[1]
Mukherjee, A.; Madamsetty, V.S.; Paul, M.K.; Mukherjee, S. Recent advancements of nanomedicine towards antiangiogenic therapy in cancer. Int. J. Mol. Sci., 2020, 21(2)
[http://dx.doi.org/10.3390/ijms21020455] [PMID: 31936832]
[http://dx.doi.org/10.3390/ijms21020455] [PMID: 31936832]
[2]
Jain, R.K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med., 2001, 7(9), 987-989.
[http://dx.doi.org/10.1038/nm0901-987] [PMID: 11533692]
[http://dx.doi.org/10.1038/nm0901-987] [PMID: 11533692]
[3]
Shan, Y.; Wang, B.; Zhang, J. New strategies in achieving antiangiogenic effect: Multiplex inhibitors suppressing compensatory activations of RTKs. Med. Res. Rev., 2018, 38(5), 1674-1705.
[http://dx.doi.org/10.1002/med.21517] [PMID: 29878411]
[http://dx.doi.org/10.1002/med.21517] [PMID: 29878411]
[4]
Bergers, G.; Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer, 2008, 8(8), 592-603.
[http://dx.doi.org/10.1038/nrc2442] [PMID: 18650835]
[http://dx.doi.org/10.1038/nrc2442] [PMID: 18650835]
[5]
Kuczynski, E.A.; Vermeulen, P.B.; Pezzella, F.; Kerbel, R.S.; Reynolds, A.R. Vessel co-option in cancer. Nat. Rev. Clin. Oncol., 2019, 16(8), 469-493.
[http://dx.doi.org/10.1038/s41571-019-0181-9] [PMID: 30816337]
[http://dx.doi.org/10.1038/s41571-019-0181-9] [PMID: 30816337]
[6]
Vasudev, N.S.; Reynolds, A.R. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis, 2014, 17(3), 471-494.
[http://dx.doi.org/10.1007/s10456-014-9420-y] [PMID: 24482243]
[http://dx.doi.org/10.1007/s10456-014-9420-y] [PMID: 24482243]
[7]
Qiang, H.; Chang, Q.; Xu, J.; Qian, J.; Zhang, Y.; Lei, Y.; Han, B.; Chu, T. New advances in antiangiogenic combination therapeutic strategies for advanced non-small cell lung cancer. J. Cancer Res. Clin. Oncol., 2020, 146(3), 631-645.
[http://dx.doi.org/10.1007/s00432-020-03129-6] [PMID: 32065262]
[http://dx.doi.org/10.1007/s00432-020-03129-6] [PMID: 32065262]
[8]
Kuczynski, E.A.; Reynolds, A.R. Vessel co-option and resistance to anti-angiogenic therapy. Angiogenesis, 2020, 23(1), 55-74.
[http://dx.doi.org/10.1007/s10456-019-09698-6] [PMID: 31865479]
[http://dx.doi.org/10.1007/s10456-019-09698-6] [PMID: 31865479]
[9]
Zhang, Z.L.; Wang, J.H.; Liu, X.Y. Current strategies and future directions of antiangiogenic tumor therapy. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai), 2003, 35(10), 873-880.
[PMID: 14515202]
[PMID: 14515202]
[10]
Kuczynski, E.A.; Yin, M.; Bar-Zion, A.; Lee, C.R.; Butz, H.; Man, S.; Daley, F.; Vermeulen, P.B.; Yousef, G.M.; Foster, F.S.; Reynolds, A.R.; Kerbel, R.S. Co-option of liver vessels and not sprouting angiogenesis drives acquired sorafenib resistance in hepatocellular carcinoma. J. Natl. Cancer Inst., 2016, 108(8)
[http://dx.doi.org/10.1093/jnci/djw030] [PMID: 27059374]
[http://dx.doi.org/10.1093/jnci/djw030] [PMID: 27059374]