Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Review Article

Ciliary Flow of Casson Nanofluid with the Influence of MHD having Carbon Nanotubes

Author(s): Adel Alblawi, Saba Keyani, S. Nadeem*, Alibek Issakhov and Ibrahim M. Alarifi

Volume 17, Issue 3, 2021

Published on: 15 October, 2020

Page: [447 - 462] Pages: 16

DOI: 10.2174/1573413716999201015090335

Price: $65

Abstract

Objective: In this paper, we consider a model that describes the ciliary beating in the form of metachronal waves along with the effects of Magnetohydrodynamic fluid over a curved channel with slip effects. This work aims at evaluating the effect of Magnetohydrodynamic (MHD) on the steady two dimensional (2-D) mixed convection flow induced in carbon nanotubes. The work is done for both the single wall nanotube and multiple wall nanotube. The right wall and the left wall possess a metachronal wave that is travelling along the outer boundary of the channel.

Methods: The wavelength is considered very large for cilia induced MHD flow. The governing linear coupled equations are simplified by considering the approximations of long wavelength and small Reynolds number. Exact solutions are obtained for temperature and velocity profiles. The analytical expressions for the pressure gradient and wall shear stresses are obtained. The term for pressure rise is obtained by applying Numerical integration method.

Results: Numerical results of velocity profile are mentioned in a table form, for various values of solid volume fraction, curvature, Hartmann number [M] and Casson fluid parameter [ζ]. The final section of this paper is devoted to discussing the graphical results of temperature, pressure gradient, pressure rise, shear stresses and stream functions.

Conclusion: Velocity profile near the right wall of the channel decreases when we add nanoparticles into our base fluid, whereas the opposite behaviour is depicted near the left wall due to ciliated tips, whereas the temperature is an increasing function of B and γ and a decreasing function of Φ.

Keywords: Peristalsis, cilia induced flow, casson nanofluid, curved channel, magneto-hydrodynamic, metachronal waves.

Graphical Abstract

[1]
Abbasi, F.M.; Shanakhat, I.; Shehzad, S.A. Entropy generation analysis for peristalsis of nanofluid with temperature dependent viscosity and Hall effects. J. Magn. Magn. Mater., 2005, 474, 434- 441..
[http://dx.doi.org/10.1016/j.jmmm.2018.10.132]
[2]
Farooq, S.; Awais, M.; Naseem, M.; Hayat, T.; Ahmad, B. Magnetohydrodynamic peristalsis of variable viscosity Jeffrey liquid with heat and mass transfer. Nucl. Eng. Technol., 2017, 49(7), 1396-1404.
[http://dx.doi.org/10.1016/j.net.2017.07.013]
[3]
Tripathi, D.; Bhushan, S.; Bég, O.A. Unsteady viscous flow driven by the combined effects of peristalsis and electro-osmosis. Alex. Eng. J., 2018, 57(3), 1349-1359.
[http://dx.doi.org/10.1016/j.aej.2017.05.027]
[4]
Ashraf, H.; Siddiqui, A.M.; Rana, M.A. Analysis of the peristaltic-ciliary flow of Johnson-Segalman fluid induced by peristalsis-cilia of the human fallopian tube. Math. Biosci., 2018, 300, 64-75.
[http://dx.doi.org/10.1016/j.mbs.2018.03.018] [PMID: 29571813]
[5]
Feriani, L.; Juenet, M.; Fowler, C.J.; Bruot, N.; Chioccioli, M.; Holland, S.M.; Bryant, C.E.; Cicuta, P. Assessing the collective dynamics of motile cilia in cultures of human airway cells by multiscale DDM. Biophys. J., 2017, 113(1), 109-119.
[http://dx.doi.org/10.1016/j.bpj.2017.05.028] [PMID: 28700909]
[6]
Ponalagusamy, R. Mathematical analysis of flow of non-Newtonian fluid due to metachronal beating of cilia in a tube and its physiological applications. Appl. Math. Comput., 2018, 337, 545-561.
[http://dx.doi.org/10.1016/j.amc.2018.05.048]
[7]
Luu, V.Z.; Chowdhury, B.; Al-Omran, M.; Hess, D.A.; Verma, S. Role of endothelial primary cilia as fluid mechanosensors on vascular health. Atherosclerosis, 2018, 275, 196-204.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.06.818] [PMID: 29945035]
[8]
Goetz, S.C.; Anderson, K.V. The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet., 2010, 11(5), 331-344.
[http://dx.doi.org/10.1038/nrg2774] [PMID: 20395968]
[9]
Mizuno, N.; Taschner, M.; Engel, B.D.; Lorentzen, E. Structural studies of ciliary components. J. Mol. Biol., 2012, 422(2), 163-180.
[http://dx.doi.org/10.1016/j.jmb.2012.05.040] [PMID: 22683354]
[10]
Lardner, T.J.; Shack, W.J. Cilia transport. Bull. Math. Biophys., 1972, 34(3), 325-335.
[http://dx.doi.org/10.1007/BF02476445] [PMID: 4657074]
[11]
Ariane, M.; Kassinos, S.; Velaga, S.; Alexiadis, A. Discrete multi-physics simulations of diffusive and convective mass transfer in boundary layers containing motile cilia in lungs. Comput. Biol. Med., 2018, 95, 34-42.
[http://dx.doi.org/10.1016/j.compbiomed.2018.01.010] [PMID: 29438794]
[12]
Marshall, W.F.; Nonaka, S. Cilia: tuning in to the cell’s antenna. Curr. Biol., 2006, 16(15), R604-R614.
[http://dx.doi.org/10.1016/j.cub.2006.07.012] [PMID: 16890522]
[13]
Salisbury, J.L. Primary cilia: putting sensors together. Curr. Biol., 2004, 14(18), R765-R767.
[http://dx.doi.org/10.1016/j.cub.2004.09.016] [PMID: 15380089]
[14]
Akbar, N.S.; Khan, Z.H. Metachronal beating of cilia under the influence of Casson fluid and magnetic field. J. Magn. Magn. Mater., 2015, 378, 320-326.
[http://dx.doi.org/10.1016/j.jmmm.2014.11.056]
[15]
Choi, S.U.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. (No. ANL/MSD/CP-84938; CONF-951135-29); Argonne National Lab: IL, United States, 1995.
[16]
Otanicar, T.P.; Phelan, P.E.; Prasher, R.S.; Rosengarten, G.; Taylor, R.A. Nanofluid-based direct absorption solar collector. J. Renew. Sustain. Energy, 2010, 2(3)033102
[http://dx.doi.org/10.1063/1.3429737]
[17]
Yuan, B.; Moghanloo, R.G.; Wang, W. Using nanofluids to control fines migration for oil recovery: Nanofluids co-injection or nanofluids pre-flush? -A comprehensive answer. Fuel, 2018, 215, 474-483.
[http://dx.doi.org/10.1016/j.fuel.2017.11.088]
[18]
Abbas, N.; Malik, M.Y.; Nadeem, S.; Alarifi, I.M. On extended version of Yamada-Ota and Xue models of hybrid nanofluid on moving needle. Eur. Phys. J. Plus, 2020, 135(2), 145.
[http://dx.doi.org/10.1140/epjp/s13360-020-00185-2]
[19]
Yuan, B.; Moghanloo, R.G. Nanofluid pre-treatment, an effective strategy to improve the performance of low salinity waterflooding. J. Petrol. Sci. Eng., 2018, 165, 978-991.
[http://dx.doi.org/10.1016/j.petrol.2017.11.032]
[20]
Wang, H.; Yang, W.; Cheng, L.; Guan, C.; Yan, H. Chinese ink: High performance nanofluids for solar energy. Sol. Energy Mater. Sol. Cells, 2018, 176, 374-380.
[http://dx.doi.org/10.1016/j.solmat.2017.10.023]
[21]
Casson, N. A fluid equation for pigmented oil suspensions of the printing ink type. Rheology of Disperse Systems; Mill, C.C., Ed.; Pergamon Press: Oxford, 1959, pp. 84-104.
[22]
Kamran, A.; Hussain, S.; Sagheer, M.; Akmal, N. A numerical study of magnetohydrodynamics flow in Casson nanofluid combined with Joule heating and slip boundary conditions. Results Phys., 2017, 7, 3037-3048.
[http://dx.doi.org/10.1016/j.rinp.2017.08.004]
[23]
Animasaun, I.L.; Adebile, E.A.; Fagbade, A.I. Casson fluid flow with variable thermo-physical property along exponentially stretching sheet with suction and exponentially decaying internal heat generation using the homotopy analysis method. J. Nigerian Math. Soc., 2016, 35(1), 1-17.
[http://dx.doi.org/10.1016/j.jnnms.2015.02.001]
[24]
Mukhopadhyay, S.; De, P.R.; Bhattacharyya, K.; Layek, G.C. Casson fluid flow over an unsteady stretching surface. Ain Shams Eng. J., 2013, 4(4), 933-938.
[http://dx.doi.org/10.1016/j.asej.2013.04.004]
[25]
Kandasamy, R.; Muhaimin, I.; Mohammad, R. Single walled carbon nanotubes on MHD unsteady flow over a porous wedge with thermal radiation with variable stream conditions. Alex. Eng. J., 2016, 55(1), 275-285.
[http://dx.doi.org/10.1016/j.aej.2015.10.006]
[26]
Evcin, C.; Uğur, Ö.; Tezer-Sezgin, M. Determining the optimal parameters for the MHD flow and heat transfer with variable viscosity and Hall effect. Comput. Math. Appl., 2018, 76(6), 1338-1355.
[http://dx.doi.org/10.1016/j.camwa.2018.06.027]
[27]
Ahmad, S.; Nadeem, S. Analysis of activation energy and its impact on hybrid nanofluid in the presence of Hall and ion slip currents. Appl. Nanosci., 2020, 10(12), 5315-5330.
[http://dx.doi.org/10.1007/s13204-020-01334-w]
[28]
Fendoğlu, H.; Bozkaya, C.; Tezer-Sezgin, M. MHD flow in a rectangular duct with a perturbed boundary. Comput. Math. Appl., 2019, 77(2), 374-388.
[http://dx.doi.org/10.1016/j.camwa.2018.09.040]
[29]
Xiao, X.; Li, T.; Kim, C.N. Analysis of MHD micro-mixers with differential pumping capabilities for two different miscible fluids. Chem. Eng. Res. Des., 2018, 139, 12-25.
[http://dx.doi.org/10.1016/j.cherd.2018.09.010]
[30]
Zargaran, A.; Mozaffari, E.; Giddings, D. Gas-liquid slip velocity determination in co-current column flotation. Separ. Purif. Tech., 2016, 169, 179-186.
[http://dx.doi.org/10.1016/j.seppur.2016.05.018]
[31]
Sobamowo, M.G.; Jayesimi, L.O.; Waheed, M.A. Magnetohydrodynamic squeezing flow analysis of nanofluid under the effect of slip boundary conditions using variation of parameter method. Karbala Int. J. Modern Sci., 2018, 4(1), 107-118.
[http://dx.doi.org/10.1016/j.kijoms.2017.12.001]
[32]
Mulchrone, K.F.; Meere, P.A. Shape fabric development in rigid clast populations under pure shear: The influence of no-slip versus slip boundary conditions. Tectonophysics, 2015, 659, 63-69..
[http://dx.doi.org/10.1016/j.tecto.2015.08.003]
[33]
Wang, K.; Chai, Z.; Hou, G.; Chen, W.; Xu, S. Slip boundary condition for lattice Boltzmann modeling of liquid flows. Comput. Fluids, 2018, 161, 60-73.
[http://dx.doi.org/10.1016/j.compfluid.2017.11.009]
[34]
Ranjit, N.K.; Shit, G.C.; Sinha, A. Transportation of ionic liquids in a porous micro-channel induced by peristaltic wave with Joule heating and wall-slip conditions. Chem. Eng. Sci., 2017, 171, 545-557.
[http://dx.doi.org/10.1016/j.ces.2017.06.012]
[35]
Nadeem, S.; Sadaf, H. Theoretical analysis of Cu-blood nanofluid for metachronal wave of cilia motion in a curved channel. IEEE Trans. Nanobioscience, 2015, 14(4), 447-454.
[http://dx.doi.org/10.1109/TNB.2015.2401972] [PMID: 25680212]
[36]
Kumar, K.A.; Sandeep, N.; Sugunamma, V.; Animasaun, I.L. Effect of irregular heat source/sink on the radiative thin film flow of MHD hybrid ferrofluid. J. Therm. Anal. Calorim., 2020, 139(3), 2145-2153.
[http://dx.doi.org/10.1007/s10973-019-08628-4]
[37]
Kumar, K.A.; Sugunamma, V.; Sandeep, N. Effect of thermal radiation on MHD Casson fluid flow over an exponentially stretching curved sheet. J. Therm. Anal. Calorim., 2019, 140(5), 1-9.
[38]
Kumar, K.A.; Sugunamma, V.; Sandeep, N. Influence of viscous dissipation on MHD flow of micropolar fluid over a slendering stretching surface with modified heat flux model. J. Therm. Anal. Calorim., 2020, 139(6), 3661-3674.
[http://dx.doi.org/10.1007/s10973-019-08694-8]
[39]
Irshad, N. Saleem, Anber.; Nadeem, S.; Shahzadi, I. Endoscopic analysis of wave propagation with ag-nanoparticles in curved tube having permeable walls. Curr. Nanosci., 2018, 14, 384.
[http://dx.doi.org/10.2174/1573413714666180402130006]
[40]
Li, L.; Han, B.; Wang, Y.; Shi, H.; Zhao, J.J.; Li, G. Gold nanoparticles-based bio-sensing methods for tumor-related biomedical applications in bodily fluids. Curr. Nanosci., 2020, 16, 425.
[http://dx.doi.org/10.2174/1573413715666190206152717]
[41]
Akbar, N.S.; Butt, A.W. Carbon nanotubes analysis for the peristaltic flow in curved channel with heat transfer. Comm. App. Math. Comp. Sci., 2015, 259, 231-241.
[http://dx.doi.org/10.1016/j.amc.2015.02.052]
[42]
Noreen, S.; Qasim, M.; Khan, Z.H. MHD pressure driven flow of nanofluid in curved channel. J. Magn. Magn. Mater., 2015, 393, 490-497.
[http://dx.doi.org/10.1016/j.jmmm.2015.05.038]
[43]
Yuan, X.; Zhou, J.; Lin, Z.; Cai, X. Numerical study of detonation diffraction through 90-degree curved channels to expansion area. Int. J. Hydrogen Energy, 2017, 42(10), 7045-7059.
[http://dx.doi.org/10.1016/j.ijhydene.2017.01.206]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy