Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Resveratrol, a Molecule with Anti-Inflammatory and Anti-Cancer Activities: Natural Product to Chemical Synthesis

Author(s): Sunil Kumar, Yu-Chia Chang, Kuei-Hung Lai and Tsong-Long Hwang*

Volume 28, Issue 19, 2021

Published on: 18 September, 2020

Page: [3773 - 3786] Pages: 14

DOI: 10.2174/0929867327999200918100746

Price: $65

Abstract

Background: Resveratrol, a natural polyphenol product, is used in plant defense from fungal and microbial aggression. It is found naturally, especially in plants such as grapes, peanuts, and berries. It has the highest concentrations in blueberries, mulberries, blackberries, and the skin of red grapes. Resveratrol has various pharmacological properties such as anti-inflammatory, cytoprotective, and antineoplastic activities.

Methods: We conducted a literature survey using standard tools such as Google, Reaxys, Scifinder, Scihub, and patent Espacenet to compile the biosynthetic pathways, all organic synthetic methods, and biological activities reported for resveratrol till date.

Results: More than one hundred research articles and patents were referred to write this review. About twenty-five of them are related to chemical synthesis, and the rests are about the source, pharmacological activity, and other properties of resveratrol. This study reveals that many common pathways are involved in various pharmacological activities, which can be useful for treating various diseases based on the pathways involved. Reactions such as Pfitzner-Moffatt oxidation, Wittig-Horner condensation, Mizoroki–Heck, Perkin, Wittig, etc. have been used in resveratrol synthesis. A structure-activity relationship was also established based on its analogs and derivatives.

Conclusion: This review examined and reported all the published biological activities and chemical syntheses of resveratrol apart from the biosynthetic pathway. Due to its valuable biological activities, various synthetic approaches have been reported till date. The reported synthetic operations are suitable for large-scale industrial production. Moreover, these comprehensive synthetic procedures could be utilized in the preparation of stilbenes and other related compounds in future endeavors.

Keywords: Resveratrol, natural product, chemical synthesis, anti-cancer activity, anti-inflammatory activity, structure activity relationship (SAR).

[1]
Porro, C.; Cianciulli, A.; Calvello, R.; Panaro, M.A. Reviewing the role of resveratrol as a natural modulator of microglial activities. Curr. Pharm. Des., 2015, 21(36), 5277-5291.
[http://dx.doi.org/10.2174/1381612821666150928155612] [PMID: 26416082]
[2]
Montero, C.; Cristescu, S.M.; Jiménez, J.B.; Orea, J.M.; te Lintel Hekkert, S.; Harren, F.J.M.; González Ureña, A. trans-resveratrol and grape disease resistance. A dynamical study by high-resolution laser-based techniques. Plant Physiol., 2003, 131(1), 129-138.
[http://dx.doi.org/10.1104/pp.010074] [PMID: 12529521]
[3]
Jeandet, P.; Bessis, R.; Sbaghi, M.; Meunier, P. Production of the phytoalexin resveratrol by grapes as a response to botrytis attack under natural conditions. J. Phytopathol., 1995, 143(3), 135-139.
[http://dx.doi.org/10.1111/j.1439-0434.1995.tb00246.x]
[4]
Adrian, M.; Jeandet, P.; Veneau, J.; Weston, L.; Bessis, R. Biological activity of resveratrol, a stilbenic compound from grapevines, against Botrytis cinerea, the causal agent for gray mold. J. Chem. Ecol., 1997, 23(7), 1689-1702.
[http://dx.doi.org/10.1023/B:JOEC.0000006444.79951.75]
[5]
Fronza, G.; Fuganti, C.; Serra, S.; Cisero, M.; Koziet, J. Stable isotope labeling pattern of resveratrol and related natural stilbenes. J. Agric. Food Chem., 2002, 50(10), 2748-2754.
[http://dx.doi.org/10.1021/jf011103j] [PMID: 11982393]
[6]
Sun, W.; Wang, W.; Kim, J.; Keng, P.; Yang, S.; Zhang, H.; Liu, C.; Okunieff, P.; Zhang, L. Anti-cancer effect of resveratrol is associated with induction of apoptosis via a mitochondrial pathway alignment. Adv. Exp. Med. Biol., 2008, 614, 179-186.
[http://dx.doi.org/10.1007/978-0-387-74911-2_21] [PMID: 18290328]
[7]
Singh, C.K.; Liu, X.; Ahmad, N. Resveratrol, in its natural combination in whole grape, for health promotion and disease management. Ann. N. Y. Acad. Sci., 2015, 1348(1), 150-160.
[http://dx.doi.org/10.1111/nyas.12798] [PMID: 26099945]
[8]
Hasan, M.M.; Yun, H.-K.; Kwak, E.-J.; Baek, K.-H. Preparation of resveratrol-enriched grape juice from ultrasonication treated grape fruits. Ultrason. Sonochem., 2014, 21(2), 729-734.
[http://dx.doi.org/10.1016/j.ultsonch.2013.08.008] [PMID: 24041855]
[9]
Renaud, S.; de Lorgeril, M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet, 1992, 339(8808), 1523-1526.
[http://dx.doi.org/10.1016/0140-6736(92)91277-F] [PMID: 1351198]
[10]
Sanders, T.H.; McMichael, R.W. Jr.; Hendrix, K.W. Occurrence of resveratrol in edible peanuts. J. Agric. Food Chem., 2000, 48(4), 1243-1246.
[http://dx.doi.org/10.1021/jf990737b] [PMID: 10775379]
[11]
Sales, J.M.; Resurreccion, A.V.A. Resveratrol in peanuts. Crit. Rev. Food Sci. Nutr., 2014, 54(6), 734-770.
[http://dx.doi.org/10.1080/10408398.2011.606928] [PMID: 24345046]
[12]
Shrikanta, A.; Kumar, A.; Govindaswamy, V. Resveratrol content and antioxidant properties of underutilized fruits. J. Food Sci. Technol., 2015, 52(1), 383-390.
[http://dx.doi.org/10.1007/s13197-013-0993-z] [PMID: 25593373]
[13]
Rimando, A.M.; Kalt, W.; Magee, J.B.; Dewey, J.; Ballington, J.R. Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J. Agric. Food Chem., 2004, 52(15), 4713-4719.
[http://dx.doi.org/10.1021/jf040095e] [PMID: 15264904]
[14]
Dueñas, M.; Hernández, T.; Estrella, I. Assessment of in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. Food Chem., 2006, 98(1), 95-103.
[http://dx.doi.org/10.1016/j.foodchem.2005.05.052]
[15]
Catalgol, B.; Batirel, S.; Taga, Y.; Ozer, N.K. Resveratrol: French paradox revisited. Front. Pharmacol., 2012, 3, 141.
[http://dx.doi.org/10.3389/fphar.2012.00141] [PMID: 22822401]
[16]
Soleas, G.J.; Diamandis, E.P.; Goldberg, D.M. Resveratrol: a molecule whose time has come? And gone? Clin. Biochem., 1997, 30(2), 91-113.
[http://dx.doi.org/10.1016/S0009-9120(96)00155-5] [PMID: 9127691]
[17]
Weiskirchen, S.; Weiskirchen, R. Resveratrol: how much wine do you have to drink to stay healthy? Adv. Nutr., 2016, 7(4), 706-718.
[http://dx.doi.org/10.3945/an.115.011627] [PMID: 27422505]
[18]
Hasan, M.; Bae, H. An overview of stress-induced resveratrol synthesis in grapes: perspectives for resveratrol-enriched grape products. Molecules, 2017, 22(2), 294.
[http://dx.doi.org/10.3390/molecules22020294] [PMID: 28216605]
[19]
Hammerbacher, A.; Ralph, S.G.; Bohlmann, J.; Fenning, T.M.; Gershenzon, J.; Schmidt, A. Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection. Plant Physiol., 2011, 157(2), 876-890.
[http://dx.doi.org/10.1104/pp.111.181420] [PMID: 21865488]
[20]
Savouret, J.F.; Quesne, M. Resveratrol and cancer: a review. Biomed. Pharmacother., 2002, 56(2), 84-87.
[http://dx.doi.org/10.1016/S0753-3322(01)00158-5] [PMID: 12000139]
[21]
Rolfs, C.H.; Kindl, H. Stilbene synthase and chalcone synthase: two different constitutive enzymes in cultured cells of Picea excelsa. Plant Physiol., 1984, 75(2), 489-492.
[http://dx.doi.org/10.1104/pp.75.2.489] [PMID: 16663649]
[22]
Thapa, S.B.; Pandey, R.P.; Park, Y.I.; Kyung Sohng, J. Biotechnological advances in resveratrol production and its chemical diversity. Molecules, 2019, 24(14), 2571.
[http://dx.doi.org/10.3390/molecules24142571] [PMID: 31311182]
[23]
Rösler, J.; Krekel, F.; Amrhein, N.; Schmid, J. Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol., 1997, 113(1), 175-179.
[http://dx.doi.org/10.1104/pp.113.1.175] [PMID: 9008393]
[24]
Ferrer, J.L.; Austin, M.B.; Stewart, C. Jr.; Noel, J.P. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol. Biochem., 2008, 46(3), 356-370.
[http://dx.doi.org/10.1016/j.plaphy.2007.12.009] [PMID: 18272377]
[25]
Katz, M.; Smits Hans, P.; Forster, J.; Jens, B.N. Metabolically engineered cells for the production of resveratrol or an oligomeric or glycosidically-bound derivative thereof U.S. Patent 2009/0035839 A1, 2008.
[26]
Camacho, Z.J.M.; Hernández, C.G.; Moreno, A.F.; Ramírez, I.R.; Martínez, A.; Bolívar, F.; Gosset, G. Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol 2016, 15(1), 163.
[http://dx.doi.org/10.1186/s12934-016-0562-z] [PMID: 27680538]
[27]
Siemann, E.H.; Creasy, L.L. Concentration of the phytoalexin resveratrol in wine. Am. J. Enol. Vitic., 1992, 43(1), 49-52.
[28]
Snyder, S.A.; Zografos, A.L.; Lin, Y. Total synthesis of resveratrol-based natural products: a chemoselective solution. Angew. Chem. Int. Ed. Engl., 2007, 46(43), 8186-8191.
[http://dx.doi.org/10.1002/anie.200703333] [PMID: 17890663]
[29]
Markus, M.A.; Morris, B.J. Resveratrol in prevention and treatment of common clinical conditions of aging. Clin. Interv. Aging, 2008, 3(2), 331-339.
[PMID: 18686754]
[30]
Wood, J.G.; Rogina, B.; Lavu, S.; Howitz, K.; Helfand, S.L.; Tatar, M.; Sinclair, D. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature, 2004, 430(7000), 686-689.
[http://dx.doi.org/10.1038/nature02789] [PMID: 15254550]
[31]
Higgins, L.M.; Llanos, E. A healthy indulgence? Wine consumers and the health benefits of wine. Wine Economics Policy, 2015, 4(1), 3-11.
[http://dx.doi.org/10.1016/j.wep.2015.01.001]
[32]
Snopek, L.; Mlcek, J.; Sochorova, L.; Baron, M.; Hlavacova, I.; Jurikova, T.; Kizek, R.; Sedlackova, E.; Sochor, J. Contribution of red wine consumption to human health protection. Molecules, 2018, 23(7), 1684.
[http://dx.doi.org/10.3390/molecules23071684] [PMID: 29997312]
[33]
Braga, A.; Ferreira, P.; Oliveira, J.; Rocha, I.; Faria, N. Heterologous production of resveratrol in bacterial hosts: current status and perspectives. World J. Microbiol. Biotechnol., 2018, 34(8), 122.
[http://dx.doi.org/10.1007/s11274-018-2506-8] [PMID: 30054757]
[34]
Huang, L.L.X. Method for the production of resveratrol in a recombinant bacterial host cell Patent WO2006124999, 2006.
[35]
Solladié, G.; Pasturel, J.Y.; Maignan, J. A re-investigation of resveratrol synthesis by Perkins reaction. Application to the synthesis of aryl cinnamic acids. Tetrahedron, 2003, 59(18), 3315-3321.
[http://dx.doi.org/10.1016/S0040-4020(03)00405-8]
[36]
Jeffery, T.; Ferber, B.T. One-pot palladium-catalyzed highly chemo-, regio-, and stereoselective synthesis of trans-stilbene derivatives. A concise and convenient synthesis of resveratrol. Tetrahedron Lett., 2003, 44(1), 193-197.
[http://dx.doi.org/10.1016/S0040-4039(02)02317-1]
[37]
Mavropoulos, A.; Orfanidou, T.; Liaskos, C.; Smyk, D.S.; Billinis, C.; Blank, M.; Rigopoulou, E.I.; Bogdanos, D.P. p38 mitogen-activated protein kinase (p38 MAPK)-mediated autoimmunity: lessons to learn from ANCA vasculitis and pemphigus vulgaris. Autoimmun. Rev., 2013, 12(5), 580-590.
[http://dx.doi.org/10.1016/j.autrev.2012.10.019] [PMID: 23207287]
[38]
Guiso, M.; Marra, C.; Farina, A. A new efficient resveratrol synthesis. Tetrahedron Lett., 2002, 43(4), 597-598.
[http://dx.doi.org/10.1016/S0040-4039(01)02227-4]
[39]
McNulty, J.; Das, P. Highly stereoselective and general synthesis of (e)-stilbenes and alkenes by means of an aqueous Wittig reaction. E. J. Org. Chem., 2009, 2009(24), 4031-4035.
[http://dx.doi.org/10.1002/ejoc.200900634]
[40]
Kang, S.S.; Cuendet, M.; Endringer, D.C.; Croy, V.L.; Pezzuto, J.M.; Lipton, M.A. Synthesis and biological evaluation of a library of resveratrol analogues as inhibitors of COX-1, COX-2 and NF-kappaB. Bioorg. Med. Chem., 2009, 17(3), 1044-1054.
[http://dx.doi.org/10.1016/j.bmc.2008.04.031] [PMID: 18487053]
[41]
Csuk, R.; Albert, S.; Kluge, R.; Ströhl, D. Resveratrol derived butyrylcholinesterase inhibitors. Arch. Pharm. (Weinheim), 2013, 346(7), 499-503.
[http://dx.doi.org/10.1002/ardp.201300051] [PMID: 23722618]
[42]
Deshpande, P.B.S. Stereoselective route to produce tris-Osubstituted-(E)-1-(3,5-dihydroxyphenyl)-2-(4-hydroxyphenyl) ethene, an intermediate in the synthesis of transresveratrol. U.S. Patent 6552213, 2003.
[43]
Wang, Z.Y. Method for preparing resveratrol. Patent CN1775721, 2005.
[44]
Wang, W.Z. Method for synthesizing resveratrol. Patent CN1994991 (A), 2007.
[45]
Xinzhi, C. Method for synthesizing veratric alcohol Patent CN101092351A, 2006.
[46]
Yong, Z. Process of preparing trans-polyhydroxy diphenyl ethylene. Patent CN101066912B, 2007.
[47]
Wu, C.F.C. White black falsehellebore alcohol derivative, analogue and preparation method and use thereof. Patent CN101139267 (A), 2008.
[48]
Zhang, Y.Z. (E)-substituted styrene compound and preparation method thereof Patent CN101544591 (A), 2009.
[49]
Mi, Q.X.Z. Simple and effective preparation method for resveratrol. Patent CN101585751 (A), 2009.
[50]
Chen, Y.L. Method for preparing trans polyhydroxystilbene compounds Patent CN101774894 (A), 2010.
[51]
Zhang, Y.Z. Method for synthesizing stilbene compound by utilizing Pfitzner-moffatt oxidizing reaction. Patent CN101830764 (A), 2010.
[52]
Ren, Y.R.J. Microwave chemical synthesis method for resveratrol. Patent CN102617294 (A), 2011.
[53]
Zou, Y.; Huang, Q.; Huang, T.K.; Ni, Q.C.; Zhang, E.S.; Xu, T.L.; Yuan, M.; Li, J. CuI/1,10-phen/PEG promoted decarboxylation of 2,3-diarylacrylic acids: synthesis of stilbenes under neutral and microwave conditions with an in situ generated recyclable catalyst. Org. Biomol. Chem., 2013, 11(40), 6967-6974.
[http://dx.doi.org/10.1039/c3ob41588k] [PMID: 24057265]
[54]
Roberti, M.; Pizzirani, D.; Simoni, D.; Rondanin, R.; Baruchello, R.; Bonora, C.; Buscemi, F.; Grimaudo, S.; Tolomeo, M. Synthesis and biological evaluation of resveratrol and analogues as apoptosis-inducing agents. J. Med. Chem., 2003, 46(16), 3546-3554.
[http://dx.doi.org/10.1021/jm030785u] [PMID: 12877593]
[55]
Sinha, A.K.; Kumar, V.; Sharma, A.; Sharma, A.; Kumar, R. An unusual, mild and convenient one-pot two-step access to (E)-stilbenes from hydroxy-substituted benzaldehydes and phenylacetic acids under microwave activation: a new facet of the classical Perkin reaction. Tetrahedron, 2007, 63(45), 11070-11077.
[http://dx.doi.org/10.1016/j.tet.2007.08.034]
[56]
Watts, K.T.; Lee, P.C.; Schmidt-Dannert, C. Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli. BMC Biotechnol., 2006, 6(1), 22.
[http://dx.doi.org/10.1186/1472-6750-6-22] [PMID: 16551366]
[57]
Merritt, A.E. Synthesis of resveratrol. Patent WO0160774, 2001.
[58]
Magalhaes, L.G.; Ferreira, L.L.G.; Andricopulo, A.D. Recent advances and perspectives in cancer drug design. An. Acad. Bras. Cienc., 2018, 90(Suppl. 2), 1233-1250.
[http://dx.doi.org/10.1590/0001-3765201820170823] [PMID: 29768576]
[59]
Ames, B.N.; Shigenaga, M.K.; Hagen, T.M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA, 1993, 90(17), 7915-7922.
[http://dx.doi.org/10.1073/pnas.90.17.7915] [PMID: 8367443]
[60]
Kinghorn, A.D.; Chin, Y.-W.; Swanson, S.M. Discovery of natural product anticancer agents from biodiverse organisms. Curr. Opin. Drug Discov. Devel., 2009, 12(2), 189-196.
[PMID: 19333864]
[61]
Carter, L.G.; D’Orazio, J.A.; Pearson, K.J. Resveratrol and cancer: focus on in vivo evidence. Endocr. Relat. Cancer, 2014, 21(3), R209-R225.
[http://dx.doi.org/10.1530/ERC-13-0171] [PMID: 24500760]
[62]
Chang, C.H.; Lee, C.Y.; Lu, C.C.; Tsai, F.J.; Hsu, Y.M.; Tsao, J.W.; Juan, Y.N.; Chiu, H.Y.; Yang, J.S.; Wang, C.C. Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: a key role of AMPK and Akt/mTOR signaling. Int. J. Oncol., 2017, 50(3), 873-882.
[http://dx.doi.org/10.3892/ijo.2017.3866] [PMID: 28197628]
[63]
Elshaer, M.; Chen, Y.; Wang, X.J.; Tang, X. Resveratrol: an overview of its anti-cancer mechanisms. Life Sci., 2018, 207, 340-349.
[http://dx.doi.org/10.1016/j.lfs.2018.06.028] [PMID: 29959028]
[64]
Lang, F.; Qin, Z.; Li, F.; Zhang, H.; Fang, Z.; Hao, E. Apoptotic cell death induced by resveratrol is partially mediated by the autophagy pathway in human ovarian cancer cells. PLoS One, 2015, 10(6), e0129196-e0129196.
[http://dx.doi.org/10.1371/journal.pone.0129196] [PMID: 26067645]
[65]
Ge, J.; Liu, Y.; Li, Q.; Guo, X.; Gu, L.; Ma, Z.G.; Zhu, Y.P. Resveratrol induces apoptosis and autophagy in T-cell acute lymphoblastic leukemia cells by inhibiting Akt/mTOR and activating p38-MAPK. Biomed. Environ. Sci., 2013, 26(11), 902-911.
[http://dx.doi.org/10.3967/bes2013.019] [PMID: 24331535]
[66]
Takashina, M.; Inoue, S.; Tomihara, K.; Tomita, K.; Hattori, K.; Zhao, Q.L.; Suzuki, T.; Noguchi, M.; Ohashi, W.; Hattori, Y. Different effect of resveratrol to induction of apoptosis depending on the type of human cancer cells. Int. J. Oncol., 2017, 50(3), 787-797.
[http://dx.doi.org/10.3892/ijo.2017.3859] [PMID: 28197625]
[67]
Chow, S.E.; Wang, J.S.; Chuang, S.F.; Chang, Y.L.; Chu, W.K.; Chen, W.S.; Chen, Y.W. Resveratrol-induced p53-independent apoptosis of human nasopharyngeal carcinoma cells is correlated with the downregulation of ΔNp63. Cancer Gene Ther., 2010, 17(12), 872-882.
[http://dx.doi.org/10.1038/cgt.2010.44] [PMID: 20725098]
[68]
Taguchi, A.; Koga, K.; Kawana, K.; Makabe, T.; Sue, F.; Miyashita, M.; Yoshida, M.; Urata, Y.; Izumi, G.; Tkamura, M.; Harada, M.; Hirata, T.; Hirota, Y.; Wada-Hiraike, O.; Fujii, T.; Osuga, Y. Resveratrol enhances apoptosis in endometriotic stromal cells. Am. J. Reprod. Immunol., 2016, 75(4), 486-492.
[http://dx.doi.org/10.1111/aji.12489] [PMID: 26782781]
[69]
Liu, Z.; Li, Y.; Yang, R. Effects of resveratrol on vascular endothelial growth factor expression in osteosarcoma cells and cell proliferation. Oncol. Lett., 2012, 4(4), 837-839.
[http://dx.doi.org/10.3892/ol.2012.824] [PMID: 23205110]
[70]
Kasiotis, K.M.; Pratsinis, H.; Kletsas, D.; Haroutounian, S.A. Resveratrol and related stilbenes: their anti-aging and anti-angiogenic properties. Food Chem. Toxicol., 2013, 61, 112-120.
[http://dx.doi.org/10.1016/j.fct.2013.03.038] [PMID: 23567244]
[71]
Ji, Q.; Liu, X.; Fu, X.; Zhang, L.; Sui, H.; Zhou, L.; Sun, J.; Cai, J.; Qin, J.; Ren, J.; Li, Q. Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/β-catenin signal pathway. PLoS One, 2013, 8(11), e78700-e78700.
[http://dx.doi.org/10.1371/journal.pone.0078700] [PMID: 24244343]
[72]
Sheth, S.; Jajoo, S.; Kaur, T.; Mukherjea, D.; Sheehan, K.; Rybak, L.P.; Ramkumar, V. Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/MicroRNA-21 pathway. PLoS One, 2012, 7(12), e51655.
[http://dx.doi.org/10.1371/journal.pone.0051655] [PMID: 23272133]
[73]
Kim, C.W.; Hwang, K.A.; Choi, K.C. Anti-metastatic potential of resveratrol and its metabolites by the inhibition of epithelial-mesenchymal transition, migration, and invasion of malignant cancer cells. Phytomedicine, 2016, 23(14), 1787-1796.
[http://dx.doi.org/10.1016/j.phymed.2016.10.016] [PMID: 27912881]
[74]
Farooqi, A.A.; Khalid, S.; Ahmad, A. Regulation of cell signaling pathways and mirnas by resveratrol in different cancers. Int. J. Mol. Sci., 2018, 19(3), 652.
[http://dx.doi.org/10.3390/ijms19030652] [PMID: 29495357]
[75]
Ji, Q.; Liu, X.; Han, Z.; Zhou, L.; Sui, H.; Yan, L.; Jiang, H.; Ren, J.; Cai, J.; Li, Q. Resveratrol suppresses epithelial-to-mesenchymal transition in colorectal cancer through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expression. BMC Cancer, 2015, 15, 97.
[http://dx.doi.org/10.1186/s12885-015-1119-y] [PMID: 25884904]
[76]
Kim, C.; Baek, S.H.; Um, J.Y.; Shim, B.S.; Ahn, K.S. Resveratrol attenuates constitutive STAT3 and STAT5 activation through induction of PTPε and SHP-2 tyrosine phosphatases and potentiates sorafenib-induced apoptosis in renal cell carcinoma. BMC Nephrol., 2016, 17(1), 19.
[http://dx.doi.org/10.1186/s12882-016-0233-7] [PMID: 26911335]
[77]
Yu, X.M.; Jaskula-Sztul, R.; Ahmed, K.; Harrison, A.D.; Kunnimalaiyaan, M.; Chen, H. Resveratrol induces differentiation markers expression in anaplastic thyroid carcinoma via activation of Notch1 signaling and suppresses cell growth. Mol. Cancer Ther., 2013, 12(7), 1276-1287.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0841] [PMID: 23594881]
[78]
Zhou, Z.X.; Mou, S.F.; Chen, X.Q.; Gong, L.L.; Ge, W.S. Anti-inflammatory activity of resveratrol prevents inflammation by inhibiting NF κB in animal models of acute pharyngitis. Mol. Med. Rep., 2018, 17(1), 1269-1274.
[http://dx.doi.org/10.3892/mmr.2017.7933] [PMID: 29115472]
[79]
Liu, F.C.; Tsai, Y.F.; Tsai, H.-I.; Yu, H.P. Anti-inflammatory and organ-protective effects of resveratrol in trauma-hemorrhagic injury. Mediators Inflamm., 2015, 2015, 643763.
[http://dx.doi.org/10.1155/2015/643763] [PMID: 26273141]
[80]
Yu, H.P.; Chaudry, I.H. The role of estrogen and receptor agonists in maintaining organ function after trauma-hemorrhage. Shock, 2009, 31(3), 227-237.
[http://dx.doi.org/10.1097/SHK.0b013e31818347e7] [PMID: 18665049]
[81]
Powell, R.D.; Swet, J.H.; Kennedy, K.L.; Huynh, T.T.; McKillop, I.H.; Evans, S.L. Resveratrol attenuates hypoxic injury in a primary hepatocyte model of hemorrhagic shock and resuscitation. J. Trauma Acute Care Surg., 2014, 76(2), 409-417.
[http://dx.doi.org/10.1097/TA.0000000000000096] [PMID: 24458046]
[82]
Wang, S.; Huang, Q.; Guo, J.; Guo, X.; Sun, Q.; Brunk, U.T.; Han, D.; Zhao, K.; Zhao, M. Local thermal injury induces general endothelial cell contraction through p38 MAP kinase activation. APMIS, 2014, 122(9), 832-841.
[http://dx.doi.org/10.1111/apm.12226] [PMID: 24479891]
[83]
Cong, X.; Li, Y.; Lu, N.; Dai, Y.; Zhang, H.; Zhao, X.; Liu, Y. Resveratrol attenuates the inflammatory reaction induced by ischemia/reperfusion in the rat heart. Mol. Med. Rep., 2014, 9(6), 2528-2532.
[http://dx.doi.org/10.3892/mmr.2014.2090] [PMID: 24682318]
[84]
Wang, W.; Sun, L.; Zhang, P.; Song, J.; Liu, W. An anti-inflammatory cell-free collagen/resveratrol scaffold for repairing osteochondral defects in rabbits. Acta Biomater., 2014, 10(12), 4983-4995.
[http://dx.doi.org/10.1016/j.actbio.2014.08.022] [PMID: 25169257]
[85]
Riba, A.; Deres, L.; Sumegi, B.; Toth, K.; Szabados, E.; Halmosi, R. Cardioprotective effect of resveratrol in a postinfarction heart failure model. Oxid. Med. Cell. Longev., 2017, 2017, 6819281.
[http://dx.doi.org/10.1155/2017/6819281] [PMID: 29109832]
[86]
Zhang, F.; Liu, J.; Shi, J.S. Anti-inflammatory activities of resveratrol in the brain: role of resveratrol in microglial activation. Eur. J. Pharmacol., 2010, 636(1-3), 1-7.
[http://dx.doi.org/10.1016/j.ejphar.2010.03.043] [PMID: 20361959]
[87]
Nimmo, A.J.; Vink, R. Recent patents in CNS drug discovery: the management of inflammation in the central nervous system. Recent Patents CNS Drug Discov., 2009, 4(2), 86-95.
[http://dx.doi.org/10.2174/157488909788452997] [PMID: 19519558]
[88]
Block, M.L.; Zecca, L.; Hong, J.S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci., 2007, 8(1), 57-69.
[http://dx.doi.org/10.1038/nrn2038] [PMID: 17180163]
[89]
Jin, F.; Wu, Q.; Lu, Y.F.; Gong, Q.H.; Shi, J.S. Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in rats. Eur. J. Pharmacol., 2008, 600(1-3), 78-82.
[http://dx.doi.org/10.1016/j.ejphar.2008.10.005] [PMID: 18940189]
[90]
McGeer, P.L.; McGeer, E.G. Inflammation and neurodegeneration in Parkinson’s disease. Parkinsonism Relat. Disord., 2004, 10(Suppl. 1), S3-S7.
[http://dx.doi.org/10.1016/j.parkreldis.2004.01.005] [PMID: 15109580]
[91]
Tsai, Y.F.; Chen, C.-Y.; Chang, W.Y.; Syu, Y.T.; Hwang, T.L. Resveratrol suppresses neutrophil activation via inhibition of Src family kinases to attenuate lung injury. Free Radic. Biol. Med., 2019, 145, 67-77.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.09.021] [PMID: 31550527]
[92]
Salehi, B.; Mishra, A.P.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.V.T.; Martins, N.; Sharifi-Rad, J. Resveratrol: a double-edged sword in health benefits. Biomedicines, 2018, 6(3), 91.
[http://dx.doi.org/10.3390/biomedicines6030091] [PMID: 30205595]
[93]
Oyenihi, O.R.; Oyenihi, A.B.; Adeyanju, A.A.; Oguntibeju, O.O. Antidiabetic effects of resveratrol: the way forward in its clinical utility. J. Diabetes Res., 2016, 2016, 9737483.
[http://dx.doi.org/10.1155/2016/9737483] [PMID: 28050570]
[94]
Pettit, R.K.; Pettit, G.R.; Hamel, E.; Hogan, F.; Moser, B.R.; Wolf, S.; Pon, S.; Chapuis, J.C.; Schmidt, J.M. E-combretastatin and E-resveratrol structural modifications: antimicrobial and cancer cell growth inhibitory beta-E-nitrostyrenes. Bioorg. Med. Chem., 2009, 17(18), 6606-6612.
[http://dx.doi.org/10.1016/j.bmc.2009.07.076] [PMID: 19709889]
[95]
Theodotou, M.; Fokianos, K.; Mouzouridou, A.; Konstantinou, C.; Aristotelous, A.; Prodromou, D.; Chrysikou, A. The effect of resveratrol on hypertension: a clinical trial. Exp. Ther. Med., 2017, 13(1), 295-301.
[http://dx.doi.org/10.3892/etm.2016.3958] [PMID: 28123505]
[96]
Cao, X.; Luo, T.; Luo, X.; Tang, Z. Resveratrol prevents AngII-induced hypertension via AMPK activation and RhoA/ROCK suppression in mice. Hypertens. Res., 2014, 37(9), 803-810.
[http://dx.doi.org/10.1038/hr.2014.90] [PMID: 24965170]
[97]
Gülçin, İ. Antioxidant properties of resveratrol: a structure-activity insight. Innov. Food Sci. Emerg. Technol., 2010, 11(1), 210-218.
[http://dx.doi.org/10.1016/j.ifset.2009.07.002]
[98]
Abdu, S.B.; Al-Bogami, F.M. Influence of resveratrol on liver fibrosis induced by dimethylnitrosamine in male rats. Saudi J. Biol. Sci., 2019, 26(1), 201-209.
[http://dx.doi.org/10.1016/j.sjbs.2017.09.003] [PMID: 30622427]
[99]
Camins, A.; Junyent, F.; Verdaguer, E.; Beas-Zarate, C.; Rojas-Mayorquín, A.E.; Ortuño-Sahagún, D.; Pallàs, M. Resveratrol: an antiaging drug with potential therapeutic applications in treating diseases. Pharmaceuticals (Basel), 2009, 2(3), 194-205.
[http://dx.doi.org/10.3390/ph2030194] [PMID: 27713233]
[100]
Ovesná, Z.; Horváthová-Kozics, K. Structure-activity relationship of trans-resveratrol and its analogues. Neoplasma, 2005, 52(6), 450-455.
[PMID: 16284688]
[101]
Coppa, T.; Lazzè, M.C.; Cazzalini, O.; Perucca, P.; Pizzala, R.; Bianchi, L.; Stivala, L.A.; Forti, L.; Maccario, C.; Vannini, V.; Savio, M. Structure-activity relationship of resveratrol and its analogue, 4,4′-dihydroxy-trans-stilbene, toward the endothelin axis in human endothelial cells. J. Med. Food, 2011, 14(10), 1173-1180.
[http://dx.doi.org/10.1089/jmf.2010.0272] [PMID: 21554123]
[102]
Szekeres, T.; Fritzer-Szekeres, M.; Saiko, P.; Jäger, W. Resveratrol and resveratrol analogues-structure-activity relationship. Pharm. Res., 2010, 27(6), 1042-1048.
[http://dx.doi.org/10.1007/s11095-010-0090-1] [PMID: 20232118]
[103]
Tian, B.; Liu, J. Resveratrol: a review of plant sources, synthesis, stability, modification and food application. J. Sci. Food Agric., 2020, 100(4), 1392-1404.
[http://dx.doi.org/10.1002/jsfa.10152] [PMID: 31756276]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy