Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Hyaluronan-based Multifunctional Nano-carriers for Combination Cancer Therapy

Author(s): Menghan Gao, Hong Deng and Weiqi Zhang*

Volume 21, Issue 2, 2021

Published on: 22 September, 2020

Page: [126 - 139] Pages: 14

DOI: 10.2174/1568026620666200922113846

Price: $65

Abstract

Hyaluronan (HA) is a natural linear polysaccharide that has excellent hydrophilicity, biocompatibility, biodegradability, and low immunogenicity, making it one of the most attractive biopolymers used for biomedical researches and applications. Due to the multiple functional sites on HA and its intrinsic affinity for CD44, a receptor highly expressed on various cancer cells, HA has been widely engineered to construct different drug-loading nanoparticles (NPs) for CD44-targeted anti-tumor therapy. When a cocktail of drugs is co-loaded in HA NP, a multifunctional nano-carriers could be obtained, which features as a highly effective and self-targeting strategy to combat cancers with CD44 overexpression. The HA-based multidrug nano-carriers can be a combination of different drugs, various therapeutic modalities, or the integration of therapy and diagnostics (theranostics). Up to now, there are many types of HA-based multidrug nano-carriers constructed by different formulation strategies, including drug co-conjugates, micelles, nano-gels and hybrid NP of HA and so on. This multidrug nano-carrier takes the full advantages of HA as an NP matrix, drug carriers and targeting ligand, representing a simplified and biocompatible platform to realize the targeted and synergistic combination therapy against the cancers. In this review, recent progress of HA-based multidrug nano-carriers for combination cancer therapy is summarized and the potential challenges for translational applications have been discussed.

Keywords: Hyaluronan (HA), Combination cancer therapy, CD44, Drug delivery, Nano-carriers, Theranostics.

Graphical Abstract

[1]
Meacham, C.E.; Morrison, S.J. Tumour heterogeneity and cancer cell plasticity. Nature, 2013, 501(7467), 328-337.
[http://dx.doi.org/10.1038/nature12624] [PMID: 24048065]
[2]
Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol., 2018, 15(2), 81-94.
[http://dx.doi.org/10.1038/nrclinonc.2017.166] [PMID: 29115304]
[3]
Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature, 2019, 575(7782), 299-309.
[http://dx.doi.org/10.1038/s41586-019-1730-1] [PMID: 31723286]
[4]
Mignani, S.; Bryszewska, M.; Klajnert-Maculewicz, B.; Zablocka, M.; Majoral, J.P. Advances in combination therapies based on nanoparticles for efficacious cancer treatment: an analytical report. Biomacromolecules, 2015, 16(1), 1-27.
[http://dx.doi.org/10.1021/bm501285t] [PMID: 25426779]
[5]
Zhang; Rui; Xue; Eoh; June; Young; Xue; Hui; Yi; Wong. Nanomedicine of synergistic drug combinations for cancer therapy - strategies and perspectives. J. Control. Release, 2016, 240, 489-503.
[6]
Tibbitt, M.W.; Dahlman, J.E.; Langer, R. Emerging frontiers in drug delivery. J. Am. Chem. Soc., 2016, 138(3), 704-717.
[http://dx.doi.org/10.1021/jacs.5b09974] [PMID: 26741786]
[7]
Min, Y.; Caster, J.M.; Eblan, M.J.; Wang, A.Z. Clinical translation of nanomedicine. Chem. Rev., 2015, 115(19), 11147-11190.
[http://dx.doi.org/10.1021/acs.chemrev.5b00116] [PMID: 26088284]
[8]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46, 6387-6392.
[9]
Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev., 2013, 65(1), 71-79.
[http://dx.doi.org/10.1016/j.addr.2012.10.002] [PMID: 23088862]
[10]
Kobayashi, H.; Watanabe, R.; Choyke, P.L. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics, 2013, 4(1), 81-89.
[http://dx.doi.org/10.7150/thno.7193] [PMID: 24396516]
[11]
Kavanagh, O.N.; Albadarin, A.B.; Croker, D.M.; Healy, A.M.; Walker, G.M. Maximising success in multidrug formulation development: A review. J. Control. Release, 2018, 283, 1-19.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.024] [PMID: 29802867]
[12]
Xu, X.; Ho, W.; Zhang, X.; Bertrand, N.; Farokhzad, O. Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol. Med., 2015, 21(4), 223-232.
[http://dx.doi.org/10.1016/j.molmed.2015.01.001] [PMID: 25656384]
[13]
Kim, H.; Park, Y.; Stevens, M.M.; Kwon, W.; Hahn, S.K. Multifunctional hyaluronate - nanoparticle hybrid systems for diagnostic, therapeutic and theranostic applications. J. Control. Release, 2019, 303, 55-66.
[http://dx.doi.org/10.1016/j.jconrel.2019.04.003] [PMID: 30954619]
[14]
Jeannot, V.; Gauche, C.; Mazzaferro, S.; Couvet, M.; Vanwonterghem, L.; Henry, M.; Didier, C.; Vollaire, J.; Josserand, V.; Coll, J.L.; Schatz, C.; Lecommandoux, S.; Hurbin, A. Anti-tumor efficacy of hyaluronan-based nanoparticles for the co-delivery of drugs in lung cancer. J. Control. Release, 2018, 275, 117-128.
[http://dx.doi.org/10.1016/j.jconrel.2018.02.024] [PMID: 29474960]
[15]
Eroglu, S.M.; Toksoy Oner, E.; Cansever Mutlu, E.; Sennaroglu Bostan, M. Sugar based biopolymers in nanomedicine; new emerging era for cancer imaging and therapy. Curr. Top. Med. Chem., 2017, 17(13), 1507-1520.
[http://dx.doi.org/10.2174/1568026616666161222101703]
[16]
Vasvani, S.; Kulkarni, P.; Rawtani, D. Hyaluronic acid: A review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int. J. Biol. Macromol., 2020, 151, 1012-1029.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.066] [PMID: 31715233]
[17]
Stern, R. Hyaluronan catabolism: a new metabolic pathway. Eur. J. Cell Biol., 2004, 83(7), 317-325.
[http://dx.doi.org/10.1078/0171-9335-00392] [PMID: 15503855]
[18]
Dicker, K.T.; Gurski, L.A.; Pradhan-Bhatt, S.; Witt, R.L.; Farach-Carson, M.C.; Jia, X. Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomater., 2014, 10(4), 1558-1570.
[http://dx.doi.org/10.1016/j.actbio.2013.12.019] [PMID: 24361428]
[19]
Kim, H.; Jeong, H.; Han, S.; Beack, S.; Hwang, B.W.; Shin, M.; Oh, S.S.; Hahn, S.K. Hyaluronate and its derivatives for customized biomedical applications. Biomaterials, 2017, 123, 155-171.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.029] [PMID: 28171824]
[20]
Caon, I.; Bartolini, B.; Parnigoni, A.; Caravà, E.; Moretto, P.; Viola, M.; Karousou, E.; Vigetti, D.; Passi, A. Revisiting the hallmarks of cancer: The role of hyaluronan. Semin. Cancer Biol., 2020, 62, 9-19.
[http://dx.doi.org/10.1016/j.semcancer.2019.07.007] [PMID: 31319162]
[21]
Skandalis, S.S.; Karalis, T.T.; Chatzopoulos, A.; Karamanos, N.K. Hyaluronan-CD44 axis orchestrates cancer stem cell functions. Cell. Signal., 2019, 63109377
[http://dx.doi.org/10.1016/j.cellsig.2019.109377] [PMID: 31362044]
[22]
Veiseh, M.; Turley, E.A. Hyaluronan metabolism in remodeling extracellular matrix: probes for imaging and therapy of breast cancer. Integr. Biol., 2011, 3(4), 304-315.
[http://dx.doi.org/10.1039/c0ib00096e] [PMID: 21264398]
[23]
Choi, K.Y.; Han, H.S.; Lee, E.S.; Shin, J.M.; Almquist, B.D.; Lee, D.S.; Park, J.H. Hyaluronic acid-based activatable nanomaterials for stimuli-responsive imaging and therapeutics: beyond cd44-mediated drug delivery. Adv. Mater., 2019, 31(34)e1803549
[http://dx.doi.org/10.1002/adma.201803549] [PMID: 30773699]
[24]
Dosio, F.; Arpicco, S.; Stella, B.; Fattal, E. Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv. Drug Deliv. Rev., 2016, 97, 204-236.
[http://dx.doi.org/10.1016/j.addr.2015.11.011] [PMID: 26592477]
[25]
Poon, Z.; Lee, J.B.; Morton, S.W.; Hammond, P.T. Controlling in vivo stability and biodistribution in electrostatically assembled nanoparticles for systemic delivery. Nano Lett., 2011, 11(5), 2096-2103.
[http://dx.doi.org/10.1021/nl200636r] [PMID: 21524115]
[26]
Passi, A.; Vigetti, D. Hyaluronan as tunable drug delivery system. Adv. Drug Deliv. Rev., 2019, 146, 83-96.
[http://dx.doi.org/10.1016/j.addr.2019.08.006] [PMID: 31421148]
[27]
Sakurai, Y.; Harashima, H. Hyaluronan-modified nanoparticles for tumor-targeting. Expert Opin. Drug Deliv., 2019, 16(9), 915-936.
[http://dx.doi.org/10.1080/17425247.2019.1645115] [PMID: 31387408]
[28]
Vogus, D.R.; Evans, M.A.; Pusuluri, A.; Barajas, A.; Zhang, M.; Krishnan, V.; Nowak, M.; Menegatti, S.; Helgeson, M.E.; Squires, T.M.; Mitragotri, S. A hyaluronic acid conjugate engineered to synergistically and sequentially deliver gemcitabine and doxorubicin to treat triple negative breast cancer. J. Control. Release, 2017, 267, 191-202.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.016] [PMID: 28823957]
[29]
Yao, J.; Zhang, L.; Zhou, J.; Liu, H.; Zhang, Q. Efficient simultaneous tumor targeting delivery of all-trans retinoid acid and Paclitaxel based on hyaluronic acid-based multifunctional nanocarrier. Mol. Pharm., 2013, 10(3), 1080-1091.
[http://dx.doi.org/10.1021/mp3005808] [PMID: 23320642]
[30]
Zhang, W.; Tung, C.H. Cisplatin cross-linked multifunctional nanodrugplexes for combination therapy. ACS Appl. Mater. Interfaces, 2017, 9(10), 8547-8555.
[http://dx.doi.org/10.1021/acsami.6b16500] [PMID: 28224786]
[31]
Noh, I.; Kim, H.O.; Choi, J.; Choi, Y.; Lee, D.K.; Huh, Y.M.; Haam, S. Co-delivery of paclitaxel and gemcitabine via CD44-targeting nanocarriers as a prodrug with synergistic antitumor activity against human biliary cancer. Biomaterials, 2015, 53, 763-774.
[http://dx.doi.org/10.1016/j.biomaterials.2015.03.006] [PMID: 25890771]
[32]
Zhu, Z.; Li, Y.; Yang, X.; Pan, W.; Pan, H. The reversion of anti-cancer drug antagonism of tamoxifen and docetaxel by the hyaluronic acid-decorated polymeric nanoparticles. Pharmacol. Res., 2017, 126, 84-96.
[http://dx.doi.org/10.1016/j.phrs.2017.07.011] [PMID: 28734999]
[33]
Ng, C.W.; Li, J.; Pu, K. Recent progresses in phototherapy-synergized cancer immunotherapy. Adv. Funct. Mater., 2018, 28(46), 1804.
[http://dx.doi.org/10.1002/adfm.201804688]
[34]
Li, S.; Sun, Z.; Deng, G.; Meng, X.; Li, W.; Ni, D.; Zhang, J.; Gong, P.; Cai, L. Dual-modal imaging-guided highly efficient photothermal therapy using heptamethine cyanine-conjugated hyaluronic acid micelles. Biomater. Sci., 2017, 5(6), 1122-1129.
[http://dx.doi.org/10.1039/C7BM00230K] [PMID: 28484754]
[35]
Chen, Y.; Li, H.; Deng, Y.; Sun, H.; Ke, X.; Ci, T. Near-infrared light triggered drug delivery system for higher efficacy of combined chemo-photothermal treatment. Acta Biomater., 2017, 51, 374-392.
[http://dx.doi.org/10.1016/j.actbio.2016.12.004] [PMID: 28088668]
[36]
Leroux, J.C. Editorial: Drug delivery: too much complexity, not enough reproducibility? Angew. Chem. Int. Ed. Engl., 2017, 56(48), 15170-15171.
[http://dx.doi.org/10.1002/anie.201709002] [PMID: 28967701]
[37]
The two directions of cancer nanomedicine. Nat. Nanotechnol., 2019, 14(12), 1083.
[http://dx.doi.org/10.1038/s41565-019-0597-5] [PMID: 31802029]
[38]
Camacho, K.M.; Kumar, S.; Menegatti, S.; Vogus, D.R.; Anselmo, A.C.; Mitragotri, S. Synergistic antitumor activity of camptothecin-doxorubicin combinations and their conjugates with hyaluronic acid. J. Control. Release, 2015, 210, 198-207.
[http://dx.doi.org/10.1016/j.jconrel.2015.04.031] [PMID: 25921087]
[39]
Wang, J.; Li, Y.; Wang, L.; Wang, X.; Tu, P. Comparison of hyaluronic acid-based micelles and polyethylene glycol-based micelles on reversal of multidrug resistance and enhanced anticancer efficacy in vitro and in vivo. Drug Deliv., 2018, 25(1), 330-340.
[http://dx.doi.org/10.1080/10717544.2018.1428385] [PMID: 29350064]
[40]
Hu, K.; Zhou, H.; Liu, Y.; Liu, Z.; Liu, J.; Tang, J.; Li, J.; Zhang, J.; Sheng, W.; Zhao, Y.; Wu, Y.; Chen, C. Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells. Nanoscale, 2015, 7(18), 8607-8618.
[http://dx.doi.org/10.1039/C5NR01084E] [PMID: 25898852]
[41]
Xu, Y.; Asghar, S.; Gao, S.; Chen, Z.; Huang, L.; Yin, L.; Ping, Q.; Xiao, Y. Polysaccharide-based nanoparticles for co-loading mitoxantrone and verapamil to overcome multidrug resistance in breast tumor. Int. J. Nanomedicine, 2017, 12, 7337-7350.
[http://dx.doi.org/10.2147/IJN.S145620] [PMID: 29066886]
[42]
Zhu, Y.; Wang, X.; Chen, J.; Zhang, J.; Meng, F.; Deng, C.; Cheng, R.; Feijen, J.; Zhong, Z. Bioresponsive and fluorescent hyaluronic acid-iodixanol nanogels for targeted X-ray computed tomographyimaging and chemotherapy of breast tumors. J. Control. Release, 2016, 244(Pt B), 229-239..
[http://dx.doi.org/10.1016/j.jconrel.2016.08.027] [PMID: 27568289]
[43]
Basu, A.; Kunduru, K.R.; Abtew, E.; Domb, A.J. Polysaccharide-based conjugates for biomedical applications. Bioconjug. Chem., 2015, 26(8), 1396-1412.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00242] [PMID: 26106905]
[44]
Li, Y.; Wang, Y.; Huang, G.; Gao, J. Cooperativity principles in self-assembled nanomedicine. Chem. Rev., 2018, 118(11), 5359-5391.
[http://dx.doi.org/10.1021/acs.chemrev.8b00195] [PMID: 29693377]
[45]
Yu, D.; Li, W.; Zhang, Y.; Zhang, B. Anti-tumor efficiency of paclitaxel and DNA when co-delivered by pH responsive ligand modified nanocarriers for breast cancer treatment. Biomed. Pharmacother., 2016, 83, 1428-1435.
[http://dx.doi.org/10.1016/j.biopha.2016.08.061] [PMID: 27592131]
[46]
Ma, W.; Guo, Q.; Li, Y.; Wang, X.; Wang, J.; Tu, P. Co-assembly of doxorubicin and curcumin targeted micelles for synergistic delivery and improving anti-tumor efficacy. Eur. J. Pharm. Biopharm., 2017, 112, 209-223.
[http://dx.doi.org/10.1016/j.ejpb.2016.11.033] [PMID: 27913127]
[47]
Yao, J.; Li, Y.; Sun, X.; Dahmani, F.Z.; Liu, H.; Zhou, J. Nanoparticle delivery and combination therapy of gambogic acid and all-trans retinoic acid. Int. J. Nanomedicine, 2014, 9, 3313-3324.
[http://dx.doi.org/10.2147/IJN.S62793] [PMID: 25045262]
[48]
Song, L.; Pan, Z.; Zhang, H.; Li, Y.; Zhang, Y.; Lin, J.; Su, G.; Ye, S.; Xie, L.; Li, Y.; Hou, Z. Dually folate/CD44 receptor-targeted self-assembled hyaluronic acid nanoparticles for dual-drug delivery and combination cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(33), 6835-6846.
[http://dx.doi.org/10.1039/C7TB01548H] [PMID: 32264333]
[49]
Yun, D.; Kim, H.O.; Son, H.Y.; Choi, Y.; Noh, I.; Lim, J.W.; Kim, J.; Chun, H.; Park, G.; Lee, D.K.; Jang, S.I.; Jang, E.; Huh, Y.M.; Haam, S. Stent containing CD44-targeting polymeric prodrug nanoparticles that release paclitaxel and gemcitabine in a time interval-controlled manner for synergistic human biliary cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(31), 6317-6324.
[http://dx.doi.org/10.1039/C7TB00356K] [PMID: 32264448]
[50]
Qiu, L.; Qiao, M.; Chen, Q.; Tian, C.; Long, M.; Wang, M.; Li, Z.; Hu, W.; Li, G.; Cheng, L.; Cheng, L.; Hu, H.; Zhao, X.; Chen, D. Enhanced effect of pH-sensitive mixed copolymer micelles for overcoming multidrug resistance of doxorubicin. Biomaterials, 2014, 35(37), 9877-9887.
[http://dx.doi.org/10.1016/j.biomaterials.2014.08.008] [PMID: 25201738]
[51]
Khunmanee, S.; Jeong, Y.; Park, H. Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J. Tissue Eng., 2017, 82041731417726464
[http://dx.doi.org/10.1177/2041731417726464] [PMID: 28912946]
[52]
Zhang, W.; Zhang, Z.; Tung, C.H. Beyond chemotherapeutics: cisplatin as a temporary buckle to fabricate drug-loaded nanogels. Chem. Commun. (Camb.), 2017, 53(4), 779-782.
[http://dx.doi.org/10.1039/C6CC08230K] [PMID: 27999837]
[53]
Zhang, Y.; Wang, F.; Li, M.; Yu, Z.; Qi, R.; Ding, J.; Zhang, Z.; Chen, X. Self-stabilized hyaluronate nanogel for intracellular codelivery of doxorubicin and cisplatin to osteosarcoma. Adv. Sci., 2018, 5(5)1700821
[54]
Zhang, W.; Tung, C.H. Redox-responsive cisplatin nanogels for anticancer drug delivery. Chem. Commun. (Camb.), 2018, 54(60), 8367-8370.
[http://dx.doi.org/10.1039/C8CC01795F] [PMID: 29995047]
[55]
Zhang, R.; Ru, Y.; Gao, Y.; Li, J.; Mao, S. Layer-by-layer nanoparticles co-loading gemcitabine and platinum (IV) prodrugs for synergistic combination therapy of lung cancer. Drug Des. Devel. Ther., 2017, 11, 2631-2642.
[http://dx.doi.org/10.2147/DDDT.S143047] [PMID: 28919713]
[56]
Kim, K.S.; Kim, J.; Lee, J.Y.; Matsuda, S.; Hideshima, S.; Mori, Y.; Osaka, T.; Na, K. Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy. Nanoscale, 2016, 8(22), 11625-11634.
[http://dx.doi.org/10.1039/C6NR02273A] [PMID: 27217004]
[57]
Zheng, S.; Han, J.; Jin, Z.; Kim, C.S.; Park, S.; Kim, K.P.; Park, J.O.; Choi, E. Dual tumor-targeted multifunctional magnetic hyaluronic acid micelles for enhanced MR imaging and combined photothermal-chemotherapy. Colloids Surf. B Biointerfaces, 2018, 164, 424-435.
[http://dx.doi.org/10.1016/j.colsurfb.2018.02.005] [PMID: 29433060]
[58]
Camacho, K.M.; Menegatti, S.; Mitragotri, S. Low-molecular-weight polymer-drug conjugates for synergistic anticancer activity of camptothecin and doxorubicin combinations. Nanomedicine (Lond.), 2016, 11(9), 1139-1151.
[http://dx.doi.org/10.2217/nnm.16.33] [PMID: 27079141]
[59]
Wang, L.; Zhang, H.; Qin, A.; Jin, Q.; Tang, B.Z.; Ji, J. Theranostic hyaluronic acid prodrug micelles with aggregation-induced emission characteristics for targeted drug delivery. Sci. China Chem., 2016, 59, 1609-1615.
[http://dx.doi.org/10.1007/s11426-016-0246-9]
[60]
Chen, D.; Wang, G.; Song, W.; Zhang, Q. Novel cd44 receptor targeting multifunctional “nano-eggs” based on double ph-sensitive nanoparticles for co-delivery of curcumin and paclitaxel to cancer cells and cancer stem cells. J. Nanopart. Res., 2015, 17, 1-10.
[http://dx.doi.org/10.1007/s11051-015-3217-9]
[61]
Chang, J.E.; Cho, H.J.; Yi, E.; Kim, D.D.; Jheon, S. Hypocrellin B and paclitaxel-encapsulated hyaluronic acid-ceramide nanoparticles for targeted photodynamic therapy in lung cancer. J. Photochem. Photobiol. B, 2016, 158, 113-121.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.02.035] [PMID: 26967521]
[62]
Cho, H.J.; Yoon, H.Y.; Koo, H.; Ko, S.H.; Shim, J.S.; Lee, J.H.; Kim, K.; Kwon, I.C.; Kim, D.D. Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic® for tumor-targeted delivery of docetaxel. Biomaterials, 2011, 32(29), 7181-7190.
[http://dx.doi.org/10.1016/j.biomaterials.2011.06.028] [PMID: 21733572]
[63]
Zhang, H.; Li, W.; Guo, X.; Kong, F.; Wang, Z.; Zhu, C.; Luo, L.; Li, Q.; Yang, J.; Du, Y.; You, J. Specifically increased paclitaxel release in tumor and synergetic therapy by a hyaluronic acid-tocopherol nanomicelle. ACS Appl. Mater. Interfaces, 2017, 9(24), 20385-20398.
[http://dx.doi.org/10.1021/acsami.7b02606] [PMID: 28540720]
[64]
Bae, K.H.; Tan, S.; Yamashita, A.; Ang, W.X.; Gao, S.J.; Wang, S.; Chung, J.E.; Kurisawa, M. Hyaluronic acid-green tea catechin micellar nanocomplexes: Fail-safe cisplatin nanomedicine for the treatment of ovarian cancer without off-target toxicity. Biomaterials, 2017, 148, 41-53.
[http://dx.doi.org/10.1016/j.biomaterials.2017.09.027] [PMID: 28961534]
[65]
Xia, J.; Du, Y.; Huang, L.; Chaurasiya, B.; Tu, J.; Webster, T.J.; Sun, C. Redox-responsive micelles from disulfide bond-bridged hyaluronic acid-tocopherol succinate for the treatment of melanoma. Nanomedicine (Lond.), 2018, 14(3), 713-723.
[http://dx.doi.org/10.1016/j.nano.2017.12.017] [PMID: 29317344]
[66]
Wang, H.; Sun, G.; Zhang, Z.; Ou, Y. Transcription activator, hyaluronic acid and tocopheryl succinate multi-functionalized novel lipid carriers encapsulating etoposide for lymphoma therapy. Biomed. Pharmacother., 2017, 91, 241-250.
[http://dx.doi.org/10.1016/j.biopha.2017.04.104] [PMID: 28460227]
[67]
Wang, J.; Ma, W.; Guo, Q.; Li, Y.; Hu, Z.; Zhu, Z.; Wang, X.; Zhao, Y.; Chai, X.; Tu, P. The effect of dual-functional hyaluronic acid-vitamin E succinate micelles on targeting delivery of doxorubicin. Int. J. Nanomedicine, 2016, 11, 5851-5870.
[http://dx.doi.org/10.2147/IJN.S113882] [PMID: 27853369]
[68]
Liang, D.S.; Su, H.T.; Liu, Y.J.; Wang, A.T.; Qi, X.R. Tumor-specific penetrating peptides-functionalized hyaluronic acid-d-α-tocopheryl succinate based nanoparticles for multi-task delivery to invasive cancers. Biomaterials, 2015, 71, 11-23.
[http://dx.doi.org/10.1016/j.biomaterials.2015.08.035] [PMID: 26310359]
[69]
Liang, D.; Wang, A.T.; Yang, Z.Z.; Liu, Y.J.; Qi, X.R. Enhance Cancer Cell Recognition and Overcome Drug Resistance Using Hyaluronic Acid and α-Tocopheryl Succinate Based Multifunctional Nanoparticles. Mol. Pharm., 2015, 12(6), 2189-2202.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00129] [PMID: 25945733]
[70]
Zhang, L.; Yao, J.; Zhou, J.; Wang, T.; Zhang, Q. Glycyrrhetinic acid-graft-hyaluronic acid conjugate as a carrier for synergistic targeted delivery of antitumor drugs. Int. J. Pharm., 2013, 441(1-2), 654-664.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.030] [PMID: 23117024]
[71]
Debele, T.A.; Yu, L.Y.; Yang, C.S.; Shen, Y.A.; Lo, C.L. pH- and gsh-sensitive hyaluronic acid-mp conjugate micelles for intracellular delivery of doxorubicin to colon cancer cells and cancer stem cells. Biomacromolecules, 2018, 19(9), 3725-3737.
[http://dx.doi.org/10.1021/acs.biomac.8b00856] [PMID: 30044910]
[72]
Wang, W.; Xi, M.; Duan, X.; Wang, Y.; Kong, F. Delivery of baicalein and paclitaxel using self-assembled nanoparticles: synergistic antitumor effect in vitro and in vivo. Int. J. Nanomedicine, 2015, 10, 3737-3750.
[PMID: 26045664]
[73]
Abbad, S.; Wang, C.; Waddad, A.Y.; Lv, H.; Zhou, J. Preparation, in vitro and in vivo evaluation of polymeric nanoparticles based on hyaluronic acid-poly(butyl cyanoacrylate) and D-alpha-tocopheryl polyethylene glycol 1000 succinate for tumor-targeted delivery of morin hydrate. Int. J. Nanomedicine, 2015, 10, 305-320.
[PMID: 25609946]
[74]
Du, X.; Yin, S.; Zhou, F.; Du, X.; Xu, J.; Gu, X.; Wang, G.; Li, J. Reduction-sensitive mixed micelles for selective intracellular drug delivery to tumor cells and reversal of multidrug resistance. Int. J. Pharm., 2018, 550(1-2), 1-13.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.019] [PMID: 30114451]
[75]
Zhu, Q.; Chen, X.; Xu, X.; Zhang, Y.; Zhang, C.; Mo, R. Tumor-specific self-degradable nanogels as potential carriers for systemic delivery of anticancer proteins. Adv. Funct. Mater., 2018, 28, 1-10.
[http://dx.doi.org/10.1002/adfm.201707371]
[76]
Mitra, K.; Samsó, M.; Lyons, C.E.; Hartman, M.C.T. Hyaluronic acid grafted nanoparticles of a platinum(ii)-silicon(iv) phthalocyanine conjugate for tumor and mitochondria-targeted photodynamic therapy in red light. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(45), 7373-7377.
[http://dx.doi.org/10.1039/C8TB02533A] [PMID: 31372221]
[77]
Zhang, W.; Tung, C.H. Real-Time visualization of lysosome destruction using a photosensitive toluidine blue nanogel. Chemistry, 2018, 24(9), 2089-2093.
[http://dx.doi.org/10.1002/chem.201705697] [PMID: 29314346]
[78]
Zhang, W.; Tung, C.H. Lysosome enlargement enhanced photochemotherapy using a multifunctional nanogel. ACS Appl. Mater. Interfaces, 2018, 10(5), 4343-4348.
[http://dx.doi.org/10.1021/acsami.7b16575] [PMID: 29356498]
[79]
Mi, F.L.; Wang, L.F.; Chu, P.Y.; Peng, S.L.; Feng, C.L.; Lai, Y.J.; Li, J.N.; Lin, Y.H. Active tumor-targeted co-delivery of epigallocatechin gallate and doxorubicin in nanoparticles for combination gastric cancer therapy. ACS Biomater. Sci. Eng., 2018, 4, 2847-2859.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00242]
[80]
Xiong, H.; Ni, J.; Jiang, Z.; Tian, F.; Zhou, J.; Yao, J. Intracellular self-disassemble polysaccharide nanoassembly for multi-factors tumor drug resistance modulation of doxorubicin. Biomater. Sci., 2018, 6(9), 2527-2540.
[http://dx.doi.org/10.1039/C8BM00570B] [PMID: 30105340]
[81]
Wang, G.; Gao, S.; Tian, R.; Miller-Kleinhenz, J.; Qin, Z.; Liu, T.; Li, L.; Zhang, F.; Ma, Q.; Zhu, L. Theranostic Hyaluronic acid-iron micellar nanoparticles for magnetic-field-enhanced in vivo cancer chemotherapy. ChemMedChem, 2018, 13(1), 78-86.
[http://dx.doi.org/10.1002/cmdc.201700515] [PMID: 29086481]
[82]
Gao, S.; Wang, G.; Qin, Z.; Wang, X.; Zhao, G.; Ma, Q.; Zhu, L. Oxygen-generating hybrid nanoparticles to enhance fluorescent/photoacoustic/ultrasound imaging guided tumor photodynamic therapy. Biomaterials, 2017, 112, 324-335.
[http://dx.doi.org/10.1016/j.biomaterials.2016.10.030] [PMID: 27776285]
[83]
Kang, S.H.; Nafiujjaman, M.; Nurunnabi, M.; Li, L.; Khan, H.A.; Cho, K.J.; Huh, K.M.; Lee, Y. kyu. Hybrid photoactive nanomaterial composed of gold nanoparticles, pheophorbide-a and hyaluronic acid as a targeted bimodal phototherapy. Macromol. Res., 2015, 23, 474-484.
[http://dx.doi.org/10.1007/s13233-015-3061-x]
[84]
Gao, N.; Yang, W.; Nie, H.; Gong, Y.; Jing, J.; Gao, L.; Zhang, X. Turn-on theranostic fluorescent nanoprobe by electrostatic self-assembly of carbon dots with doxorubicin for targeted cancer cell imaging, in vivo hyaluronidase analysis, and targeted drug delivery. Biosens. Bioelectron., 2017, 96, 300-307.
[http://dx.doi.org/10.1016/j.bios.2017.05.019] [PMID: 28511113]
[85]
Jia, X.; Han, Y.; Pei, M.; Zhao, X.; Tian, K.; Zhou, T.; Liu, P. Multi-functionalized hyaluronic acid nanogels crosslinked with carbon dots as dual receptor-mediated targeting tumor theranostics. Carbohydr. Polym., 2016, 152, 391-397.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.109] [PMID: 27516286]
[86]
Wang, G.; Zhang, F.; Tian, R.; Zhang, L.; Fu, G.; Yang, L.; Zhu, L. Nanotubes-embedded indocyanine green-hyaluronic acid nanoparticles for photoacoustic-imaging-guided phototherapy. ACS Appl. Mater. Interfaces, 2016, 8(8), 5608-5617.
[http://dx.doi.org/10.1021/acsami.5b12400] [PMID: 26860184]
[87]
Deng, L.; Wang, G.; Ren, J.; Zhang, B.; Yan, J.; Li, W.; Khashab, N.M. Enzymatically triggered multifunctional delivery system based on hyaluronic acid micelles. RSC Advances, 2012, 2, 12909-12914.
[http://dx.doi.org/10.1039/c2ra21888g]
[88]
Cho, H.J.; Yoon, H.Y.; Koo, H.; Ko, S.H.; Shim, J.S.; Cho, J.H.; Park, J.H.; Kim, K.; Kwon, I.C.; Kim, D.D. Hyaluronic acid-ceramide-based optical/MR dual imaging nanoprobe for cancer diagnosis. J. Control. Release, 2012, 162(1), 111-118.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.011] [PMID: 22709587]
[89]
Bhattacharya, D.; Svechkarev, D.; Souchek, J.J.; Hill, T.K.; Taylor, M.A.; Natarajan, A.; Mohs, A.M. Impact of structurally modifying hyaluronic acid on CD44 interaction. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(41), 8183-8192.
[http://dx.doi.org/10.1039/C7TB01895A] [PMID: 29354263]
[90]
Liang, K.; Ng, S.; Lee, F.; Lim, J.; Chung, J.E.; Lee, S.S.; Kurisawa, M. Targeted intracellular protein delivery based on hyaluronic acid-green tea catechin nanogels. Acta Biomater., 2016, 33, 142-152.
[http://dx.doi.org/10.1016/j.actbio.2016.01.011] [PMID: 26785145]
[91]
Gibbs, P.; Brown, T.J.; Ng, R.; Jennens, R.; Cinc, E.; Pho, M.; Michael, M.; Fox, R.M. A pilot human evaluation of a formulation of irinotecan and hyaluronic acid in 5-fluorouracil-refractory metastatic colorectal cancer patients. Chemotherapy, 2009, 55(1), 49-59.
[http://dx.doi.org/10.1159/000180339] [PMID: 19060478]
[92]
Alamgeer, M.; Neil Watkins, D.; Banakh, I.; Kumar, B.; Gough, D.J.; Markman, B.; Ganju, V. A phase IIa study of HA-irinotecan, formulation of hyaluronic acid and irinotecan targeting CD44 in extensive-stage small cell lung cancer. Invest. New Drugs, 2018, 36(2), 288-298.
[http://dx.doi.org/10.1007/s10637-017-0555-8] [PMID: 29277856]
[93]
Huang, G.; Huang, H. Application of hyaluronic acid as carriers in drug delivery. Drug Deliv., 2018, 25(1), 766-772.
[http://dx.doi.org/10.1080/10717544.2018.1450910] [PMID: 29536778]
[94]
Kwon, M.Y.; Wang, C.; Galarraga, J.H.; Puré, E.; Han, L.; Burdick, J.A. Influence of hyaluronic acid modification on CD44 binding towards the design of hydrogel biomaterials. Biomaterials, 2019, 222119451
[http://dx.doi.org/10.1016/j.biomaterials.2019.119451] [PMID: 31480001]
[95]
Bisso, S.; Leroux, J-C. Nanopharmaceuticals: A focus on their clinical translatability. Int. J. Pharm., 2020, 578119098
[http://dx.doi.org/10.1016/j.ijpharm.2020.119098] [PMID: 32018018]
[96]
Varkouhi, A.K.; Scholte, M.; Storm, G.; Haisma, H.J. Endosomal escape pathways for delivery of biologicals. J. Control. Release, 2011, 151(3), 220-228.
[http://dx.doi.org/10.1016/j.jconrel.2010.11.004] [PMID: 21078351]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy