Review Article

白藜芦醇,一种具有抗炎和抗癌活性的分子:化学合成的天然产物

卷 28, 期 19, 2021

发表于: 18 September, 2020

页: [3773 - 3786] 页: 14

弟呕挨: 10.2174/0929867327999200918100746

价格: $65

摘要

背景:白藜芦醇是一种天然多酚产物,用于保护植物免受真菌和微生物的侵害。它是天然存在的,尤其是在葡萄、花生和浆果等植物中。它在蓝莓、桑葚、黑莓和红葡萄皮中的浓度最高。白藜芦醇具有多种药理特性,如抗炎、细胞保护和抗肿瘤活性。 方法:我们使用正规工具如谷歌、Reaxys、Scifinder、Scihub和专利Espacenet进行了一项文献调查,以汇编生物合成途径、所有有机合成方法和迄今为止报道的白藜芦醇的生物活性。 结果:本文引用了一百多篇研究文章和专利。其中大约25个与化学合成有关,其余的与白藜芦醇的来源、药理活性和其他性质有关。这项研究表明,许多常见的途径涉及各种药理活性,根据所涉及的途径,这些药理活性可用于治疗各种疾病。诸如Pfitzner-Moffatt氧化、Wittig-Horner缩合、Mizoroki-Heck、Perkin、Wittig等反应已经用于白藜芦醇的合成。基于其类似物和衍生物也建立了构效关系。 结论:除生物合成途径外,本文还综述了已发表的所有白藜芦醇的生物活性和化学合成报道。由于其有价值的生物活性,迄今已报道了各种合成方法。所报道的合成操作适于大规模工业生产。此外,这些综合的合成方法可用于制备芪类化合物和其他相关化合物。

关键词: 白藜芦醇,天然产物,化学合成,抗癌活性,抗炎活性,构效关系(SAR)。

[1]
Porro, C.; Cianciulli, A.; Calvello, R.; Panaro, M.A. Reviewing the role of resveratrol as a natural modulator of microglial activities. Curr. Pharm. Des., 2015, 21(36), 5277-5291.
[http://dx.doi.org/10.2174/1381612821666150928155612] [PMID: 26416082]
[2]
Montero, C.; Cristescu, S.M.; Jiménez, J.B.; Orea, J.M.; te Lintel Hekkert, S.; Harren, F.J.M.; González Ureña, A. trans-resveratrol and grape disease resistance. A dynamical study by high-resolution laser-based techniques. Plant Physiol., 2003, 131(1), 129-138.
[http://dx.doi.org/10.1104/pp.010074] [PMID: 12529521]
[3]
Jeandet, P.; Bessis, R.; Sbaghi, M.; Meunier, P. Production of the phytoalexin resveratrol by grapes as a response to botrytis attack under natural conditions. J. Phytopathol., 1995, 143(3), 135-139.
[http://dx.doi.org/10.1111/j.1439-0434.1995.tb00246.x]
[4]
Adrian, M.; Jeandet, P.; Veneau, J.; Weston, L.; Bessis, R. Biological activity of resveratrol, a stilbenic compound from grapevines, against Botrytis cinerea, the causal agent for gray mold. J. Chem. Ecol., 1997, 23(7), 1689-1702.
[http://dx.doi.org/10.1023/B:JOEC.0000006444.79951.75]
[5]
Fronza, G.; Fuganti, C.; Serra, S.; Cisero, M.; Koziet, J. Stable isotope labeling pattern of resveratrol and related natural stilbenes. J. Agric. Food Chem., 2002, 50(10), 2748-2754.
[http://dx.doi.org/10.1021/jf011103j] [PMID: 11982393]
[6]
Sun, W.; Wang, W.; Kim, J.; Keng, P.; Yang, S.; Zhang, H.; Liu, C.; Okunieff, P.; Zhang, L. Anti-cancer effect of resveratrol is associated with induction of apoptosis via a mitochondrial pathway alignment. Adv. Exp. Med. Biol., 2008, 614, 179-186.
[http://dx.doi.org/10.1007/978-0-387-74911-2_21] [PMID: 18290328]
[7]
Singh, C.K.; Liu, X.; Ahmad, N. Resveratrol, in its natural combination in whole grape, for health promotion and disease management. Ann. N. Y. Acad. Sci., 2015, 1348(1), 150-160.
[http://dx.doi.org/10.1111/nyas.12798] [PMID: 26099945]
[8]
Hasan, M.M.; Yun, H.-K.; Kwak, E.-J.; Baek, K.-H. Preparation of resveratrol-enriched grape juice from ultrasonication treated grape fruits. Ultrason. Sonochem., 2014, 21(2), 729-734.
[http://dx.doi.org/10.1016/j.ultsonch.2013.08.008] [PMID: 24041855]
[9]
Renaud, S.; de Lorgeril, M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet, 1992, 339(8808), 1523-1526.
[http://dx.doi.org/10.1016/0140-6736(92)91277-F] [PMID: 1351198]
[10]
Sanders, T.H.; McMichael, R.W. Jr.; Hendrix, K.W. Occurrence of resveratrol in edible peanuts. J. Agric. Food Chem., 2000, 48(4), 1243-1246.
[http://dx.doi.org/10.1021/jf990737b] [PMID: 10775379]
[11]
Sales, J.M.; Resurreccion, A.V.A. Resveratrol in peanuts. Crit. Rev. Food Sci. Nutr., 2014, 54(6), 734-770.
[http://dx.doi.org/10.1080/10408398.2011.606928] [PMID: 24345046]
[12]
Shrikanta, A.; Kumar, A.; Govindaswamy, V. Resveratrol content and antioxidant properties of underutilized fruits. J. Food Sci. Technol., 2015, 52(1), 383-390.
[http://dx.doi.org/10.1007/s13197-013-0993-z] [PMID: 25593373]
[13]
Rimando, A.M.; Kalt, W.; Magee, J.B.; Dewey, J.; Ballington, J.R. Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J. Agric. Food Chem., 2004, 52(15), 4713-4719.
[http://dx.doi.org/10.1021/jf040095e] [PMID: 15264904]
[14]
Dueñas, M.; Hernández, T.; Estrella, I. Assessment of in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. Food Chem., 2006, 98(1), 95-103.
[http://dx.doi.org/10.1016/j.foodchem.2005.05.052]
[15]
Catalgol, B.; Batirel, S.; Taga, Y.; Ozer, N.K. Resveratrol: French paradox revisited. Front. Pharmacol., 2012, 3, 141.
[http://dx.doi.org/10.3389/fphar.2012.00141] [PMID: 22822401]
[16]
Soleas, G.J.; Diamandis, E.P.; Goldberg, D.M. Resveratrol: a molecule whose time has come? And gone? Clin. Biochem., 1997, 30(2), 91-113.
[http://dx.doi.org/10.1016/S0009-9120(96)00155-5] [PMID: 9127691]
[17]
Weiskirchen, S.; Weiskirchen, R. Resveratrol: how much wine do you have to drink to stay healthy? Adv. Nutr., 2016, 7(4), 706-718.
[http://dx.doi.org/10.3945/an.115.011627] [PMID: 27422505]
[18]
Hasan, M.; Bae, H. An overview of stress-induced resveratrol synthesis in grapes: perspectives for resveratrol-enriched grape products. Molecules, 2017, 22(2), 294.
[http://dx.doi.org/10.3390/molecules22020294] [PMID: 28216605]
[19]
Hammerbacher, A.; Ralph, S.G.; Bohlmann, J.; Fenning, T.M.; Gershenzon, J.; Schmidt, A. Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection. Plant Physiol., 2011, 157(2), 876-890.
[http://dx.doi.org/10.1104/pp.111.181420] [PMID: 21865488]
[20]
Savouret, J.F.; Quesne, M. Resveratrol and cancer: a review. Biomed. Pharmacother., 2002, 56(2), 84-87.
[http://dx.doi.org/10.1016/S0753-3322(01)00158-5] [PMID: 12000139]
[21]
Rolfs, C.H.; Kindl, H. Stilbene synthase and chalcone synthase: two different constitutive enzymes in cultured cells of Picea excelsa. Plant Physiol., 1984, 75(2), 489-492.
[http://dx.doi.org/10.1104/pp.75.2.489] [PMID: 16663649]
[22]
Thapa, S.B.; Pandey, R.P.; Park, Y.I.; Kyung Sohng, J. Biotechnological advances in resveratrol production and its chemical diversity. Molecules, 2019, 24(14), 2571.
[http://dx.doi.org/10.3390/molecules24142571] [PMID: 31311182]
[23]
Rösler, J.; Krekel, F.; Amrhein, N.; Schmid, J. Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol., 1997, 113(1), 175-179.
[http://dx.doi.org/10.1104/pp.113.1.175] [PMID: 9008393]
[24]
Ferrer, J.L.; Austin, M.B.; Stewart, C. Jr.; Noel, J.P. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol. Biochem., 2008, 46(3), 356-370.
[http://dx.doi.org/10.1016/j.plaphy.2007.12.009] [PMID: 18272377]
[25]
Katz, M.; Smits Hans, P.; Forster, J.; Jens, B.N. Metabolically engineered cells for the production of resveratrol or an oligomeric or glycosidically-bound derivative thereof U.S. Patent 2009/0035839 A1, 2008.
[26]
Camacho, Z.J.M.; Hernández, C.G.; Moreno, A.F.; Ramírez, I.R.; Martínez, A.; Bolívar, F.; Gosset, G. Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol 2016, 15(1), 163.
[http://dx.doi.org/10.1186/s12934-016-0562-z] [PMID: 27680538]
[27]
Siemann, E.H.; Creasy, L.L. Concentration of the phytoalexin resveratrol in wine. Am. J. Enol. Vitic., 1992, 43(1), 49-52.
[28]
Snyder, S.A.; Zografos, A.L.; Lin, Y. Total synthesis of resveratrol-based natural products: a chemoselective solution. Angew. Chem. Int. Ed. Engl., 2007, 46(43), 8186-8191.
[http://dx.doi.org/10.1002/anie.200703333] [PMID: 17890663]
[29]
Markus, M.A.; Morris, B.J. Resveratrol in prevention and treatment of common clinical conditions of aging. Clin. Interv. Aging, 2008, 3(2), 331-339.
[PMID: 18686754]
[30]
Wood, J.G.; Rogina, B.; Lavu, S.; Howitz, K.; Helfand, S.L.; Tatar, M.; Sinclair, D. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature, 2004, 430(7000), 686-689.
[http://dx.doi.org/10.1038/nature02789] [PMID: 15254550]
[31]
Higgins, L.M.; Llanos, E. A healthy indulgence? Wine consumers and the health benefits of wine. Wine Economics Policy, 2015, 4(1), 3-11.
[http://dx.doi.org/10.1016/j.wep.2015.01.001]
[32]
Snopek, L.; Mlcek, J.; Sochorova, L.; Baron, M.; Hlavacova, I.; Jurikova, T.; Kizek, R.; Sedlackova, E.; Sochor, J. Contribution of red wine consumption to human health protection. Molecules, 2018, 23(7), 1684.
[http://dx.doi.org/10.3390/molecules23071684] [PMID: 29997312]
[33]
Braga, A.; Ferreira, P.; Oliveira, J.; Rocha, I.; Faria, N. Heterologous production of resveratrol in bacterial hosts: current status and perspectives. World J. Microbiol. Biotechnol., 2018, 34(8), 122.
[http://dx.doi.org/10.1007/s11274-018-2506-8] [PMID: 30054757]
[34]
Huang, L.L.X. Method for the production of resveratrol in a recombinant bacterial host cell Patent WO2006124999, 2006.
[35]
Solladié, G.; Pasturel, J.Y.; Maignan, J. A re-investigation of resveratrol synthesis by Perkins reaction. Application to the synthesis of aryl cinnamic acids. Tetrahedron, 2003, 59(18), 3315-3321.
[http://dx.doi.org/10.1016/S0040-4020(03)00405-8]
[36]
Jeffery, T.; Ferber, B.T. One-pot palladium-catalyzed highly chemo-, regio-, and stereoselective synthesis of trans-stilbene derivatives. A concise and convenient synthesis of resveratrol. Tetrahedron Lett., 2003, 44(1), 193-197.
[http://dx.doi.org/10.1016/S0040-4039(02)02317-1]
[37]
Mavropoulos, A.; Orfanidou, T.; Liaskos, C.; Smyk, D.S.; Billinis, C.; Blank, M.; Rigopoulou, E.I.; Bogdanos, D.P. p38 mitogen-activated protein kinase (p38 MAPK)-mediated autoimmunity: lessons to learn from ANCA vasculitis and pemphigus vulgaris. Autoimmun. Rev., 2013, 12(5), 580-590.
[http://dx.doi.org/10.1016/j.autrev.2012.10.019] [PMID: 23207287]
[38]
Guiso, M.; Marra, C.; Farina, A. A new efficient resveratrol synthesis. Tetrahedron Lett., 2002, 43(4), 597-598.
[http://dx.doi.org/10.1016/S0040-4039(01)02227-4]
[39]
McNulty, J.; Das, P. Highly stereoselective and general synthesis of (e)-stilbenes and alkenes by means of an aqueous Wittig reaction. E. J. Org. Chem., 2009, 2009(24), 4031-4035.
[http://dx.doi.org/10.1002/ejoc.200900634]
[40]
Kang, S.S.; Cuendet, M.; Endringer, D.C.; Croy, V.L.; Pezzuto, J.M.; Lipton, M.A. Synthesis and biological evaluation of a library of resveratrol analogues as inhibitors of COX-1, COX-2 and NF-kappaB. Bioorg. Med. Chem., 2009, 17(3), 1044-1054.
[http://dx.doi.org/10.1016/j.bmc.2008.04.031] [PMID: 18487053]
[41]
Csuk, R.; Albert, S.; Kluge, R.; Ströhl, D. Resveratrol derived butyrylcholinesterase inhibitors. Arch. Pharm. (Weinheim), 2013, 346(7), 499-503.
[http://dx.doi.org/10.1002/ardp.201300051] [PMID: 23722618]
[42]
Deshpande, P.B.S. Stereoselective route to produce tris-Osubstituted-(E)-1-(3,5-dihydroxyphenyl)-2-(4-hydroxyphenyl) ethene, an intermediate in the synthesis of transresveratrol. U.S. Patent 6552213, 2003.
[43]
Wang, Z.Y. Method for preparing resveratrol. Patent CN1775721, 2005.
[44]
Wang, W.Z. Method for synthesizing resveratrol. Patent CN1994991 (A), 2007.
[45]
Xinzhi, C. Method for synthesizing veratric alcohol Patent CN101092351A, 2006.
[46]
Yong, Z. Process of preparing trans-polyhydroxy diphenyl ethylene. Patent CN101066912B, 2007.
[47]
Wu, C.F.C. White black falsehellebore alcohol derivative, analogue and preparation method and use thereof. Patent CN101139267 (A), 2008.
[48]
Zhang, Y.Z. (E)-substituted styrene compound and preparation method thereof Patent CN101544591 (A), 2009.
[49]
Mi, Q.X.Z. Simple and effective preparation method for resveratrol. Patent CN101585751 (A), 2009.
[50]
Chen, Y.L. Method for preparing trans polyhydroxystilbene compounds Patent CN101774894 (A), 2010.
[51]
Zhang, Y.Z. Method for synthesizing stilbene compound by utilizing Pfitzner-moffatt oxidizing reaction. Patent CN101830764 (A), 2010.
[52]
Ren, Y.R.J. Microwave chemical synthesis method for resveratrol. Patent CN102617294 (A), 2011.
[53]
Zou, Y.; Huang, Q.; Huang, T.K.; Ni, Q.C.; Zhang, E.S.; Xu, T.L.; Yuan, M.; Li, J. CuI/1,10-phen/PEG promoted decarboxylation of 2,3-diarylacrylic acids: synthesis of stilbenes under neutral and microwave conditions with an in situ generated recyclable catalyst. Org. Biomol. Chem., 2013, 11(40), 6967-6974.
[http://dx.doi.org/10.1039/c3ob41588k] [PMID: 24057265]
[54]
Roberti, M.; Pizzirani, D.; Simoni, D.; Rondanin, R.; Baruchello, R.; Bonora, C.; Buscemi, F.; Grimaudo, S.; Tolomeo, M. Synthesis and biological evaluation of resveratrol and analogues as apoptosis-inducing agents. J. Med. Chem., 2003, 46(16), 3546-3554.
[http://dx.doi.org/10.1021/jm030785u] [PMID: 12877593]
[55]
Sinha, A.K.; Kumar, V.; Sharma, A.; Sharma, A.; Kumar, R. An unusual, mild and convenient one-pot two-step access to (E)-stilbenes from hydroxy-substituted benzaldehydes and phenylacetic acids under microwave activation: a new facet of the classical Perkin reaction. Tetrahedron, 2007, 63(45), 11070-11077.
[http://dx.doi.org/10.1016/j.tet.2007.08.034]
[56]
Watts, K.T.; Lee, P.C.; Schmidt-Dannert, C. Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli. BMC Biotechnol., 2006, 6(1), 22.
[http://dx.doi.org/10.1186/1472-6750-6-22] [PMID: 16551366]
[57]
Merritt, A.E. Synthesis of resveratrol. Patent WO0160774, 2001.
[58]
Magalhaes, L.G.; Ferreira, L.L.G.; Andricopulo, A.D. Recent advances and perspectives in cancer drug design. An. Acad. Bras. Cienc., 2018, 90(Suppl. 2), 1233-1250.
[http://dx.doi.org/10.1590/0001-3765201820170823] [PMID: 29768576]
[59]
Ames, B.N.; Shigenaga, M.K.; Hagen, T.M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA, 1993, 90(17), 7915-7922.
[http://dx.doi.org/10.1073/pnas.90.17.7915] [PMID: 8367443]
[60]
Kinghorn, A.D.; Chin, Y.-W.; Swanson, S.M. Discovery of natural product anticancer agents from biodiverse organisms. Curr. Opin. Drug Discov. Devel., 2009, 12(2), 189-196.
[PMID: 19333864]
[61]
Carter, L.G.; D’Orazio, J.A.; Pearson, K.J. Resveratrol and cancer: focus on in vivo evidence. Endocr. Relat. Cancer, 2014, 21(3), R209-R225.
[http://dx.doi.org/10.1530/ERC-13-0171] [PMID: 24500760]
[62]
Chang, C.H.; Lee, C.Y.; Lu, C.C.; Tsai, F.J.; Hsu, Y.M.; Tsao, J.W.; Juan, Y.N.; Chiu, H.Y.; Yang, J.S.; Wang, C.C. Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: a key role of AMPK and Akt/mTOR signaling. Int. J. Oncol., 2017, 50(3), 873-882.
[http://dx.doi.org/10.3892/ijo.2017.3866] [PMID: 28197628]
[63]
Elshaer, M.; Chen, Y.; Wang, X.J.; Tang, X. Resveratrol: an overview of its anti-cancer mechanisms. Life Sci., 2018, 207, 340-349.
[http://dx.doi.org/10.1016/j.lfs.2018.06.028] [PMID: 29959028]
[64]
Lang, F.; Qin, Z.; Li, F.; Zhang, H.; Fang, Z.; Hao, E. Apoptotic cell death induced by resveratrol is partially mediated by the autophagy pathway in human ovarian cancer cells. PLoS One, 2015, 10(6), e0129196-e0129196.
[http://dx.doi.org/10.1371/journal.pone.0129196] [PMID: 26067645]
[65]
Ge, J.; Liu, Y.; Li, Q.; Guo, X.; Gu, L.; Ma, Z.G.; Zhu, Y.P. Resveratrol induces apoptosis and autophagy in T-cell acute lymphoblastic leukemia cells by inhibiting Akt/mTOR and activating p38-MAPK. Biomed. Environ. Sci., 2013, 26(11), 902-911.
[http://dx.doi.org/10.3967/bes2013.019] [PMID: 24331535]
[66]
Takashina, M.; Inoue, S.; Tomihara, K.; Tomita, K.; Hattori, K.; Zhao, Q.L.; Suzuki, T.; Noguchi, M.; Ohashi, W.; Hattori, Y. Different effect of resveratrol to induction of apoptosis depending on the type of human cancer cells. Int. J. Oncol., 2017, 50(3), 787-797.
[http://dx.doi.org/10.3892/ijo.2017.3859] [PMID: 28197625]
[67]
Chow, S.E.; Wang, J.S.; Chuang, S.F.; Chang, Y.L.; Chu, W.K.; Chen, W.S.; Chen, Y.W. Resveratrol-induced p53-independent apoptosis of human nasopharyngeal carcinoma cells is correlated with the downregulation of ΔNp63. Cancer Gene Ther., 2010, 17(12), 872-882.
[http://dx.doi.org/10.1038/cgt.2010.44] [PMID: 20725098]
[68]
Taguchi, A.; Koga, K.; Kawana, K.; Makabe, T.; Sue, F.; Miyashita, M.; Yoshida, M.; Urata, Y.; Izumi, G.; Tkamura, M.; Harada, M.; Hirata, T.; Hirota, Y.; Wada-Hiraike, O.; Fujii, T.; Osuga, Y. Resveratrol enhances apoptosis in endometriotic stromal cells. Am. J. Reprod. Immunol., 2016, 75(4), 486-492.
[http://dx.doi.org/10.1111/aji.12489] [PMID: 26782781]
[69]
Liu, Z.; Li, Y.; Yang, R. Effects of resveratrol on vascular endothelial growth factor expression in osteosarcoma cells and cell proliferation. Oncol. Lett., 2012, 4(4), 837-839.
[http://dx.doi.org/10.3892/ol.2012.824] [PMID: 23205110]
[70]
Kasiotis, K.M.; Pratsinis, H.; Kletsas, D.; Haroutounian, S.A. Resveratrol and related stilbenes: their anti-aging and anti-angiogenic properties. Food Chem. Toxicol., 2013, 61, 112-120.
[http://dx.doi.org/10.1016/j.fct.2013.03.038] [PMID: 23567244]
[71]
Ji, Q.; Liu, X.; Fu, X.; Zhang, L.; Sui, H.; Zhou, L.; Sun, J.; Cai, J.; Qin, J.; Ren, J.; Li, Q. Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/β-catenin signal pathway. PLoS One, 2013, 8(11), e78700-e78700.
[http://dx.doi.org/10.1371/journal.pone.0078700] [PMID: 24244343]
[72]
Sheth, S.; Jajoo, S.; Kaur, T.; Mukherjea, D.; Sheehan, K.; Rybak, L.P.; Ramkumar, V. Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/MicroRNA-21 pathway. PLoS One, 2012, 7(12), e51655.
[http://dx.doi.org/10.1371/journal.pone.0051655] [PMID: 23272133]
[73]
Kim, C.W.; Hwang, K.A.; Choi, K.C. Anti-metastatic potential of resveratrol and its metabolites by the inhibition of epithelial-mesenchymal transition, migration, and invasion of malignant cancer cells. Phytomedicine, 2016, 23(14), 1787-1796.
[http://dx.doi.org/10.1016/j.phymed.2016.10.016] [PMID: 27912881]
[74]
Farooqi, A.A.; Khalid, S.; Ahmad, A. Regulation of cell signaling pathways and mirnas by resveratrol in different cancers. Int. J. Mol. Sci., 2018, 19(3), 652.
[http://dx.doi.org/10.3390/ijms19030652] [PMID: 29495357]
[75]
Ji, Q.; Liu, X.; Han, Z.; Zhou, L.; Sui, H.; Yan, L.; Jiang, H.; Ren, J.; Cai, J.; Li, Q. Resveratrol suppresses epithelial-to-mesenchymal transition in colorectal cancer through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expression. BMC Cancer, 2015, 15, 97.
[http://dx.doi.org/10.1186/s12885-015-1119-y] [PMID: 25884904]
[76]
Kim, C.; Baek, S.H.; Um, J.Y.; Shim, B.S.; Ahn, K.S. Resveratrol attenuates constitutive STAT3 and STAT5 activation through induction of PTPε and SHP-2 tyrosine phosphatases and potentiates sorafenib-induced apoptosis in renal cell carcinoma. BMC Nephrol., 2016, 17(1), 19.
[http://dx.doi.org/10.1186/s12882-016-0233-7] [PMID: 26911335]
[77]
Yu, X.M.; Jaskula-Sztul, R.; Ahmed, K.; Harrison, A.D.; Kunnimalaiyaan, M.; Chen, H. Resveratrol induces differentiation markers expression in anaplastic thyroid carcinoma via activation of Notch1 signaling and suppresses cell growth. Mol. Cancer Ther., 2013, 12(7), 1276-1287.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0841] [PMID: 23594881]
[78]
Zhou, Z.X.; Mou, S.F.; Chen, X.Q.; Gong, L.L.; Ge, W.S. Anti-inflammatory activity of resveratrol prevents inflammation by inhibiting NF κB in animal models of acute pharyngitis. Mol. Med. Rep., 2018, 17(1), 1269-1274.
[http://dx.doi.org/10.3892/mmr.2017.7933] [PMID: 29115472]
[79]
Liu, F.C.; Tsai, Y.F.; Tsai, H.-I.; Yu, H.P. Anti-inflammatory and organ-protective effects of resveratrol in trauma-hemorrhagic injury. Mediators Inflamm., 2015, 2015, 643763.
[http://dx.doi.org/10.1155/2015/643763] [PMID: 26273141]
[80]
Yu, H.P.; Chaudry, I.H. The role of estrogen and receptor agonists in maintaining organ function after trauma-hemorrhage. Shock, 2009, 31(3), 227-237.
[http://dx.doi.org/10.1097/SHK.0b013e31818347e7] [PMID: 18665049]
[81]
Powell, R.D.; Swet, J.H.; Kennedy, K.L.; Huynh, T.T.; McKillop, I.H.; Evans, S.L. Resveratrol attenuates hypoxic injury in a primary hepatocyte model of hemorrhagic shock and resuscitation. J. Trauma Acute Care Surg., 2014, 76(2), 409-417.
[http://dx.doi.org/10.1097/TA.0000000000000096] [PMID: 24458046]
[82]
Wang, S.; Huang, Q.; Guo, J.; Guo, X.; Sun, Q.; Brunk, U.T.; Han, D.; Zhao, K.; Zhao, M. Local thermal injury induces general endothelial cell contraction through p38 MAP kinase activation. APMIS, 2014, 122(9), 832-841.
[http://dx.doi.org/10.1111/apm.12226] [PMID: 24479891]
[83]
Cong, X.; Li, Y.; Lu, N.; Dai, Y.; Zhang, H.; Zhao, X.; Liu, Y. Resveratrol attenuates the inflammatory reaction induced by ischemia/reperfusion in the rat heart. Mol. Med. Rep., 2014, 9(6), 2528-2532.
[http://dx.doi.org/10.3892/mmr.2014.2090] [PMID: 24682318]
[84]
Wang, W.; Sun, L.; Zhang, P.; Song, J.; Liu, W. An anti-inflammatory cell-free collagen/resveratrol scaffold for repairing osteochondral defects in rabbits. Acta Biomater., 2014, 10(12), 4983-4995.
[http://dx.doi.org/10.1016/j.actbio.2014.08.022] [PMID: 25169257]
[85]
Riba, A.; Deres, L.; Sumegi, B.; Toth, K.; Szabados, E.; Halmosi, R. Cardioprotective effect of resveratrol in a postinfarction heart failure model. Oxid. Med. Cell. Longev., 2017, 2017, 6819281.
[http://dx.doi.org/10.1155/2017/6819281] [PMID: 29109832]
[86]
Zhang, F.; Liu, J.; Shi, J.S. Anti-inflammatory activities of resveratrol in the brain: role of resveratrol in microglial activation. Eur. J. Pharmacol., 2010, 636(1-3), 1-7.
[http://dx.doi.org/10.1016/j.ejphar.2010.03.043] [PMID: 20361959]
[87]
Nimmo, A.J.; Vink, R. Recent patents in CNS drug discovery: the management of inflammation in the central nervous system. Recent Patents CNS Drug Discov., 2009, 4(2), 86-95.
[http://dx.doi.org/10.2174/157488909788452997] [PMID: 19519558]
[88]
Block, M.L.; Zecca, L.; Hong, J.S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci., 2007, 8(1), 57-69.
[http://dx.doi.org/10.1038/nrn2038] [PMID: 17180163]
[89]
Jin, F.; Wu, Q.; Lu, Y.F.; Gong, Q.H.; Shi, J.S. Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in rats. Eur. J. Pharmacol., 2008, 600(1-3), 78-82.
[http://dx.doi.org/10.1016/j.ejphar.2008.10.005] [PMID: 18940189]
[90]
McGeer, P.L.; McGeer, E.G. Inflammation and neurodegeneration in Parkinson’s disease. Parkinsonism Relat. Disord., 2004, 10(Suppl. 1), S3-S7.
[http://dx.doi.org/10.1016/j.parkreldis.2004.01.005] [PMID: 15109580]
[91]
Tsai, Y.F.; Chen, C.-Y.; Chang, W.Y.; Syu, Y.T.; Hwang, T.L. Resveratrol suppresses neutrophil activation via inhibition of Src family kinases to attenuate lung injury. Free Radic. Biol. Med., 2019, 145, 67-77.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.09.021] [PMID: 31550527]
[92]
Salehi, B.; Mishra, A.P.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.V.T.; Martins, N.; Sharifi-Rad, J. Resveratrol: a double-edged sword in health benefits. Biomedicines, 2018, 6(3), 91.
[http://dx.doi.org/10.3390/biomedicines6030091] [PMID: 30205595]
[93]
Oyenihi, O.R.; Oyenihi, A.B.; Adeyanju, A.A.; Oguntibeju, O.O. Antidiabetic effects of resveratrol: the way forward in its clinical utility. J. Diabetes Res., 2016, 2016, 9737483.
[http://dx.doi.org/10.1155/2016/9737483] [PMID: 28050570]
[94]
Pettit, R.K.; Pettit, G.R.; Hamel, E.; Hogan, F.; Moser, B.R.; Wolf, S.; Pon, S.; Chapuis, J.C.; Schmidt, J.M. E-combretastatin and E-resveratrol structural modifications: antimicrobial and cancer cell growth inhibitory beta-E-nitrostyrenes. Bioorg. Med. Chem., 2009, 17(18), 6606-6612.
[http://dx.doi.org/10.1016/j.bmc.2009.07.076] [PMID: 19709889]
[95]
Theodotou, M.; Fokianos, K.; Mouzouridou, A.; Konstantinou, C.; Aristotelous, A.; Prodromou, D.; Chrysikou, A. The effect of resveratrol on hypertension: a clinical trial. Exp. Ther. Med., 2017, 13(1), 295-301.
[http://dx.doi.org/10.3892/etm.2016.3958] [PMID: 28123505]
[96]
Cao, X.; Luo, T.; Luo, X.; Tang, Z. Resveratrol prevents AngII-induced hypertension via AMPK activation and RhoA/ROCK suppression in mice. Hypertens. Res., 2014, 37(9), 803-810.
[http://dx.doi.org/10.1038/hr.2014.90] [PMID: 24965170]
[97]
Gülçin, İ. Antioxidant properties of resveratrol: a structure-activity insight. Innov. Food Sci. Emerg. Technol., 2010, 11(1), 210-218.
[http://dx.doi.org/10.1016/j.ifset.2009.07.002]
[98]
Abdu, S.B.; Al-Bogami, F.M. Influence of resveratrol on liver fibrosis induced by dimethylnitrosamine in male rats. Saudi J. Biol. Sci., 2019, 26(1), 201-209.
[http://dx.doi.org/10.1016/j.sjbs.2017.09.003] [PMID: 30622427]
[99]
Camins, A.; Junyent, F.; Verdaguer, E.; Beas-Zarate, C.; Rojas-Mayorquín, A.E.; Ortuño-Sahagún, D.; Pallàs, M. Resveratrol: an antiaging drug with potential therapeutic applications in treating diseases. Pharmaceuticals (Basel), 2009, 2(3), 194-205.
[http://dx.doi.org/10.3390/ph2030194] [PMID: 27713233]
[100]
Ovesná, Z.; Horváthová-Kozics, K. Structure-activity relationship of trans-resveratrol and its analogues. Neoplasma, 2005, 52(6), 450-455.
[PMID: 16284688]
[101]
Coppa, T.; Lazzè, M.C.; Cazzalini, O.; Perucca, P.; Pizzala, R.; Bianchi, L.; Stivala, L.A.; Forti, L.; Maccario, C.; Vannini, V.; Savio, M. Structure-activity relationship of resveratrol and its analogue, 4,4′-dihydroxy-trans-stilbene, toward the endothelin axis in human endothelial cells. J. Med. Food, 2011, 14(10), 1173-1180.
[http://dx.doi.org/10.1089/jmf.2010.0272] [PMID: 21554123]
[102]
Szekeres, T.; Fritzer-Szekeres, M.; Saiko, P.; Jäger, W. Resveratrol and resveratrol analogues-structure-activity relationship. Pharm. Res., 2010, 27(6), 1042-1048.
[http://dx.doi.org/10.1007/s11095-010-0090-1] [PMID: 20232118]
[103]
Tian, B.; Liu, J. Resveratrol: a review of plant sources, synthesis, stability, modification and food application. J. Sci. Food Agric., 2020, 100(4), 1392-1404.
[http://dx.doi.org/10.1002/jsfa.10152] [PMID: 31756276]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy