Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

APOE基因型分层后多基因危害与阿尔茨海默氏病标志物之间的关联

卷 17, 期 7, 2020

页: [667 - 679] 页: 13

弟呕挨: 10.2174/1567205017666201006161800

价格: $65

摘要

背景:研究表明,阿尔茨海默氏病风险的多基因指标与临床特征有关。 目的:鉴于APOE基因的“遗传中心性”,我们测试了APOE-ε4携带者和非携带者是否都正确。 方法:从阿尔茨海默氏病神经影像学计划中招募的784名非痴呆参与者中提取多基因危险评分(PHS),并按APOEε4身份进行分层。将数据集分为由临床(未配对/ MCI)和淀粉样蛋白状态(Aβ+ /Aβ-)定义的子队列。在每个子队列中针对每种APOE-ε4状态设计了线性模型,以测试PHS与记忆力,执行功能和灰分体积图之间的关联。 结果:PHS预测ε4ε3MCI患者的记忆力和执行功能,ε3ε3MCI患者的记忆力和ε4ε3Aβ+参与者的记忆力。 PHS还预测了ε3ε3Aβ+参与者的感觉运动区域的体积。 结论:多基因危害与神经认知变量之间的联系因APOE-ε4等位基因状态而异。这表明临床表型可能受到复杂遗传相互作用的影响。

关键词: 轻度认知障碍,载脂蛋白,记忆力,执行功能,多基因性状,淀粉样蛋白。

[1]
Lahiri DK. Lessons from Alzheimer’s disease (AD) clinical trials: Instead of “A-Drug”, AD-D prevention to Avert AD. Curr Alzheimer Res 2019; 16(4): 279-80.
[http://dx.doi.org/10.2174/156720501604190424114752] [PMID: 31104627]
[2]
Lam B, Masellis M, Freedman M, Stuss DT, Black SE. Clinical, imaging, and pathological heterogeneity of the Alzheimer’s disease syndrome. Alzheimers Res Ther 2013; 5(1): 1.
[http://dx.doi.org/10.1186/alzrt155] [PMID: 23302773]
[3]
Hartmann S, Ledur Kist TB. A review of biomarkers of Alzheimer’s disease in noninvasive samples. Biomarkers Med 2018; 12(6): 677-90.
[http://dx.doi.org/10.2217/bmm-2017-0388] [PMID: 29896987]
[4]
Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. European Alzheimer’s disease initiative (eadi); genetic and environmental risk in Alzheimer’s disease; Alzheimer’s disease genetic consortium; cohorts for heart and aging research in genomic epidemiology. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 2013; 45(12): 1452-8.
[http://dx.doi.org/10.1038/ng.2802] [PMID: 24162737]
[5]
Medway C, Morgan K. Review: The genetics of Alzheimer’s disease; putting flesh on the bones. Neuropathol Appl Neurobiol 2014; 40(2): 97-105.
[http://dx.doi.org/10.1111/nan.12101] [PMID: 24443964]
[6]
Cuyvers E, Sleegers K. Genetic variations underlying Alzheimer’s disease: Evidence from genome-wide association studies and beyond. Lancet Neurol 2016; 15(8): 857-68.
[http://dx.doi.org/10.1016/S1474-4422(16)00127-7] [PMID: 27302364]
[7]
Zhang P, Qin W, Wang D, et al. Impacts of PICALM and CLU variants associated with Alzheimer’s disease on the functional connectivity of the hippocampus in healthy young adults. Brain Struct Funct 2015; 220(3): 1463-75.
[http://dx.doi.org/10.1007/s00429-014-0738-4] [PMID: 24578178]
[8]
Zhang X, Yu JT, Li J, et al. Bridging Integrator 1 (BIN1) genotype effects on working memory, hippocampal volume, and functional connectivity in young healthy individuals. Neuropsychopharmacology 2015; 40(7): 1794-803.
[http://dx.doi.org/10.1038/npp.2015.30] [PMID: 25630570]
[9]
Zhu XC, Wang HF, Jiang T, et al. Alzheimer’s Disease Neuroimaging Initiative. Effect of CR1 genetic variants on cerebrospinal fluid and neuroimaging biomarkers in healthy, mild cognitive impairment and Alzheimer’s disease cohorts. Mol Neurobiol 2017; 54(1): 551-62.
[http://dx.doi.org/10.1007/s12035-015-9638-8] [PMID: 26742530]
[10]
Chasioti D, Yan J, Nho K, Saykin AJ. Progress in polygenic composite scores in Alzheimer’s and other complex diseases. Trends Genet 2019; 35(5): 371-82.
[http://dx.doi.org/10.1016/j.tig.2019.02.005] [PMID: 30922659]
[11]
Leonenko G, Sims R, Shoai M, et al. GERAD consortium. Polygenic risk and hazard scores for Alzheimer’s disease prediction. Ann Clin Transl Neurol 2019; 6(3): 456-65.
[http://dx.doi.org/10.1002/acn3.716] [PMID: 30911569]
[12]
Axelrud LK, Santoro ML, Pine DS, et al. Polygenic risk score for Alzheimer’s disease: Implications for memory performance and hippocampal volumes in early life. Am J Psychiatry 2018; 175(6): 555-63.
[http://dx.doi.org/10.1176/appi.ajp.2017.17050529] [PMID: 29495896]
[13]
Li J, Zhang X, Li A, et al. Polygenic risk for Alzheimer’s disease influences precuneal volume in two independent general populations. Neurobiol Aging 2018; 64: 116-22.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.12.022] [PMID: 29358118]
[14]
Tan CH, Bonham LW, Fan CC, et al. Alzheimer’s Disease Neuroimaging Initiative. Polygenic hazard score, amyloid deposition and Alzheimer’s neurodegeneration. Brain 2019; 142(2): 460-70.
[http://dx.doi.org/10.1093/brain/awy327] [PMID: 30689776]
[15]
Verhaaren BF, Vernooij MW, Koudstaal PJ, et al. Alzheimer’s disease genes and cognition in the nondemented general population. Biol Psychiatry 2013; 73(5): 429-34.
[http://dx.doi.org/10.1016/j.biopsych.2012.04.009] [PMID: 22592056]
[16]
Adams HH, de Bruijn RF, Hofman A, et al. Genetic risk of neurodegenerative diseases is associated with mild cognitive impairment and conversion to dementia. Alzheimers Dement 2015; 11(11): 1277-85.
[http://dx.doi.org/10.1016/j.jalz.2014.12.008] [PMID: 25916564]
[17]
Andrews SJ, Das D, Cherbuin N, Anstey KJ, Easteal S. Association of genetic risk factors with cognitive decline:The PATH through life project. Neurobiol Aging 2016; 41: 150-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.02.016] [PMID: 27103528]
[18]
Desikan RS, Fan CC, Wang Y, et al. Genetic assessment of age-associated Alzheimer disease risk: Development and validation of a polygenic hazard score. PLoS Med 2017; 14(3)e1002258
[http://dx.doi.org/10.1371/journal.pmed.1002258] [PMID: 28323831]
[19]
Kauppi K, Fan CC, McEvoy LK, et al. Alzheimer’s Disease Neuroimaging Initiative. Combining polygenic hazard score with volumetric MRI and cognitive measures improves prediction of progression from mild cognitive impairment to Alzheimer’s disease. Front Neurosci 2018; 12: 260.
[http://dx.doi.org/10.3389/fnins.2018.00260] [PMID: 29760643]
[20]
Tan CH, Fan CC, Mormino EC, et al. Alzheimer’s Disease Neuroimaging Initiative. Polygenic hazard score: An enrichment marker for Alzheimer’s associated amyloid and tau deposition. Acta Neuropathol 2018; 135(1): 85-93.
[http://dx.doi.org/10.1007/s00401-017-1789-4] [PMID: 29177679]
[21]
Mattsson N, Groot C, Jansen WJ, et al. Prevalence of the apolipoprotein E ε4 allele in amyloid β positive subjects across the spectrum of Alzheimer’s disease. Alzheimers Dement 2018; 14(7): 913-24.
[http://dx.doi.org/10.1016/j.jalz.2018.02.009] [PMID: 29601787]
[22]
Jack CR Jr, Bernstein MA, Fox NC, et al. The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imaging 2008; 27(4): 685-91.
[http://dx.doi.org/10.1002/jmri.21049] [PMID: 18302232]
[23]
Ashburner J, Friston KJ. Voxel-based morphometry-the methods. Neuroimage 2000; 11(6 Pt 1): 805-21.
[http://dx.doi.org/10.1006/nimg.2000.0582] [PMID: 10860804]
[24]
Malone IB, Leung KK, Clegg S, et al. Accurate automatic estimation of total intracranial volume: A nuisance variable with less nuisance. Neuroimage 2015; 104: 366-72.
[http://dx.doi.org/10.1016/j.neuroimage.2014.09.034] [PMID: 25255942]
[25]
Jack CR Jr, Bennett DA, Blennow K, et al. Contributors. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14(4): 535-62.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[26]
Hansson O, Seibyl J, Stomrud E, et al. Swedish BioFINDER study group; Alzheimer’s Disease Neuroimaging Initiative. CSF biomarkers of Alzheimer’s disease concord with amyloid-β PET and predict clinical progression: A study of fully automated immunoassays in BioFINDER and ADNI cohorts. Alzheimers Dement 2018; 14(11): 1470-81.
[http://dx.doi.org/10.1016/j.jalz.2018.01.010] [PMID: 29499171]
[27]
Crane PK, Carle A, Gibbons LE, et al. Alzheimer’s Disease Neuroimaging Initiative. Development and assessment of a composite score for memory in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Brain Imaging Behav 2012; 6(4): 502-16.
[http://dx.doi.org/10.1007/s11682-012-9186-z] [PMID: 22782295]
[28]
Gibbons LE, Carle AC, Mackin RS, et al. Alzheimer’s Disease Neuroimaging Initiative. A composite score for executive functioning, validated in Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants with baseline mild cognitive impairment. Brain Imaging Behav 2012; 6(4): 517-27.
[http://dx.doi.org/10.1007/s11682-012-9176-1] [PMID: 22644789]
[29]
Lancaster JL, Woldorff MG, Parsons LM, et al. Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 2000; 10(3): 120-31.
[PMID: 10912591]
[30]
Fan L, Li H, Zhuo J, et al. The Human Brainnetome Atlas: A new brain atlas based on connectional architecture. Cereb Cortex 2016; 26(8): 3508-26.
[http://dx.doi.org/10.1093/cercor/bhw157] [PMID: 27230218]
[31]
Melzer D, Dik MG, van Kamp GJ, Jonker C, Deeg DJ. The apolipoprotein E e4 polymorphism is strongly associated with poor mobility performance test results but not self-reported limitation in older people. J Gerontol A Biol Sci Med Sci 2005; 60(10): 1319-23.
[http://dx.doi.org/10.1093/gerona/60.10.1319] [PMID: 16282567]
[32]
Buchman AS, Boyle PA, Wilson RS, Beck TL, Kelly JF, Bennett DA. Apolipoprotein E e4 allele is associated with more rapid motor decline in older persons. Alzheimer Dis Assoc Disord 2009; 23(1): 63-9.
[http://dx.doi.org/10.1097/WAD.0b013e31818877b5] [PMID: 19266700]
[33]
Nadkarni NK, Perera S, Snitz BE, et al. Association of brain amyloid-β with slow gait in elderly individuals without dementia: Influence of cognition and apolipoprotein E ε4 genotype. JAMA Neurol 2017; 74(1): 82-90.
[http://dx.doi.org/10.1001/jamaneurol.2016.3474] [PMID: 27842173]
[34]
Shu H, Shi Y, Chen G, et al. Distinct neural correlates of episodic memory among apolipoprotein E alleles in cognitively normal elderly. Brain Imaging Behav 2019; 13(1): 255-69.
[http://dx.doi.org/10.1007/s11682-017-9818-4] [PMID: 29396739]
[35]
Ge T, Sabuncu MR, Smoller JW, Sperling RA, Mormino EC. Alzheimer’s disease Neuroimaging Initiative. Dissociable influences of APOE ε4 and polygenic risk of AD dementia on amyloid and cognition. Neurology 2018; 90(18): e1605-12.
[http://dx.doi.org/10.1212/WNL.0000000000005415] [PMID: 29592889]
[36]
Karch CM, Cruchaga C, Goate AM. Alzheimer’s disease genetics: From the bench to the clinic. Neuron 2014; 83: 11-26.
[37]
Escott-Price V, Myers AJ, Huentelman M, Hardy J. Polygenic risk score analysis of pathologically confirmed Alzheimer disease. Ann Neurol 2017; 82(2): 311-4.
[http://dx.doi.org/10.1002/ana.24999] [PMID: 28727176]
[38]
Escott-Price V, Myers A, Huentelman M, Shoai M, Hardy J. Polygenic risk score analysis of Alzheimer’s disease in cases without APOE4 or APOE2 alleles. J Prev Alzheimers Dis 2019; 6(1): 16-9.
[PMID: 30569081]
[39]
Andrews SJ, Fulton-Howard B, Goate A. Interpretation of risk loci from genome-wide association studies of Alzheimer’s disease. Lancet Neurol 2020; 19(4): 326-35.
[http://dx.doi.org/10.1016/S1474-4422(19)30435-1] [PMID: 31986256]
[40]
Altmann A, Scelsi MA, Shoai M, de Silva E, Aksman LM, Cash DM, et al. A comprehensive analysis of methods for assessing polygenic burden on Alzheimer's disease pathology and risk beyond APOE Brain Commun 2020; 2(1) fcz047
[http://dx.doi.org/ 10.1093/braincomms/fcz047]
[41]
Maloney B, Ge YW, Petersen RC, et al. Functional characterization of three single-nucleotide polymorphisms present in the human APOE promoter sequence: Differential effects in neuronal cells and on DNA-protein interactions. Am J Med Genet B Neuropsychiatr Genet 2010; 153B(1): 185-201.
[PMID: 19504470]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy