Abdoli, A.; Abdollahpour, I.; Abdulle, A.S.M.; Abebe, N.D.; Abraha, H.N.; Abu-Raddad, L.J.; Abualhasan, A.; Adedeji, I.A.; Advani, S.M.; Afarideh, M.; Afshari, M.; Aghaali, M.; Agius, D.; Agrawal, S.; Ahmadi, A.; Ahmadian, E.; Ahmadpour, E.; Ahmed, M.B.; Akbari, M.E.; Akinyemiju, T.; Al-Aly, Z. AlAbdulKader, A.M.; Alahdab, F.; Alam, T.; Alamene, G.M.; Alemnew, B.T.T.; Alene, K.A.; Alinia, C.; Alipour, V.; Aljunid, S.M.; Bakeshei, F.A.; Almadi, M.A.H.; Almasi-Hashiani, A.; Alsharif, U.; Alsowaidi, S.; Alvis-Guzman, N.; Amini, E.; Amini, S.; Amoako, Y.A.; Anbari, Z.; Anber, N.H.; Andrei, C.L.; Anjomshoa, M.; Ansari, F.; Ansariadi, A.; Appiah, S.C.Y.; Arab-Zozani, M.; Arabloo, J.; Arefi, Z.; Aremu, O.; Areri, H.A.; Artaman, A.; Asayesh, H.; Asfaw, E.T.; Ashagre, A.F.; Assadi, R.; Ataeinia, B.; Atalay, H.T.; Ataro, Z.; Atique, S.; Ausloos, M.; Avila-Burgos, L.; Avokpaho, E.F.G.A.; Awasthi, A.; Awoke, N.; Ayala Quintanilla, B.P.; Ayanore, M.A.; Ayele, H.T.; Babaee, E.; Bacha, U.; Badawi, A.; Bagherzadeh, M.; Bagli, E.; Balakrishnan, S.; Balouchi, A.; Bärnighausen, T.W.; Battista, R.J.; Behzadifar, M.; Behzadifar, M.; Bekele, B.B.; Belay, Y.B.; Belayneh, Y.M.; Berfield, K.K.S.; Berhane, A.; Bernabe, E.; Beuran, M.; Bhakta, N.; Bhattacharyya, K.; Biadgo, B.; Bijani, A.; Bin Sayeed, M.S.; Birungi, C.; Bisignano, C.; Bitew, H.; Bjørge, T.; Bleyer, A.; Bogale, K.A.; Bojia, H.A.; Borzì, A.M.; Bosetti, C.; Bou-Orm, I.R.; Brenner, H.; Brewer, J.D.; Briko, A.N.; Briko, N.I.; Bustamante-Teixeira, M.T.; Butt, Z.A.; Carreras, G.; Carrero, J.J.; Carvalho, F.; Castro, C.; Castro, F.; Catalá-López, F.; Cerin, E.; Chaiah, Y.; Chanie, W.F.; Chattu, V.K.; Chaturvedi, P.; Chauhan, N.S.; Chehrazi, M.; Chiang, P.P.C.; Chichiabellu, T.Y.; Chido-Amajuoyi, O.G.; Chimed-Ochir, O.; Choi, J.J.; Christopher, D.J.; Chu, D.T.; Constantin, M.M.; Costa, V.M.; Crocetti, E.; Crowe, C.S.; Curado, M.P.; Dahlawi, S.M.A.; Damiani, G.; Darwish, A.H.; Daryani, A.; das Neves, J.; Demeke, F.M.; Demis, A.B.; Demissie, B.W.; Demoz, G.T.; Denova-Gutiérrez, E.; Derakhshani, A.; Deribe, K.S.; Desai, R.; Desalegn, B.B.; Desta, M.; Dey, S.; Dharmaratne, S.D.; Dhimal, M.; Diaz, D.; Dinberu, M.T.T.; Djalalinia, S.; Doku, D.T.; Drake, T.M.; Dubey, M.; Dubljanin, E.; Duken, E.E.; Ebrahimi, H.; Effiong, A.; Eftekhari, A.; El Sayed, I.; Zaki, M.E.S.; El-Jaafary, S.I.; El-Khatib, Z.; Elemineh, D.A.; Elkout, H.; Ellenbogen, R.G.; Elsharkawy, A.; Emamian, M.H.; Endalew, D.A.; Endries, A.Y.; Eshrati, B.; Fadhil, I.; Fallah Omrani, V.; Faramarzi, M.; Farhangi, M.A.; Farioli, A.; Farzadfar, F.; Fentahun, N.; Fernandes, E.; Feyissa, G.T.; Filip, I.; Fischer, F.; Fisher, J.L.; Force, L.M.; Foroutan, M.; Freitas, M.; Fukumoto, T.; Futran, N.D.; Gallus, S.; Gankpe, F.G.; Gayesa, R.T.; Gebrehiwot, T.T.; Gebremeskel, G.G.; Gedefaw, G.A.; Gelaw, B.K.; Geta, B.; Getachew, S.; Gezae, K.E.; Ghafourifard, M.; Ghajar, A.; Ghashghaee, A.; Gholamian, A.; Gill, P.S.; Ginindza, T.T.G.; Girmay, A.; Gizaw, M.; Gomez, R.S.; Gopalani, S.V.; Gorini, G.; Goulart, B.N.G.; Grada, A.; Ribeiro Guerra, M.; Guimaraes, A.L.S.; Gupta, P.C.; Gupta, R.; Hadkhale, K.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hamadeh, R.R.; Hamidi, S.; Hanfore, L.K.; Haro, J.M.; Hasankhani, M.; Hasanzadeh, A.; Hassen, H.Y.; Hay, R.J.; Hay, S.I.; Henok, A.; Henry, N.J.; Herteliu, C.; Hidru, H.D.; Hoang, C.L.; Hole, M.K.; Hoogar, P.; Horita, N.; Hosgood, H.D.; Hosseini, M.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Househ, M.; Hussen, M.M.; Ileanu, B.; Ilic, M.D.; Innos, K.; Irvani, S.S.N.; Iseh, K.R.; Islam, S.M.S.; Islami, F.; Jafari Balalami, N.; Jafarinia, M.; Jahangiry, L.; Jahani, M.A.; Jahanmehr, N.; Jakovljevic, M.; James, S.L.; Javanbakht, M.; Jayaraman, S.; Jee, S.H.; Jenabi, E.; Jha, R.P.; Jonas, J.B.; Jonnagaddala, J.; Joo, T.; Jungari, S.B.; Jürisson, M.; Kabir, A.; Kamangar, F.; Karch, A.; Karimi, N.; Karimian, A.; Kasaeian, A.; Kasahun, G.G.; Kassa, B.; Kassa, T.D.; Kassaw, M.W.; Kaul, A.; Keiyoro, P.N.; Kelbore, A.G.; Kerbo, A.A.; Khader, Y.S.; Khalilarjmandi, M.; Khan, E.A.; Khan, G.; Khang, Y.H.; Khatab, K.; Khater, A.; Khayamzadeh, M.; Khazaee-Pool, M.; Khazaei, S.; Khoja, A.T.; Khosravi, M.H.; Khubchandani, J.; Kianipour, N.; Kim, D.; Kim, Y.J.; Kisa, A.; Kisa, S.; Kissimova-Skarbek, K.; Komaki, H.; Koyanagi, A.; Krohn, K.J.; Bicer, B.K.; Kugbey, N.; Kumar, V.; Kuupiel, D.; La Vecchia, C.; Lad, D.P.; Lake, E.A.; Lakew, A.M.; Lal, D.K.; Lami, F.H.; Lan, Q.; Lasrado, S.; Lauriola, P.; Lazarus, J.V.; Leigh, J.; Leshargie, C.T.; Liao, Y.; Limenih, M.A.; Listl, S.; Lopez, A.D.; Lopukhov, P.D.; Lunevicius, R.; Madadin, M.; Magdeldin, S.; El Razek, H.M.A.; Majeed, A.; Maleki, A.; Malekzadeh, R.; Manafi, A.; Manafi, N.; Manamo, W.A.; Mansourian, M.; Mansournia, M.A.; Mantovani, L.G.; Maroufizadeh, S.; Martini, S.M.S.; Mashamba-Thompson, T.P.; Massenburg, B.B.; Maswabi, M.T.; Mathur, M.R.; McAlinden, C.; McKee, M.; Meheretu, H.A.A.; Mehrotra, R.; Mehta, V.; Meier, T.; Melaku, Y.A.; Meles, G.G.; Meles, H.G.; Melese, A.; Melku, M.; Memiah, P.T.N.; Mendoza, W.; Menezes, R.G.; Merat, S.; Meretoja, T.J.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Mihretie, K.M.M.; Miller, T.R.; Mills, E.J.; Mir, S.M.; Mirzaei, H.; Mirzaei, H.R.; Mishra, R.; Moazen, B.; Mohammad, D.K.; Mohammad, K.A.; Mohammad, Y.; Darwesh, A.M.; Mohammadbeigi, A.; Mohammadi, H.; Mohammadi, M.; Mohammadian, M.; Mohammadian-Hafshejani, A.; Mohammadoo-Khorasani, M.; Mohammadpourhodki, R.; Mohammed, A.S.; Mohammed, J.A.; Mohammed, S.; Mohebi, F.; Mokdad, A.H.; Monasta, L.; Moodley, Y.; Moosazadeh, M.; Moossavi, M.; Moradi, G.; Moradi-Joo, M.; Moradi-Lakeh, M.; Moradpour, F.; Morawska, L.; Morgado-da-Costa, J.; Morisaki, N.; Morrison, S.D.; Mosapour, A.; Mousavi, S.M.; Muche, A.A.; Muhammed, O.S.S.; Musa, J.; Nabhan, A.F.; Naderi, M.; Nagarajan, A.J.; Nagel, G.; Nahvijou, A.; Naik, G.; Najafi, F.; Naldi, L.; Nam, H.S.; Nasiri, N.; Nazari, J.; Negoi, I.; Neupane, S.; Newcomb, P.A.; Nggada, H.A.; Ngunjiri, J.W.; Nguyen, C.T.; Nikniaz, L.; Ningrum, D.N.A.; Nirayo, Y.L.; Nixon, M.R.; Nnaji, C.A.; Nojomi, M.; Nosratnejad, S.; Shiadeh, M.N.; Obsa, M.S.; Ofori-Asenso, R.; Ogbo, F.A.; Oh, I.H.; Olagunju, A.T.; Olagunju, T.O.; Oluwasanu, M.M.; Omonisi, A.E.; Onwujekwe, O.E.; Oommen, A.M.; Oren, E.; Ortega-Altamirano, D.D.V.; Ota, E.; Otstavnov, S.S.; Owolabi, M.O.; P A, M.; Padubidri, J.R.; Pakhale, S.; Pakpour, A.H.; Pana, A.; Park, E.K.; Parsian, H.; Pashaei, T.; Patel, S.; Patil, S.T.; Pennini, A.; Pereira, D.M.; Piccinelli, C.; Pillay, J.D.; Pirestani, M.; Pishgar, F.; Postma, M.J.; Pourjafar, H.; Pourmalek, F.; Pourshams, A.; Prakash, S.; Prasad, N.; Qorbani, M.; Rabiee, M.; Rabiee, N.; Radfar, A.; Rafiei, A.; Rahim, F.; Rahimi, M.; Rahman, M.A.; Rajati, F.; Rana, S.M.; Raoofi, S.; Rath, G.K.; Rawaf, D.L.; Rawaf, S.; Reiner, R.C.; Renzaho, A.M.N.; Rezaei, N.; Rezapour, A.; Ribeiro, A.I.; Ribeiro, D.; Ronfani, L.; Roro, E.M.; Roshandel, G.; Rostami, A.; Saad, R.S.; Sabbagh, P.; Sabour, S.; Saddik, B.; Safiri, S.; Sahebkar, A.; Salahshoor, M.R.; Salehi, F.; Salem, H.; Salem, M.R.; Salimzadeh, H.; Salomon, J.A.; Samy, A.M.; Sanabria, J.; Santric Milicevic, M.M.; Sartorius, B.; Sarveazad, A.; Sathian, B.; Satpathy, M.; Savic, M.; Sawhney, M.; Sayyah, M.; Schneider, I.J.C.; Schöttker, B.; Sekerija, M.; Sepanlou, S.G.; Sepehrimanesh, M.; Seyedmousavi, S.; Shaahmadi, F.; Shabaninejad, H.; Shahbaz, M.; Shaikh, M.A.; Shamshirian, A.; Shamsizadeh, M.; Sharafi, H.; Sharafi, Z.; Sharif, M.; Sharifi, A.; Sharifi, H.; Sharma, R.; Sheikh, A.; Shirkoohi, R.; Shukla, S.R.; Si, S.; Siabani, S.; Silva, D.A.S.; Silveira, D.G.A.; Singh, A.; Singh, J.A.; Sisay, S.; Sitas, F.; Sobngwi, E.; Soofi, M.; Soriano, J.B.; Stathopoulou, V.; Sufiyan, M.B.; Tabarés-Seisdedos, R.; Tabuchi, T.; Takahashi, K.; Tamtaji, O.R.; Tarawneh, M.R.; Tassew, S.G.; Taymoori, P.; Tehrani-Banihashemi, A.; Temsah, M.H.; Temsah, O.; Tesfay, B.E.; Tesfay, F.H.; Teshale, M.Y.; Tessema, G.A.; Thapa, S.; Tlaye, K.G.; Topor-Madry, R.; Tovani-Palone, M.R.; Traini, E.; Tran, B.X.; Tran, K.B.; Tsadik, A.G.; Ullah, I.; Uthman, O.A.; Vacante, M.; Vaezi, M.; Varona Pérez, P.; Veisani, Y.; Vidale, S.; Violante, F.S.; Vlassov, V.; Vollset, S.E.; Vos, T.; Vosoughi, K.; Vu, G.T.; Vujcic, I.S.; Wabinga, H.; Wachamo, T.M.; Wagnew, F.S.; Waheed, Y.; Weldegebreal, F.; Weldesamuel, G.T.; Wijeratne, T.; Wondafrash, D.Z.; Wonde, T.E.; Wondmieneh, A.B.; Workie, H.M.; Yadav, R.; Yadegar, A.; Yadollahpour, A.; Yaseri, M.; Yazdi-Feyzabadi, V.; Yeshaneh, A.; Yimam, M.A.; Yimer, E.M.; Yisma, E.; Yonemoto, N.; Younis, M.Z.; Yousefi, B.; Yousefifard, M.; Yu, C.; Zabeh, E.; Zadnik, V.; Moghadam, T.Z.; Zaidi, Z.; Zamani, M.; Zandian, H.; Zangeneh, A.; Zaki, L.; Zendehdel, K.; Zenebe, Z.M.; Zewale, T.A.; Ziapour, A.; Zodpey, S.; Murray, C.J.L. Global burden of disease cancer collaboration. global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study. JAMA Oncol., 2019, 5(12), 1749-1768.
[http://dx.doi.org/10.1001/jamaoncol.2019.2996] [PMID: 31560378]
[2]
Singh, A.K.; Kumar, R.; Pandey, A.K. Hepatocellular carcinoma: causes, mechanism of progression and biomarkers. Curr. Chem. Genomics Transl. Med., 2018, 12, 9-26.
[http://dx.doi.org/10.2174/2213988501812010009] [PMID: 30069430]
[3]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[4]
Zamor, P.J.; deLemos, A.S.; Russo, M.W. Viral hepatitis and hepatocellular carcinoma: etiology and management. J. Gastrointest. Oncol., 2017, 8(2), 229-242.
[http://dx.doi.org/10.21037/jgo.2017.03.14] [PMID: 28480063]
[5]
Stanaway, J.D.; Flaxman, A.D.; Naghavi, M.; Fitzmaurice, C.; Vos, T.; Abubakar, I.; Abu-Raddad, L.J.; Assadi, R.; Bhala, N.; Cowie, B.; Forouzanfour, M.H.; Groeger, J.; Hanafiah, K.M.; Jacobsen, K.H.; James, S.L.; MacLachlan, J.; Malekzadeh, R.; Martin, N.K.; Mokdad, A.A.; Mokdad, A.H.; Murray, C.J.L.; Plass, D.; Rana, S.; Rein, D.B.; Richardus, J.H.; Sanabria, J.; Saylan, M.; Shahraz, S.; So, S.; Vlassov, V.V.; Weiderpass, E.; Wiersma, S.T.; Younis, M.; Yu, C.; El Sayed Zaki, M.; Cooke, G.S. The global burden of viral hepatitis from 1990 to 2013: findings from the global burden of disease study 2013. Lancet, 2016, 388(10049), 1081-1088.
[http://dx.doi.org/10.1016/S0140-6736(16)30579-7] [PMID: 27394647]
[6]
Tahmasebi Birgani, M.; Carloni, V. Tumor microenvironment, a paradigm in hepatocellular carcinoma progression and therapy. Int. J. Mol. Sci., 2017, 18(2), 18.
[http://dx.doi.org/10.3390/ijms18020405] [PMID: 28216578]
[7]
Adams, J.M.; Cory, S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ., 2018, 25(1), 27-36.
[http://dx.doi.org/10.1038/cdd.2017.161] [PMID: 29099483]
[8]
Weyandt, J.D.; Thompson, C.B.; Giaccia, A.J.; Rathmell, W.K. Metabolic alterations in cancer and their potential as therapeutic targets. Am. Soc. Clin. Oncol. Educ. Book, 2017, 37, 825-832.
[http://dx.doi.org/10.14694/EDBK_175561] [PMID: 28561705]
[9]
Wu, Q.; Zhou, L.; Lv, D.; Zhu, X.; Tang, H. Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression. J. Hematol. Oncol., 2019, 12(1), 53.
[http://dx.doi.org/10.1186/s13045-019-0739-0] [PMID: 31142326]
[10]
Yang, J.D.; Nakamura, I.; Roberts, L.R. The tumor microenvironment in hepatocellular carcinoma: current status and therapeutic targets. Semin. Cancer Biol., 2011, 21(1), 35-43.
[http://dx.doi.org/10.1016/j.semcancer.2010.10.007] [PMID: 20946957]
[11]
Roma-Rodrigues, C.; Mendes, R.; Baptista, P.V.; Fernandes, A.R. Targeting tumor microenvironment for cancer therapy. Int. J. Mol. Sci., 2019, 20(4), 20.
[http://dx.doi.org/10.3390/ijms20040840] [PMID: 30781344]
[12]
Seretis, F.; Seretis, C.; Youssef, H.; Chapman, M. Colorectal cancer: seed and soil hypothesis revisited. Anticancer Res., 2014, 34(5), 2087-2094.
[PMID: 24778010]
[13]
Husori, D.I.; Patilaya, P.; Sumantri, I.B.; Khaisar, N.E. Acute toxicity studies of acanthus illicifolius leaves ethanolic extract on male mice. Drug Invent. Today, 2018, 10, 2507-2513.
[14]
Philip, J.M.; Rebecca, L.J.; Abraham, H.M.; Venkatakrishnan, C.J.; Chandran, C.R. Anbuselvi. antibacterial activity of phytochemicals against oral bacteria. Drug Invent. Today, 2018, 10, 1091-1093.
[15]
Mustarichie, R.; Udin, L.Z. In Vitro Anticancer activity of extract fractions resulted from fermented endophytic fungi on taxus sumatrana. Drug Invent. Today, 2018, 10, 443-449.
[16]
Nikakhlagh, S.; Rahim, F.; Aryani, F.H.N.; Syahpoush, A.; Brougerdnya, M.G.; Saki, N. Herbal treatment of allergic rhinitis: the use of nigella sativa. Am. J. Otolaryngol., 2011, 32(5), 402-407.
[http://dx.doi.org/10.1016/j.amjoto.2010.07.019] [PMID: 20947211]
[17]
Kishore, M.; Abdulqader, A.T.; Shihab Ahmad, H.; Hanumantharao, Y. Anticancer and antibacterial potential of green silver nanoparticles synthesized from maytenus senegalensis (l.) leaf extract and their characterization. Drug Invent. Today, 2018, 10, 554-561.
[18]
Paul, R.; Geetha, R.V. Evaluation of anti-inflammatory action of illicium verum - an in vitro study. Drug Invent. Today, 2018, 10, 2441-2444.
[19]
Xu, J.; Song, Z.; Guo, Q.; Li, J. Synergistic effect and molecular mechanisms of traditional chinese medicine on regulating tumor microenvironment and cancer cells. Bio med Res. Int., 2016, 2016, 1490738.
[20]
Laplagne, C.; Domagala, M.; Le Naour, A.; Quemerais, C.; Hamel, D.; Fournié, J.J.; Couderc, B.; Bousquet, C.; Ferrand, A.; Poupot, M. Latest advances in targeting the tumor microenvironment for tumor suppression. Int. J. Mol. Sci., 2019, 20(19), 20.
[http://dx.doi.org/10.3390/ijms20194719] [PMID: 31547627]
[21]
Maimela, N.R.; Liu, S.; Zhang, Y. Fates of CD8+ T cells in Tumor Microenvironment. Comput. Struct. Biotechnol. J., 2018, 17, 1-13.
[http://dx.doi.org/10.1016/j.csbj.2018.11.004] [PMID: 30581539]
[22]
Hong, M.; Wang, N.; Feng, Y. Liver cancer treatment by chinese medicines and their active compounds. In: Anti-cancer Drugs - Nature, Synthesis and Cell; InTech: London; , 2016.
[http://dx.doi.org/10.5772/65319]
[23]
Balkwill, F.R.; Capasso, M.; Hagemann, T. The tumor microenvironment at a glance. J. Cell Sci., 2012, 125(Pt 23), 5591-5596.
[http://dx.doi.org/10.1242/jcs.116392] [PMID: 23420197]
[24]
Ostroumov, D.; Fekete-Drimusz, N.; Saborowski, M.; Kühnel, F.; Woller, N. CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell. Mol. Life Sci., 2018, 75(4), 689-713.
[http://dx.doi.org/10.1007/s00018-017-2686-7] [PMID: 29032503]
[25]
Farhood, B.; Najafi, M.; Mortezaee, K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review. J. Cell. Physiol., 2019, 234(6), 8509-8521.
[http://dx.doi.org/10.1002/jcp.27782] [PMID: 30520029]
[26]
van Dalen, F.J.; van Stevendaal, M.H.M.E.; Fennemann, F.L.; Verdoes, M.; Ilina, O. Molecular repolarisation of tumour-associated macrophages. Molecules, 2018, 24(1), 24.
[http://dx.doi.org/10.3390/molecules24010009] [PMID: 30577495]
[27]
Bhome, R.; Bullock, M.D.; Al Saihati, H.A.; Goh, R.W.; Primrose, J.N.; Sayan, A.E.; Mirnezami, A.H. A top-down view of the tumor microenvironment: structure, cells and signaling. Front. Cell Dev. Biol., 2015, 3, 33.
[http://dx.doi.org/10.3389/fcell.2015.00033] [PMID: 26075202]
[28]
Ries, C.H.; Cannarile, M.A.; Hoves, S.; Benz, J.; Wartha, K.; Runza, V.; Rey-Giraud, F.; Pradel, L.P.; Feuerhake, F.; Klaman, I.; Jones, T.; Jucknischke, U.; Scheiblich, S.; Kaluza, K.; Gorr, I.H.; Walz, A.; Abiraj, K.; Cassier, P.A.; Sica, A.; Gomez-Roca, C.; de Visser, K.E.; Italiano, A.; Le Tourneau, C.; Delord, J.P.; Levitsky, H.; Blay, J.Y.; Rüttinger, D. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell, 2014, 25(6), 846-859.
[http://dx.doi.org/10.1016/j.ccr.2014.05.016] [PMID: 24898549]
[29]
Malfitano, A.M.; Somma, S.D.; Prevete, N.; Portella, G. Virotherapy as a potential therapeutic approach for the treatment of aggressive thyroid cancer. Cancers (Basel), 2019, 11(10), 11.
[http://dx.doi.org/10.3390/cancers11101532] [PMID: 31636245]
[30]
Zhou, M.; Wen, K.; Bi, Y.; Lu, H.; Chen, J.; Hu, Y.; Chai, Z. The application of stimuli-responsive nanocarriers for targeted drug delivery. Curr. Top. Med. Chem., 2017, 17(20), 2319-2334.
[http://dx.doi.org/10.2174/1568026617666170224121008] [PMID: 28240179]
[31]
Bovy, N.; Blomme, B.; Frères, P.; Dederen, S.; Nivelles, O.; Lion, M.; Carnet, O.; Martial, J.A.; Noël, A.; Thiry, M.; Jérusalem, G.; Josse, C.; Bours, V.; Tabruyn, S.P.; Struman, I. Endothelial exosomes contribute to the antitumor response during breast cancer neoadjuvant chemotherapy via microRNA transfer. Oncotarget, 2015, 6(12), 10253-10266.
[http://dx.doi.org/10.18632/oncotarget.3520] [PMID: 25860935]
[32]
Barbouri, D.; Afratis, N.; Gialeli, C.; Vynios, D.H.; Theocharis, A.D.; Karamanos, N.K. Syndecans as modulators and potential pharmacological targets in cancer progression. Front. Oncol., 2014, 4, 4.
[http://dx.doi.org/10.3389/fonc.2014.00004] [PMID: 24551591]
[33]
Steichen, S.D.; Caldorera-Moore, M.; Peppas, N.A. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur. J. Pharm. Sci., 2013, 48(3), 416-427.
[http://dx.doi.org/10.1016/j.ejps.2012.12.006] [PMID: 23262059]
[34]
Giraldo, N.A.; Sanchez-Salas, R.; Peske, J.D.; Vano, Y.; Becht, E.; Petitprez, F.; Validire, P.; Ingels, A.; Cathelineau, X.; Fridman, W.H.; Sautès-Fridman, C. The clinical role of the TME in solid cancer. Br. J. Cancer, 2019, 120(1), 45-53.
[http://dx.doi.org/10.1038/s41416-018-0327-z] [PMID: 30413828]
[35]
Ma, L.; Hernandez, M.O.; Zhao, Y.; Mehta, M.; Tran, B.; Kelly, M.; Rae, Z.; Hernandez, J.M.; Davis, J.L.; Martin, S.P.; Kleiner, D.E.; Hewitt, S.M.; Ylaya, K.; Wood, B.J.; Greten, T.F.; Wang, X.W. Tumor cell biodiversity drives microenvironmental reprogramming in liver cancer. Cancer Cell, 2019, 36(4), 418-430.e6.
[http://dx.doi.org/10.1016/j.ccell.2019.08.007] [PMID: 31588021]
[36]
Zhang, Q.; Lou, Y.; Bai, X.L.; Liang, T.B. Immunometabolism: A novel perspective of liver cancer microenvironment and its influence on tumor progression. World J. Gastroenterol., 2018, 24(31), 3500-3512.
[http://dx.doi.org/10.3748/wjg.v24.i31.3500] [PMID: 30131656]
[37]
Lawless, S.J.; Kedia-Mehta, N.; Walls, J.F.; McGarrigle, R.; Convery, O.; Sinclair, L.V.; Navarro, M.N.; Murray, J.; Finlay, D.K. Glucose represses dendritic cell-induced T cell responses. Nat. Commun., 2017, 8, 15620.
[http://dx.doi.org/10.1038/ncomms15620] [PMID: 28555668]
[38]
Yaqoob, P. Fatty acids as gatekeepers of immune cell regulation. Trends Immunol., 2003, 24(12), 639-645.
[http://dx.doi.org/10.1016/j.it.2003.10.002] [PMID: 14644137]
[39]
Fang, M.; Yuan, J.; Chen, M.; Sun, Z.; Liu, L.; Cheng, G.; Ying, H.; Yang, S.; Chen, M. The heterogenic tumor microenvironment of hepatocellular carcinoma and prognostic analysis based on tumor neo-vessels, macrophages and α-SMA. Oncol. Lett., 2018, 15(4), 4805-4812.
[http://dx.doi.org/10.3892/ol.2018.7946] [PMID: 29552120]
[40]
Nishida, N.; Kudo, M. Oncogenic signal and tumor microenvironment in hepatocellular carcinoma. Oncology, 2017, 93(Suppl. 1), 160-164.
[http://dx.doi.org/10.1159/000481246] [PMID: 29258072]
[41]
Liu, J.; Wang, S.; Zhang, Y.; Fan, H.T.; Lin, H.S. Traditional Chinese medicine and cancer: History, present situation, and development. Thorac. Cancer, 2015, 6(5), 561-569.
[http://dx.doi.org/10.1111/1759-7714.12270] [PMID: 26445604]
[42]
Lin, W.F.; Lu, J.Y.; Cheng, B.B.; Ling, C.Q. Progress in research on the effects of traditional Chinese medicine on the tumor microenvironment. J. Integr. Med., 2017, 15(4), 282-287.
[http://dx.doi.org/10.1016/S2095-4964(17)60345-5] [PMID: 28659232]
[43]
Yin, S.Y.; Wei, W.C.; Jian, F.Y.; Yang, N.S. Therapeutic applications of herbal medicines for cancer patients. Evidence-based Complementary and Alternative Medicine, 2013., 302426. (In press)
[http://dx.doi.org/10.1155/2013/302426]
[44]
Nie, J.; Zhao, C.; Deng, L.I.; Chen, J.; Yu, B.; Wu, X.; Pang, P.; Chen, X. Efficacy of traditional Chinese medicine in treating cancer. Biomed. Rep., 2016, 4(1), 3-14.
[http://dx.doi.org/10.3892/br.2015.537] [PMID: 26870326]
[45]
Nathanael, L. Guang-Biab. Zhou; Bhavana, Prasher; Mitali, Mukerji;Zhu, Chen; Samir, Brahamachari; Noble, Denis; Auffray Charles; Sagner, M. Traditional knowledge-based medicine: a review of history: progress in preventive medicine. Prog. Prev. Med., 2017, 2, e0011.
[46]
Liao, X.; Bu, Y.; Jia, Q. Traditional Chinese medicine as supportive care for the management of liver cancer: Past, present, and future. Genes Dis., 2019, 7(3), 370-379.
[http://dx.doi.org/10.1016/j.gendis.2019.10.016] [PMID: 32884991]
[47]
Guan, Y.; He, Q. Liver Cancer: Zheng Classification of Qi Stagnation and Blood Stasis. Pharmacol. & Amp. Pharm., 2014, 05, 75-82.
[48]
Chen, Z.; Chen, L.Y.; Wang, P.; Dai, H.Y.; Gao, S.; Wang, K. Tumor microenvironment varies under different tcm zheng models and correlates with treatment response to herbal medicine. Evidence-based Complement. Altern. Med, 2012, 2012(6), 635702.
[49]
Ling, C. quan; Fan, J.; Lin, H. sheng; Shen, F.; Xu, Z. ye; Lin, L. zhu; Qin, S. kui; Zhou, W. ping; Zhai, X. feng; Li, B.; Zhou, Q. hui. Clinical practice guidelines for the treatment of primary liver cancer with integrative traditional chinese and western medicine. J. Integr. Med., 2018, 16, 236-248.
[http://dx.doi.org/10.1016/j.joim.2018.05.002] [PMID: 29891180]
[50]
Yadollahpour, A. Magnetic nanoparticles in medicine: a review of synthesis methods and important characteristics. Orient. J. Chem., 2015, 31, 271-277.
[http://dx.doi.org/10.13005/ojc/31.Special-Issue1.33]
[51]
Yadollahpour, A.; Hosseini, S.A.A.; Jalilifar, M.; Rashidi, S.; Rai, B.M.M. Magnetic nanoparticle-based drug and gene delivery: a review of recent advances and clinical applications. Int. J. Pharm. Technol., 2016, 8, 11451-11466.
[52]
Sweetha, G.; Abraham, A.; Dhanraj, M.; Jain, A.R. Fabrication and evaluation of polylactic acid membrane for drug delivery system. Drug Invent. Today, 2018, 10, 433-436.
[53]
Lin, N.; Zhang, Y.; Mao, X. Application and perspectives of traditional chinese medicine in the treatment of liver cancer. Cancer Transl. Med., 2015, 1, 101.
[http://dx.doi.org/10.4103/2395-3977.159538]
[54]
Yang, Z.; Liao, X.; Lu, Y.; Xu, Q.; Tang, B.; Chen, X.; Yu, Y. Add-on therapy with traditional chinese medicine improves outcomes and reduces adverse events in hepatocellular carcinoma: a meta-analysis of randomized controlled trials. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 3428253.
[http://dx.doi.org/10.1155/2017/3428253]
[55]
Wu, R.; Ru, Q.; Chen, L.; Ma, B.; Li, C. Stereospecificity of ginsenoside Rg3 in the promotion of cellular immunity in hepatoma H22-bearing mice. J. Food Sci., 2014, 79(7), H1430-H1435.
[http://dx.doi.org/10.1111/1750-3841.12518] [PMID: 25041540]
[56]
Nicholson, S.E.; Keating, N.; Belz, G.T. Natural killer cells and anti-tumor immunity. Mol. Immunol., 2019, 110, 40-47.
[http://dx.doi.org/10.1016/j.molimm.2017.12.002] [PMID: 29233542]
[57]
Lee, J.; Lee, S.J.; Lim, K.T. ZPDC glycoprotein (24 kDa) induces apoptosis and enhances activity of NK cells in N-nitrosodiethylamine-injected Balb/c. Cell. Immunol., 2014, 289(1-2), 1-6.
[http://dx.doi.org/10.1016/j.cellimm.2014.03.002] [PMID: 24681514]
[58]
Wong, C.; Goldstein, D.R. Impact of aging on antigen presentation cell function of dendritic cells. Curr. Opin. Immunol., 2013, 25(4), 535-541.
[http://dx.doi.org/10.1016/j.coi.2013.05.016] [PMID: 23806201]
[59]
Takei, M.; Tachikawa, E.; Umeyama, A. Dendritic cells promoted by ginseng saponins drive a potent th1 polarization. Biomark. Insights, 2008, 3, 269-286.
[http://dx.doi.org/10.4137/BMI.S585]
[60]
Terhune, J.; Berk, E.; Czerniecki, B.J. Dendritic cell-induced th1 and th17 cell differentiation for cancer therapy. Vaccines (Basel), 2013, 1(4), 527-549.
[http://dx.doi.org/10.3390/vaccines1040527] [PMID: 26344346]
[61]
Ni, L.; Lu, J. Interferon gamma in cancer immunotherapy. Cancer Med., 2018, 7(9), 4509-4516.
[http://dx.doi.org/10.1002/cam4.1700] [PMID: 30039553]
[62]
Salimian Rizi, B.; Achreja, A.; Nagrath, D. Nitric oxide: the forgotten child of tumor metabolism. Trends Cancer, 2017, 3(9), 659-672.
[http://dx.doi.org/10.1016/j.trecan.2017.07.005] [PMID: 28867169]
[63]
Li, Z.; Hao, H.; Tian, W.; Jiao, Y.; Deng, X.; Han, S.; Han, J. Nitric oxide, a communicator between tumor cells and endothelial cells, mediates the anti-tumor effects of Marsdenia Tenacissima Extract (MTE). J. Ethnopharmacol., 2020, 250, 112524.
[http://dx.doi.org/10.1016/j.jep.2019.112524] [PMID: 31884032]
[64]
Yu, D.; An, G.Y. Clinical effects of xihuang pill combined with chemotherapy in patients with advanced colorectal cancer. Evidence-based Complement. Altern. Med, 2017, 2017, 5936086.
[65]
Su, L.; Jiang, Y.; Xu, Y.; Li, X.; Gao, W.; Xu, C.; Zeng, C.; Song, J.; Weng, W.; Liang, W. Xihuang pill promotes apoptosis of Treg cells in the tumor microenvironment in 4T1 mouse breast cancer by upregulating MEKK1/SEK1/JNK1/AP-1 pathway. Biomed. Pharmacother., 2018, 102, 1111-1119.
[http://dx.doi.org/10.1016/j.biopha.2018.03.063] [PMID: 29710529]
[66]
Fan, Y.; Li, S.; Ding, X.; Yue, J.; Jiang, J.; Zhao, H.; Hao, R.; Qiu, W.; Liu, K.; Li, Y.; Wang, S.; Zheng, L.; Ye, B.; Meng, K.; Xu, B. First-in-class immune-modulating small molecule Icaritin in advanced hepatocellular carcinoma: preliminary results of safety, durable survival and immune biomarkers. BMC Cancer, 2019, 19(1), 279.
[http://dx.doi.org/10.1186/s12885-019-5471-1] [PMID: 30922248]
[67]
Li, W.; Wang, M.; Wang, L.; Ji, S.; Zhang, J.; Zhang, C. Icariin synergizes with arsenic trioxide to suppress human hepatocellular carcinoma. Cell Biochem. Biophys., 2014, 68(2), 427-436.
[http://dx.doi.org/10.1007/s12013-013-9724-3] [PMID: 23975599]
[68]
Ma, Y.; Feng, C.; Wang, J.; Chen, Z.; Wei, P.; Fan, A.; Wang, X.; Yu, X.; Ge, D.; Xie, H.; Liu, L.; Zhang, Q.; Li, X.H. Hydroxyl safflower yellow A regulates the tumor immune microenvironment to produce an anticancer effect in a mouse model of hepatocellular carcinoma. Oncol. Lett., 2019, 17(3), 3503-3510.
[http://dx.doi.org/10.3892/ol.2019.9946] [PMID: 30867790]
[69]
Jiang, Y.X.; Chen, Y.; Yang, Y.; Chen, X.X.; Zhang, D.D.Y.X. Screening five qi-tonifying herbs on m2 phenotype macrophages. Evid. Based Complement. Alternat. Med., 2019, 2019, 9549315-9549315.
[http://dx.doi.org/10.1155/2019/9549315] [PMID: 30766614]
[70]
Brown, J.M.; Recht, L.; Strober, S. The promise of targeting macrophages in cancer therapy. Clin. Cancer Res., 2017, 23(13), 3241-3250.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-3122] [PMID: 28341752]
[71]
Li, A.; Shuai, X.; Jia, Z.; Li, H.; Liang, X.; Su, D.; Guo, W. Ganoderma lucidum polysaccharide extract inhibits hepatocellular carcinoma growth by downregulating regulatory T cells accumulation and function by inducing microRNA-125b. J. Transl. Med., 2015, 13, 100.
[http://dx.doi.org/10.1186/s12967-015-0465-5] [PMID: 25889022]
[72]
Jing, Y.; Han, Z.; Zhang, S.; Liu, Y.; Wei, L. Epithelial-mesenchymal transition in tumor microenvironment. Cell Biosci., 2011, 1, 29.
[http://dx.doi.org/10.1186/2045-3701-1-29] [PMID: 21880137]
[73]
Condeelis, J.; Segall, J.E. Intravital imaging of cell movement in tumours. Nat. Rev. Cancer, 2003, 3(12), 921-930.
[http://dx.doi.org/10.1038/nrc1231] [PMID: 14737122]
[74]
Liang, S.; Zou, Y.; Gao, J.; Liu, X.; Lin, W.; Yin, Z.; Du, J.; Zhang, Y.; Chen, Q.; Li, S.; Cheng, B.; Ling, C. The chinese medicine, jiedu recipe, inhibits the epithelial mesenchymal transition of hepatocellular carcinoma via the regulation of smad2/3 dependent and independent pathways. Evid. Based Complement. Alternat. Med., 2018, 2018, 5629304.
[75]
Hu, S.; Zhu, Y.; Xia, X.; Xu, X.; Chen, F.; Miao, X.; Chen, X. Ginsenoside rg3 prolongs survival of the orthotopic hepatocellular carcinoma model by inducing apoptosis and inhibiting angiogenesis. Anal. Cell. Pathol., 2019. (In press)
[http://dx.doi.org/10.1155/2019/3815786]
[76]
Lu, Z.; Chang, L.; Zhou, H.; Liu, X.; Li, Y.; Mi, T.; Tong, D. Arctigenin attenuates tumor metastasis through inhibiting epithelial-mesenchymal transition in hepatocellular carcinoma via suppressing gsk3β-dependent wnt/β-catenin signaling pathway in vivo and in vitro. Front. Pharmacol., 2019, 10, 937.
[77]
Nallanthighal, S.; Heiserman, J.P.; Cheon, D-J. The role of the extracellular matrix in cancer stemness. Front. Cell Dev. Biol., 2019, 7, 86.
[http://dx.doi.org/10.3389/fcell.2019.00086] [PMID: 31334229]
[78]
Song, J.; Ge, Z.; Yang, X.; Luo, Q.; Wang, C.; You, H.; Ge, T.; Deng, Y.; Lin, H.; Cui, Y.; Chu, W.; Yao, M.; Zhang, Z.; Gu, J.; Fan, J.; Qin, W. Hepatic stellate cells activated by acidic tumor microenvironment promote the metastasis of hepatocellular carcinoma via osteopontin. Cancer Lett., 2015, 356(2 Pt B), 713-720.
[http://dx.doi.org/10.1016/j.canlet.2014.10.021] [PMID: 25449435]
[79]
Wright, J.H.; Johnson, M.M.; Shimizu-Albergine, M.; Bauer, R.L.; Hayes, B.J.; Surapisitchat, J.; Hudkins, K.L.; Riehle, K.J.; Johnson, S.C.; Yeh, M.M.; Bammler, T.K.; Beyer, R.P.; Gilbertson, D.G.; Alpers, C.E.; Fausto, N.; Campbell, J.S. Paracrine activation of hepatic stellate cells in platelet-derived growth factor C transgenic mice: evidence for stromal induction of hepatocellular carcinoma. Int. J. Cancer, 2014, 134(4), 778-788.
[http://dx.doi.org/10.1002/ijc.28421] [PMID: 23929039]
[80]
Liotta, L.A. Adhere, degrade, and move: the three-step model of invasion. Cancer Res., 2016, 76(11), 3115-3117.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1297] [PMID: 27251085]
[81]
Deng, W.; Sui, H.; Wang, Q.; He, N.; Duan, C.; Han, L.; Li, Q.; Lu, M.; Lv, S. A Chinese herbal formula, Yi-Qi-Fu-Sheng, inhibits migration/invasion of colorectal cancer by down-regulating MMP-2/9 via inhibiting the activation of ERK/MAPK signaling pathways. BMC Complement. Altern. Med., 2013, 13, 65.
[http://dx.doi.org/10.1186/1472-6882-13-65] [PMID: 23506655]
[82]
Wang, Y.; Zhang, S.; Liu, J.; Fang, B.; Yao, J.; Cheng, B. Matrine inhibits the invasive and migratory properties of human hepatocellular carcinoma by regulating epithelial mesenchymal transition. Mol. Med. Rep., 2018, 18(1), 911-919.
[http://dx.doi.org/10.3892/mmr.2018.9023] [PMID: 29845189]
[83]
Pang, D.; Yang, C.; Li, C.; Zou, Y.; Feng, B.; Li, L.; Liu, W.; Luo, Q.; Chen, Z.; Huang, C.; Polyphyllin, I.I. Inhibits liver cancer cell proliferation, migration and invasion through downregulated cofilin activity and the akt/nf-kb pathway. Biol. Open, 2020, 9(2), bio046854.
[84]
Morse, M.A.; Sun, W.; Kim, R.; He, A.R.; Abada, P.B.; Mynderse, M.; Finn, R.S. The role of angiogenesis in hepatocellular carcinoma. Clin. Cancer Res., 2019, 25(3), 912-920.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1254] [PMID: 30274981]
[85]
Muz, B.; de la Puente, P.; Azab, F.; Azab, A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl.), 2015, 3, 83-92.
[http://dx.doi.org/10.2147/HP.S93413] [PMID: 27774485]
[86]
Katayama, Y.; Uchino, J.; Chihara, Y.; Tamiya, N.; Kaneko, Y.; Yamada, T.; Takayama, K. Tumor neovascularization and developments in therapeutics. Cancers (Basel), 2019, 11(3), 11.
[http://dx.doi.org/10.3390/cancers11030316] [PMID: 30845711]
[87]
Rajabi, M.; Mousa, S.A. The role of angiogenesis in cancer treatment. Biomedicines, 2017, 5(2), 5.
[http://dx.doi.org/10.3390/biomedicines5020034] [PMID: 28635679]
[88]
Yang, F.; Li, J.; Zhu, J.; Wang, D.; Chen, S.; Bai, X. Hydroxysafflor yellow A inhibits angiogenesis of hepatocellular carcinoma via blocking ERK/MAPK and NF-κB signaling pathway in H22 tumor-bearing mice. Eur. J. Pharmacol., 2015, 754, 105-114.
[http://dx.doi.org/10.1016/j.ejphar.2015.02.015] [PMID: 25720342]
[89]
Xie, T.X.; Xia, Z.; Zhang, N.; Gong, W.; Huang, S. Constitutive NF-kappaB activity regulates the expression of VEGF and IL-8 and tumor angiogenesis of human glioblastoma. Oncol. Rep., 2010, 23(3), 725-732.
[PMID: 20127012]
[90]
Zhou, Y.; Liu, Y.; Chen, J.; Sun, Y.Z.; Li, L.H.; Chen, L. Inhibition of β-elemene on the expressions of HIF-lα, VEGF and iNOS in diabetic rats model. Int. J. Ophthalmol., 2019, 12(11), 1693-1698.
[http://dx.doi.org/10.18240/ijo.2019.11.05] [PMID: 31741856]
[91]
Li, X.; Lin, Z.; Zhang, B.; Guo, L.; Liu, S.; Li, H.; Zhang, J.; Ye, Q. β-elemene sensitizes hepatocellular carcinoma cells to oxaliplatin by preventing oxaliplatin-induced degradation of copper transporter 1. Sci. Rep., 2016, 6, 21010.
[http://dx.doi.org/10.1038/srep21010] [PMID: 26867799]
[92]
Chen, S.H.; Chang, J.Y. New insights into mechanisms of cisplatin resistance: from tumor cell to microenvironment. Int. J. Mol. Sci., 2019, 20(17), 20.
[http://dx.doi.org/10.3390/ijms20174136] [PMID: 31450627]
[93]
Porcu, C.; Antonucci, L.; Barbaro, B.; Illi, B.; Nasi, S.; Martini, M.; Licata, A.; Miele, L.; Grieco, A.; Balsano, C. Copper/MYC/CTR1 interplay: a dangerous relationship in hepatocellular carcinoma. Oncotarget, 2018, 9(10), 9325-9343.
[http://dx.doi.org/10.18632/oncotarget.24282] [PMID: 29507693]
[94]
Yang, C.S.; Chen, G.; Wu, Q. Recent scientific studies of a traditional chinese medicine, tea, on prevention of chronic diseases. J. Tradit. Complement. Med., 2014, 4(1), 17-23.
[http://dx.doi.org/10.4103/2225-4110.124326] [PMID: 24872929]
[95]
Lee, S.I.; Kim, H.J.; Boo, Y.C. Effect of green tea and (-)-epigallocatechin gallate on ethanol-induced toxicity in HepG2 cells. Phytother. Res., 2008, 22(5), 669-674.
[http://dx.doi.org/10.1002/ptr.2390] [PMID: 18350509]
[96]
Sharma, S.; Tanwar, A.; Gupta, D.K. Curcumin: An adjuvant therapeutic remedy for liver cancer. Hepatoma Res., 2016, 2, 62.
[http://dx.doi.org/10.20517/2394-5079.2015.59]
[97]
Pan, Z.; Zhuang, J.; Ji, C.; Cai, Z.; Liao, W.; Huang, Z. Curcumin inhibits hepatocellular carcinoma growth by targeting VEGF expression. Oncol. Lett., 2018, 15(4), 4821-4826.
[http://dx.doi.org/10.3892/ol.2018.7988] [PMID: 29552121]
[98]
Hu, B.; An, H.M.; Yan, X.; Zheng, J.L.; Huang, X.W.; Li, M. Traditional Chinese medicine formulation yanggan jiedu sanjie inhibits TGF-B1-induced epithelial-mesenchymal transition and metastatic potential in human hepatocarcinoma Bel-7402 cells. BMC Complement. Altern. Med., 2019, 19, 67.
[99]
Méndez-Blanco, C.; Fondevila, F.; García-Palomo, A.; González-Gallego, J.; Mauriz, J.L. Sorafenib resistance in hepatocarcinoma: role of hypoxia-inducible factors. Exp. Mol. Med., 2018, 50(10), 1-9.
[http://dx.doi.org/10.1038/s12276-018-0159-1] [PMID: 30315182]
[100]
Rong, L.W.; Wang, R.X.; Zheng, X.L.; Feng, X.Q.; Zhang, L.; Zhang, L.; Lin, Y.; Li, Z.P.; Wang, X. Combination of wogonin and sorafenib effectively kills human hepatocellular carcinoma cells through apoptosis potentiation and autophagy inhibition. Oncol. Lett., 2017, 13(6), 5028-5034.
[http://dx.doi.org/10.3892/ol.2017.6059] [PMID: 28599504]
[101]
Hong, M.; Almutairi, M.M.; Li, S.; Li, J. Wogonin inhibits cell cycle progression by activating the glycogen synthase kinase-3 beta in hepatocellular carcinoma. Phytomedicine, 2020, 68, 153174.
[http://dx.doi.org/10.1016/j.phymed.2020.153174] [PMID: 31991293]
[102]
Chen, Y.C.; Shen, S.C.; Lee, W.R.; Lin, H.Y.; Ko, C.H.; Shih, C.M.; Yang, L.L. Wogonin and fisetin induction of apoptosis through activation of caspase 3 cascade and alternative expression of p21 protein in hepatocellular carcinoma cells SK-HEP-1. Arch. Toxicol., 2002, 76(5-6), 351-359.
[http://dx.doi.org/10.1007/s00204-002-0346-6] [PMID: 12107653]
[103]
Hu, Z.; Yang, A.; Su, G.; Zhao, Y.; Wang, Y.; Chai, X.; Tu, P. Huaier restrains proliferative and invasive potential of human hepatoma SKHEP-1 cells partially through decreased Lamin B1 and elevated NOV. Sci. Rep., 2016, 6, 31298.
[http://dx.doi.org/10.1038/srep31298] [PMID: 27503760]
[104]
Bao, H.; Liu, P.; Jiang, K.; Zhang, X.; Xie, L.; Wang, Z.; Gong, P. Huaier polysaccharide induces apoptosis in hepatocellular carcinoma cells through p38 MAPK. Oncol. Lett., 2016, 12(2), 1058-1066.
[http://dx.doi.org/10.3892/ol.2016.4686] [PMID: 27446394]
[105]
Li, L.K.; Kuang, W.J.; Huang, Y.F.; Xie, H.H.; Chen, G.; Zhou, Q.C.; Wang, B.R.; Wan, L.H. Anti-tumor effects of Astragalus on hepatocellular carcinoma in vivo. Indian J. Pharmacol., 2012, 44(1), 78-81.
[http://dx.doi.org/10.4103/0253-7613.91872] [PMID: 22345875]
[106]
Sunwoo, Y.Y.; Lee, J.H.; Jung, H.Y.; Jung, Y.J.; Park, M.S.; Chung, Y.A.; Maeng, L.S.; Han, Y.M.; Shin, H.S.; Lee, J.; Park, S.I. Oldenlandia diffusa promotes antiproliferative and apoptotic effects in a rat hepatocellular carcinoma with liver cirrhosis. Evidence-based Complement. Altern. Med., 2015, 2015(3), 501508.
[107]
Sharma, I.; Singh, A.; Siraj, F.; Saxena, S. IL-8/CXCR1/2 signalling promotes tumor cell proliferation, invasion and vascular mimicry in glioblastoma. J. Biomed. Sci., 2018, 25(1), 62.
[http://dx.doi.org/10.1186/s12929-018-0464-y] [PMID: 30086759]
[108]
Jiang, J.W.; Chen, X.M.; Chen, X.H.; Zheng, S.S. Ginsenoside Rg3 inhibit hepatocellular carcinoma growth via intrinsic apoptotic pathway. World J. Gastroenterol., 2011, 17(31), 3605-3613.
[http://dx.doi.org/10.3748/wjg.v17.i31.3605] [PMID: 21987607]
[109]
Hu, Y.; Wang, S.; Wu, X.; Zhang, J.; Chen, R.; Chen, M.; Wang, Y. Chinese herbal medicine-derived compounds for cancer therapy: a focus on hepatocellular carcinoma. J. Ethnopharmacol., 2013, 149(3), 601-612.
[http://dx.doi.org/10.1016/j.jep.2013.07.030] [PMID: 23916858]
[110]
Ling, C.Q.; Yue, X.Q.; Ling, C. Three advantages of using traditional Chinese medicine to prevent and treat tumor. J. Integr. Med., 2014, 12(4), 331-335.
[http://dx.doi.org/10.1016/S2095-4964(14)60038-8] [PMID: 25074882]
[111]
Zeng, Z.; Xu, X.; Chen, D. Effects of Traditional Chinese Medicine on DCs Under Tumor Microenvironment; Springer: Dordrecht, 2015, pp. 55-63.
[http://dx.doi.org/10.1007/978-94-017-7405-5_5]
[112]
Liu, F.; Lou, G.; Zhang, T.; Chen, S.; Xu, J.; Xu, L.; Huang, C.; Liu, Y.; Chen, Z. Anti-metastasis traditional Chinese medicine monomer screening system based on perinucleolar compartment analysis in hepatocellular carcinoma cells. Am. J. Transl. Res., 2019, 11(6), 3555-3566.
[PMID: 31312366]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy