Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

The Mechanism of Action of Salsolinol in Brain: Implications in Parkinson’s Disease

Author(s): Shee Man Voon, Khuen Yen Ng, Soi Moi Chye, Anna Pick Kiong Ling, Kenny Gah Leong Voon, Yiing Jye Yap and Rhun Yian Koh*

Volume 19, Issue 10, 2020

Page: [725 - 740] Pages: 16

DOI: 10.2174/1871527319666200902134129

Price: $65

Abstract

1-Methyl-1,2,3,4-tetrahydroisoquinoline-6,7-diol, commonly known as salsolinol, is a compound derived from dopamine. It was first discovered in 1973 and has gained attention for its role in Parkinson’s disease. Salsolinol and its derivatives were claimed to play a role in the pathogenesis of Parkinson’s disease as a neurotoxin that induces apoptosis of dopaminergic neurons due to its structural similarity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its ability to induce Parkinsonism. In this article, we discussed the biosynthesis, distribution and blood-brain barrier permeability of salsolinol. The roles of salsolinol in a healthy brain, particularly the interactions with enzymes, hormone and catecholamine, were reviewed. Finally, we discussed the involvement of salsolinol and its derivatives in the pathogenesis of Parkinson’s disease.

Keywords: Salsolinol, neurotoxin, Parkinson's disease, neurodegenerative disease, apoptosis, oxidative stress.

Graphical Abstract

[1]
Sandler M, Carter SB, Hunter KR, Stern GM. Tetrahydroisoquinoline alkaloids: in vivo metabolites of L-dopa in man. Nature 1973; 241(5390): 439-43.
[http://dx.doi.org/10.1038/241439a0] [PMID: 4705752]
[2]
Collins MA, Neafsey EJ. β-carboline analogues of N-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP): endogenous factors underlying idiopathic parkinsonism? Neurosci Lett 1985; 55(2): 179-84.
[http://dx.doi.org/10.1016/0304-3940(85)90016-3] [PMID: 2582318]
[3]
Naoi M, Maruyama W, Akao Y, Yi H. Dopamine-derived endogenous N-methyl-(R)-salsolinol: its role in Parkinson’s disease. Neurotoxicol Teratol 2002; 24(5): 579-91.
[http://dx.doi.org/10.1016/S0892-0362(02)00211-8 PMID: 12200189]
[4]
Tóth BE, Homicskó K, Radnai B, et al. Salsolinol is a putative endogenous neuro-intermediate lobe prolactin-releasing factor. J Neuroendocrinol 2001; 13(12): 1042-50.
[http://dx.doi.org/10.1046/j.1365-2826.2001.00725.x PMID: 11722700]
[5]
DeCuypere M, Lu Y, Miller DD, LeDoux MS. Regional distribution of tetrahydroisoquinoline derivatives in rodent, human, and Parkinson’s disease brain. J Neurochem 2008; 107(5): 1398-413.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05709.x PMID: 19013830]
[6]
Musshoff F, Schmidt P, Dettmeyer R, Priemer F, Wittig H, Madea B. A systematic regional study of dopamine and dopamine-derived salsolinol and norsalsolinol levels in human brain areas. Forensic Sci Int 1999; 105(1): 1-11.
[http://dx.doi.org/10.1016/S0379-0738(99)00110-3 PMID: 10605071]
[7]
Cai M, Liu Y-M. Quantification of salsolinol enantiomers by stable isotope dilution liquid chromatography with tandem mass spectrometric detection. Rapid Commun Mass Spectrom 2008; 22(24): 4171-7.
[http://dx.doi.org/10.1002/rcm.3847] [PMID: 19034892]
[8]
Strolin Benedetti M, Bellotti V, Pianezzola E, Moro E, Carminati P, Dostert P. Ratio of the R and S enantiomers of salsolinol in food and human urine. J Neural Transm (Vienna) 1989; 77(1): 47-53.
[http://dx.doi.org/10.1007/BF01255818] [PMID: 2746200]
[9]
Niwa T, Yoshizumi H, Tatematsu A, Matsuura S, Nagatsu T. Presence of tetrahydroisoquinoline, a parkinsonism-related compound, in foods. J Chromatogr A 1989; 493(2): 347-52.
[http://dx.doi.org/10.1016/S0378-4347(00)82740-1] [PMID: 2584300]
[10]
Musshoff F, Lachenmeier DW, Kroener L, Schmidt P, Dettmeyer R, Madea B. Simultaneous gas chromatographic-mass spectrometric determination of dopamine, norsalsolinol and salsolinol enantiomers in brain samples of a large human collective. Cell Mol Biol 2003; 49(5): 837-49.
[PMID: 14528920]
[11]
Musshoff F, Schmidt P, Dettmeyer R, Priemer F, Jachau K, Madea B. Determination of dopamine and dopamine-derived (R)-/(S)-salsolinol and norsalsolinol in various human brain areas using solid-phase extraction and gas chromatography/mass spectrometry. Forensic Sci Int 2000; 113(1-3): 359-66.
[http://dx.doi.org/10.1016/S0379-0738(00)00225-5 PMID: 10978649]
[12]
Musshoff F, Lachenmeier DW, Schmidt P, Dettmeyer R, Madea B. Systematic regional study of dopamine, norsalsolinol, and (R/S)-salsolinol levels in human brain areas of alcoholics. Alcohol Clin Exp Res 2005; 29(1): 46-52.
[http://dx.doi.org/10.1097/01.ALC.0000150011.81102.C2 PMID: 15654290]
[13]
Cohen G, Collins M. Alkaloids from catecholamines in adrenal tissue: possible role in alcoholism. Science 1970; 167(3926): 1749-51.
[http://dx.doi.org/10.1126/science.167.3926.1749] [PMID: 5461272]
[14]
Chen X, Arshad A, Qing H, Wang R, Lu J, Deng Y. Enzymatic condensation of dopamine and acetaldehyde: A salsolinol synthase from rat brain. Biologia (Bratisl) 2011; 66: 1183.
[http://dx.doi.org/10.2478/s11756-011-0134-y]
[15]
Naoi M, Maruyama W, Dostert P, Kohda K, Kaiya T. A novel enzyme enantio-selectively synthesizes (R)salsolinol, a precursor of a dopaminergic neurotoxin, N-methyl(R)salsolinol. Neurosci Lett 1996; 212(3): 183-6.
[http://dx.doi.org/10.1016/0304-3940(96)12807-X] [PMID: 8843103]
[16]
Hasiec M, Herman AP, Misztal T. Salsolinol: a potential modulator of the activity of the hypothalamic-pituitary-adrenal axis in nursing and postweaning sheep. Domest Anim Endocrinol 2015; 53: 26-34.
[http://dx.doi.org/10.1016/j.domaniend.2015.04.004 PMID: 26057577]
[17]
Xie G, Krnjević K, Ye JH. Salsolinol modulation of dopamine neurons. Front Behav Neurosci 2013; 7: 52.
[http://dx.doi.org/10.3389/fnbeh.2013.00052] [PMID: 23745110]
[18]
Quintanilla ME, Rivera-Meza M, Berrios-Cárcamo PA, et al. Salsolinol, free of isosalsolinol, exerts ethanol-like motivational/sensitization effects leading to increases in ethanol intake. Alcohol 2014; 48(6): 551-9.
[http://dx.doi.org/10.1016/j.alcohol.2014.07.003] [PMID: 25086835]
[19]
Quintanilla ME, Rivera-Meza M, Berríos-Cárcamo P, Cassels BK, Herrera-Marschitz M, Israel Y. (R)-Salsolinol, a product of ethanol metabolism, stereospecifically induces behavioral sensitization and leads to excessive alcohol intake. Addict Biol 2016; 21(6): 1063-71.
[http://dx.doi.org/10.1111/adb.12268] [PMID: 26032572]
[20]
Mravec B. Salsolinol, a derivate of dopamine, is a possible modulator of catecholaminergic transmission: a review of recent developments. Physiol Res 2006; 55(4): 353-64.
[PMID: 16238467]
[21]
Nagatsu T. Isoquinoline neurotoxins in the brain and Parkinson’s disease. Neurosci Res 1997; 29(2): 99-111.
[http://dx.doi.org/10.1016/S0168-0102(97)00083-7] [PMID: 9359458]
[22]
Naoi M, Maruyama W, Dostert P, Hashizume Y. N-methyl-(R)salsolinol as a dopaminergic neurotoxin: from an animal model to an early marker of Parkinson’s disease. J Neural Transm Suppl 1997; 50: 89-105.
[http://dx.doi.org/10.1007/978-3-7091-6842-4_10] [PMID: 9120428]
[23]
Antkiewicz-Michaluk L. Endogenous risk factors in Parkinson’s disease: dopamine and tetrahydroisoquinolines. Pol J Pharmacol 2002; 54(6): 567-72.
[PMID: 12866710]
[24]
Dostert P, Strolin Benedetti M, Dordain G. Dopamine-derived alkaloids in alcoholism and in Parkinson’s and Huntington’s diseases. J Neural Transm (Vienna) 1988; 74(2): 61-74.
[http://dx.doi.org/10.1007/BF01245140] [PMID: 2976808]
[25]
Storch A, Kaftan A, Burkhardt K, Schwarz J. 1-Methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol) is toxic to dopaminergic neuroblastoma SH-SY5Y cells via impairment of cellular energy metabolism. Brain Res 2000; 855(1): 67-75.
[http://dx.doi.org/10.1016/S0006-8993(99)02272-6 PMID: 10650131]
[26]
Robbins JH. Alkaloid formation by condensation of biogenic amines with acetaldehyde. Clin Res 1968; 16: 360.
[27]
Tabakoff B, Anderson RA, Ritzmann RF. Brain acetaldehyde after ethanol administration. Biochem Pharmacol 1976; 25(11): 1305-9.
[http://dx.doi.org/10.1016/0006-2952(76)90094-0] [PMID: 938553]
[28]
Deitrich R, Zimatkin S, Pronko S. Oxidation of ethanol in the brain and its consequences. Alcohol Res Health 2006; 29(4): 266-73.
[PMID: 17718405]
[29]
Sippel HW. The acetaldehyde content in rat brain during ethanol metabolism. J Neurochem 1974; 23(2): 451-2.
[http://dx.doi.org/10.1111/j.1471-4159.1974.tb04380.x PMID: 4417541]
[30]
Westcott JY, Weiner H, Shultz J, Myers RD. In vivo acetaldehyde in the brain of the rat treated with ethanol. Biochem Pharmacol 1980; 29(3): 411-7.
[http://dx.doi.org/10.1016/0006-2952(80)90521-3] [PMID: 7362655]
[31]
Gill K, Menez JF, Lucas D, Deitrich RA. Enzymatic production of acetaldehyde from ethanol in rat brain tissue. Alcohol Clin Exp Res 1992; 16(5): 910-5.
[http://dx.doi.org/10.1111/j.1530-0277.1992.tb01892.x PMID: 1443429]
[32]
Aragon CM, Rogan F, Amit Z. Ethanol metabolism in rat brain homogenates by a catalase-H2O2 system. Biochem Pharmacol 1992; 44(1): 93-8.
[http://dx.doi.org/10.1016/0006-2952(92)90042-H] [PMID: 1632841]
[33]
Maruyama W, Nakahara D, Ota M, et al. N-methylation of dopamine-derived 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, (R)-salsolinol, in rat brains: in vivo microdialysis study. J Neurochem 1992; 59(2): 395-400.
[http://dx.doi.org/10.1111/j.1471-4159.1992.tb09384.x PMID: 1629715]
[34]
Maruyama W, Naoi M. N-methyl(R)salsolinol: a neurotoxin candidate to induce Parkinson’s disease causes apoptosis in dopamine cells. Adv Behav Biol 1998; 49: 105-11.
[http://dx.doi.org/10.1007/978-1-4615-5337-3_16]
[35]
Naoi M, Maruyama W, Takahashi T, Akao Y, Nakagawa Y. Involvement of endogenous N-methyl(R)salsolinol in Parkinson’s disease: induction of apoptosis and protection by (-)deprenyl. J Neural Transm Suppl 2000; (58): 111-21.
[http://dx.doi.org/10.1007/978-3-7091-6284-2_9] [PMID: 11128601]
[36]
Naoi M, Maruyama W, Matsubara K, Hashizume Y. A neutral N-methyltransferase activity in the striatum determines the level of an endogenous MPP+-like neurotoxin, 1,2-dimethyl-6,7-dihydroxyisoquinolinium ion, in the substantia nigra of human brains. Neurosci Lett 1997; 235(1-2): 81-4.
[http://dx.doi.org/10.1016/S0304-3940(97)00723-4] [PMID: 9389601]
[37]
Naoi M, Maruyama W, Zhang JH, Takahashi T, Deng Y, Dostert P. Enzymatic oxidation of the dopaminergic neurotoxin, 1(R), 2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, into 1,2(N)-dimethyl-6,7-dihydroxyisoquinolinium ion. Life Sci 1995; 57(11): 1061-6.
[http://dx.doi.org/10.1016/0024-3205(95)02051-J] [PMID: 7658913]
[38]
Maruyama W, Dostert P, Naoi M. Dopamine-derived 1-methyl-6,7-dihydroxyisoquinolines as hydroxyl radical promoters and scavengers in the rat brain: in vivo and in vitro studies. J Neurochem 1995; 64(6): 2635-43.
[http://dx.doi.org/10.1046/j.1471-4159.1995.64062635.x] [PMID: 7760044]
[39]
Maruyama W, Sobue G, Matsubara K, Hashizume Y, Dostert P, Naoi M. A dopaminergic neurotoxin, 1(R), 2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, N-methyl(R)salsolinol, and its oxidation product, 1,2(N)-dimethyl-6,7-dihydroxyiso-quinolinium ion, accumulate in the nigro-striatal system of the human brain. Neurosci Lett 1997; 223(1): 61-4.
[http://dx.doi.org/10.1016/S0304-3940(97)13389-4] [PMID: 9058423]
[40]
Maruyama W, Deng Y, Dostert P, Naoi M. Analysis of endogenous enantiomers of neurotoxins in clinical samples by a multiple-electrode detection system with a chiral column.In: Coulometric electrode array detectors for HPLC (Progress in HPLC-HPCE). Acworth IN, Naoi M, Parvez H, Parvez S, (Eds.), CRC Press: Utrecht, 1997; Vol. 6, pp. 339–50. In:
[41]
Starkey JA, Mechref Y, Muzikar J, McBride WJ, Novotny MV. Determination of salsolinol and related catecholamines through on-line preconcentration and liquid chromatography/atmospheric pressure photoionization mass spectrometry. Anal Chem 2006; 78(10): 3342-7.
[http://dx.doi.org/10.1021/ac051863j] [PMID: 16689535]
[42]
Duncan MW, Smythe GA, Nicholson MV, Clezy PS. Comparison of high-performance liquid chromatography with electrochemical detection and gas chromatography-mass fragmentography for the assay of salsolinol, dopamine and dopamine metabolites in food and beverage samples. J Chromatogr A 1984; 336(1): 199-209.
[http://dx.doi.org/10.1016/S0378-4347(00)85142-7] [PMID: 6543217]
[43]
Riggin RM, Kissinger PT. Letter: Identification of salsolinol as a phenolic component in powdered cocoa and cocoa-based products. J Agric Food Chem 1976; 24(4): 900.
[http://dx.doi.org/10.1021/jf60206a043] [PMID: 956552]
[44]
Sasaoka T, Kaneda N, Niwa T, Hashizume Y, Nagatsu T. Analysis of salsolinol in human brain using high-performance liquid chromatography with electrochemical detection. J Chromatogr A 1988; 428(1): 152-5.
[http://dx.doi.org/10.1016/S0378-4347(00)83900-6] [PMID: 3170667]
[45]
Zheng X, Chen X, Guo M, et al. Changes in salsolinol production and salsolinol synthase activity in Parkinson’s disease model. Neurosci Lett 2018; 673: 39-43.
[http://dx.doi.org/10.1016/j.neulet.2018.02.024] [PMID: 29454627]
[46]
Deng Y, Maruyama W, Kawai M, et al. Assay for the (R)- and (S)-enantiomers of salsolinols in biological samples and foods with ion-pair high-performance liquid chromatography using beta-cyclodextrin as a chiral mobile phase additive. J Chromatogr B Biomed Sci Appl 1997; 689(2): 313-20.
[http://dx.doi.org/10.1016/S0378-4347(96)00359-3] [PMID: 9080316]
[47]
Origitano T, Hannigan J, Collins MA. Rat brain salsolinol and blood-brain barrier. Brain Res 1981; 224(2): 446-51.
[http://dx.doi.org/10.1016/0006-8993(81)90876-3] [PMID: 7284853]
[48]
Sjöquist B, Magnuson E. Analysis of salsolinol and salsoline in biological samples using deuterium-labelled internal standards and gas chromatography--mass spectrometry. J Chromatogr A 1980; 183(1): 17-24.
[http://dx.doi.org/10.1016/S0378-4347(00)81393-6] [PMID: 7400260]
[49]
Antkiewicz-Michaluk L, Michaluk J, Romańska I, Papla I, Vetulani J. Antidopaminergic effects of 1,2,3,4-tetrahydroisoquinoline and salsolinol. J Neural Transm (Vienna) 2000; 107(8-9): 1009-19.
[http://dx.doi.org/10.1007/s007020070049] [PMID: 11041279]
[50]
Matsuzawa S, Suzuki T, Misawa M. Involvement of mu-opioid receptor in the salsolinol-associated place preference in rats exposed to conditioned fear stress. Alcohol Clin Exp Res 2000; 24(3): 366-72.
[http://dx.doi.org/10.1111/j.1530-0277.2000.tb04624.x PMID: 10776678]
[51]
Vetulani J, Nalepa I, Antkiewicz-Michaluk L, Sansone M. Opposite effect of simple tetrahydroisoquinolines on amphetamine- and morphine-stimulated locomotor activity in mice. J Neural Transm (Vienna) 2001; 108(5): 513-26.
[http://dx.doi.org/10.1007/s007020170053] [PMID: 11459073]
[52]
Lorenc-Koci E, Antkiewicz-Michaluk L, Kamińska A, et al. The influence of acute and chronic administration of 1,2-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline on the function of the nigrostriatal dopaminergic system in rats. Neuroscience 2008; 156(4): 973-86.
[http://dx.doi.org/10.1016/j.neuroscience.2008.08.050 PMID: 18809471]
[53]
Thümen A, Behnecke A, Qadri F, et al. N-methyl-norsalsolinol, a putative dopaminergic neurotoxin, passes through the blood-brain barrier in vivo. Neuroreport 2002; 13(1): 25-8.
[http://dx.doi.org/10.1097/00001756-200201210-00010 PMID: 11924888]
[54]
Naoi M, Maruyama W, Nagy GM. Dopamine-derived salsolinol derivatives as endogenous monoamine oxidase inhibitors: occurrence, metabolism and function in human brains. Neurotoxicology 2004; 25(1-2): 193-204.
[http://dx.doi.org/10.1016/S0161-813X(03)00099-8 PMID: 14697894]
[55]
Homicskó KG, Kertész I, Radnai B, et al. Binding site of salsolinol: its properties in different regions of the brain and the pituitary gland of the rat. Neurochem Int 2003; 42(1): 19-26.
[http://dx.doi.org/10.1016/S0197-0186(02)00063-3 PMID: 12441164]
[56]
Székács D, Bodnár I, Mravec B, et al. The peripheral noradrenergic terminal as possible site of action of salsolinol as prolactoliberin. Neurochem Int 2007; 50(2): 427-34.
[http://dx.doi.org/10.1016/j.neuint.2006.10.001] [PMID: 17141375]
[57]
Hashizume T, Sawada T, Yaegashi T, et al. Characteristics of prolactin-releasing response to salsolinol in vivo in cattle. Domest Anim Endocrinol 2010; 39(1): 21-5.
[http://dx.doi.org/10.1016/j.domaniend.2010.01.002 PMID: 20172684]
[58]
Misztal T, Górski K, Tomaszewska-Zaremba D, Molik E, Romanowicz K. Identification of salsolinol in the mediobasal hypothalamus of lactating ewes and its relation to suckling-induced prolactin and GH release. J Endocrinol 2008; 198(1): 83-9.
[http://dx.doi.org/10.1677/JOE-07-0640] [PMID: 18434346]
[59]
Tóth BE, Bodnár I, Homicskó KG, Fülöp F, Fekete MI, Nagy GM. Physiological role of salsolinol: its hypophysiotrophic function in the regulation of pituitary prolactin secretion. Neurotoxicol Teratol 2002; 24(5): 655-66.
[http://dx.doi.org/10.1016/S0892-0362(02)00216-7 PMID: 12200196]
[60]
Górski K, Romanowicz K, Herman A, et al. The possible involvement of salsolinol and hypothalamic prolactin in the central regulatory processes in ewes during lactation. Reprod Domest Anim 2010; 45(5): e54-60.
[PMID: 19747187]
[61]
Hashizume T, Shida R, Suzuki S, et al. Salsolinol is present in the bovine posterior pituitary gland and stimulates the release of prolactin both in vivo and in vitro in ruminants. Domest Anim Endocrinol 2008; 34(2): 146-52.
[http://dx.doi.org/10.1016/j.domaniend.2006.12.003 PMID: 17267162]
[62]
Briggs GD, Nagy GM, Dickson PW. Mechanism of action of salsolinol on tyrosine hydroxylase. Neurochem Int 2013; 63(8): 726-31.
[http://dx.doi.org/10.1016/j.neuint.2013.09.016] [PMID: 24083987]
[63]
Weiner CD, Collins MA. Tetrahydroisoquinolines derived from catecholamines or DOPA: effects on brain tyrosine hydroxylase activity. Biochem Pharmacol 1978; 27(23): 2699-703.
[http://dx.doi.org/10.1016/0006-2952(78)90045-X] [PMID: 31887]
[64]
Minami M, Takahashi T, Maruyama W, et al. Inhibition of tyrosine hydroxylase by R and S enantiomers of salsolinol, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline. J Neurochem 1992; 58(6): 2097-101.
[http://dx.doi.org/10.1111/j.1471-4159.1992.tb10951.x PMID: 1349343]
[65]
Giovine A, Renis M, Bertolino A. In vivo and in vitro studies on the effect of tetrahydropapaveroline and salsolinol on COMT and MAO activity in rat brain. Pharmacology 1976; 14(1): 86-94.
[http://dx.doi.org/10.1159/000136583] [PMID: 959312]
[66]
Collins MA, Origitano TC. Catecholamine-derived tetrahydroisoquinolines: O-methylation patterns and regional brain distribution following intraventricular administration in rats. J Neurochem 1983; 41(6): 1569-75.
[http://dx.doi.org/10.1111/j.1471-4159.1983.tb00866.x PMID: 6644300]
[67]
Cohen G, Mytilineou C. Pharmacodynamic properties of catecholamine-derived TIQ’s and 7-O-methylated metabolites in neuronal systems. Prog Clin Biol Res 1982; 90: 265-74.
[PMID: 7111322]
[68]
Matsubara K, Ota M, Takahashi T, Maruyama W, Naoi M. Structural studies of condensation products of biogenic amines as inhibitors of tryptophan hydroxylase. Brain Res 1994; 655(1-2): 121-7.
[http://dx.doi.org/10.1016/0006-8993(94)91605-5] [PMID: 7812764]
[69]
Ota M, Dostert P, Hamanaka T, Nagatsu T, Naoi M. Inhibition of tryptophan hydroxylase by (R)- and (S)-1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolines (salsolinols). Neuropharmacology 1992; 31(4): 337-41.
[http://dx.doi.org/10.1016/0028-3908(92)90065-W] [PMID: 1522951]
[70]
Yamanaka Y. Effect of salsolinol on rat brain and liver monoamine oxidase. Jpn J Pharmacol 1971; 21(6): 833-6.
[http://dx.doi.org/10.1254/jjp.21.833] [PMID: 5316871]
[71]
Nakahara D, Maruyama W, Hashiguti H, Naoi M. Characterization of the in vivo action of (R)-salsolinol, an endogenous metabolite of alcohol, on serotonin and dopamine metabolism: a microdialysis study. Brain Res 1994; 644(2): 226-32.
[http://dx.doi.org/10.1016/0006-8993(94)91684-5] [PMID: 8050034]
[72]
Collins AC, Cashaw JL, Davis VE. Dopamine-derived tetrahydroisoquinoline alkaloids--inhibitors of neuroamine metabolism. Biochem Pharmacol 1973; 22(18): 2337-48.
[http://dx.doi.org/10.1016/0006-2952(73)90015-4] [PMID: 4733684]
[73]
Meyerson LR, McMurtrey KD, Davis VE. Neuroamine-derived alkaloids: substrate-preferred inhibitors of rat brain monoamine oxidase in vitro. Biochem Pharmacol 1976; 25(9): 1013-20.
[http://dx.doi.org/10.1016/0006-2952(76)90489-5] [PMID: 1267846]
[74]
Naoi M, Maruyama W, Sasuga S, et al. Inhibition of type A monoamine oxidase by 2(N)-methyl-6,7-dihydroxyisoquinolinium ions. Neurochem Int 1994; 25(5): 475-81.
[http://dx.doi.org/10.1016/0197-0186(94)90024-8] [PMID: 7849576]
[75]
Heikkila R, Cohen G, Dembiec D. Tetrahydroisoquinoline alkaloids: uptake by rat brain homogenates and inhibition of catecholamine uptake. J Pharmacol Exp Ther 1971; 179(2): 250-8.
[76]
Antkiewicz-Michaluk L, Romañska I, Papla I, et al. Neurochemical changes induced by acute and chronic administration of 1,2,3,4-tetrahydroisoquinoline and salsolinol in dopaminergic structures of rat brain. Neuroscience 2000; 96(1): 59-64.
[http://dx.doi.org/10.1016/S0306-4522(99)00533-3 PMID: 10683410]
[77]
Misztal T, Hasiec M, Tomaszewska-Zaremba D, Dobek E, Fülöp F, Romanowicz K. The influence of salsolinol on dopaminergic system activity within the mediobasal hypothalamus of anestrous sheep: a model for studies on the salsolinol-dopamine relationship. Acta Neurobiol Exp (Warsz) 2011; 71(3): 305-12.
[PMID: 22068739]
[78]
Zhu W, Wang D, Zheng J, et al. Effect of (R)-salsolinol and N-methyl-(R)-salsolinol on the balance impairment between dopamine and acetylcholine in rat brain: involvement in pathogenesis of Parkinson disease. Clin Chem 2008; 54(4): 705-12.
[http://dx.doi.org/10.1373/clinchem.2007.097725] [PMID: 18238832]
[79]
Lorenc-Koci E, Smiałowska M, Antkiewicz-Michaluk L, Gołembiowska K, Bajkowska M, Wolfarth S. Effect of acute and chronic administration of 1,2,3,4-tetrahydroisoquinoline on muscle tone, metabolism of dopamine in the striatum and tyrosine hydroxylase immunocytochemistry in the substantia nigra, in rats. Neuroscience 2000; 95(4): 1049-59.
[http://dx.doi.org/10.1016/S0306-4522(99)00511-4 PMID: 10682712]
[80]
Mhyre TR, Boyd JT, Hamill RW, Maguire-Zeiss KA. Parkinson’s disease. Subcell Biochem 2012; 65: 389-455.
[http://dx.doi.org/10.1007/978-94-007-5416-4_16] [PMID: 23225012]
[81]
Jiang X, Tang P-C, Chen Q, et al. Cordycepin exerts neuroprotective effects via an anti-apoptotic mechanism based on the mitochondrial pathway in a rotenone-induced Parkinsonism rat model. CNS Neurol Disord Drug Targets 2019; 18(8): 609-20.
[http://dx.doi.org/10.2174/1871527318666190905152138 PMID: 31486758]
[82]
Ebada MA, Alkanj S, Ebada M, et al. Safety and efficacy of levetiracetam for the management of levodopa- induced dyskinesia in patients with Parkinson’s disease: A systematic review. CNS Neurol Disord Drug Targets 2019; 18(4): 317-25.
[http://dx.doi.org/10.2174/1871527318666190314101314 PMID: 30868968]
[83]
Fatima A, Jyoti S, Siddique YH. Models of Parkinson’s disease with special emphasis on Drosophila melanogaster. CNS Neurol Disord Drug Targets 2018; 17(10): 757-66.
[http://dx.doi.org/10.2174/1871527317666180820164250 PMID: 30129420]
[84]
Askar MH, Hussein AM, Al-Basiony SF, et al. Effects of exercise and ferulic acid on alpha synuclein and neuroprotective heat shock protein 70 in an experimental model of Parkinsonism disease. CNS Neurol Disord Drug Targets 2019; 18(2): 156-69.
[http://dx.doi.org/10.2174/1871527317666180816095707 PMID: 30113007]
[85]
Kumar A, Dhawan A, Kadam A, Shinde A. Autophagy and mitochondria: targets in neurodegenerative disorders. CNS Neurol Disord Drug Targets 2018; 17(9): 696-705.
[http://dx.doi.org/10.2174/1871527317666180816100203 PMID: 30113005]
[86]
Healy-Stoffel M, Levant B. N-3 (omega-3) fatty acids: Effects on brain dopamine systems and potential role in the etiology and treatment of neuropsychiatric disorders. CNS Neurol Disord Drug Targets 2018; 17(3): 216-32.
[http://dx.doi.org/10.2174/1871527317666180412153612 PMID: 29651972]
[87]
Greenfield SA. Cell death in Parkinson’s diseaseEssays in Biochemistry. London: Portland Press 1992; Vol. 27: pp. 103-18.
[88]
Schapira AHV. Neurotoxicity and the mechanism of cell death in Parkinson’s diseaseAdvances in Neurology. Philadelphia: Lippincott-Raven 1996; Vol. 69: pp. 161-5.
[89]
Gerlach M, Koutsilieri E, Riederer P. N-methyl-(R)-salsolinol and its relevance to Parkinson’s disease. Lancet 1998; 351(9106): 850-1.
[http://dx.doi.org/10.1016/S0140-6736(05)70284-1] [PMID: 9525358]
[90]
Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983; 219(4587): 979-80.
[http://dx.doi.org/10.1126/science.6823561] [PMID: 6823561]
[91]
Bergman H, Wichmann T, DeLong MR. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 1990; 249(4975): 1436-8.
[http://dx.doi.org/10.1126/science.2402638] [PMID: 2402638]
[92]
Limousin P, Krack P, Pollak P, et al. Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 1998; 339(16): 1105-11.
[http://dx.doi.org/10.1056/NEJM199810153391603 PMID: 9770557]
[93]
Chiba K, Trevor A, Castagnoli N Jr. Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun 1984; 120(2): 574-8.
[http://dx.doi.org/10.1016/0006-291X(84)91293-2] [PMID: 6428396]
[94]
Bradbury AJ, Costall B, Domeney AM, et al. 1-methyl-4-phenylpyridine is neurotoxic to the nigrostriatal dopamine pathway. Nature 1986; 319(6048): 56-7.
[http://dx.doi.org/10.1038/319056a0] [PMID: 3484542]
[95]
Trevor AJ, Castagnoli N, Singer TP. The formation of reactive intermediates in the MAO-catalyzed oxidation of the nigrostriatal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicology 1988; 49(2-3): 513-9.
[http://dx.doi.org/10.1016/0300-483X(88)90037-6] [PMID: 3287698]
[96]
Javitch JA, D’Amato RJ, Strittmatter SM, Snyder SH. Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci USA 1985; 82(7): 2173-7.
[http://dx.doi.org/10.1073/pnas.82.7.2173] [PMID: 3872460]
[97]
Trevor AJ, Castagnoli N Jr, Caldera P, Ramsay RR, Singer TP. Bioactivation of MPTP: reactive metabolites and possible biochemical sequelae. Life Sci 1987; 40(8): 713-9.
[http://dx.doi.org/10.1016/0024-3205(87)90298-0] [PMID: 3492651]
[98]
Singer TP, Ramsay RR, McKeown K, Trevor A, Castagnoli NE Jr. Mechanism of the neurotoxicity of 1-methyl-4-phenylpyridinium (MPP+), the toxic bioactivation product of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicology 1988; 49(1): 17-23.
[http://dx.doi.org/10.1016/0300-483X(88)90169-2] [PMID: 3287690]
[99]
Nicklas WJ, Vyas I, Heikkila RE. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 1985; 36(26): 2503-8.
[http://dx.doi.org/10.1016/0024-3205(85)90146-8] [PMID: 2861548]
[100]
Chan P, DeLanney LE, Irwin I, Langston JW, Di Monte D. Rapid ATP loss caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mouse brain. J Neurochem 1991; 57(1): 348-51.
[http://dx.doi.org/10.1111/j.1471-4159.1991.tb02134.x PMID: 2051170]
[101]
Hasegawa E, Takeshige K, Oishi T, Murai Y, Minakami S. 1-Methyl-4-phenylpyridinium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles. Biochem Biophys Res Commun 1990; 170(3): 1049-55.
[http://dx.doi.org/10.1016/0006-291X(90)90498-C] [PMID: 2167668]
[102]
Naoi M, Maruyama W, Niwa T, Nagatsu T. Novel toxins and Parkinson’s disease: N-methylation and oxidation as metabolic bioactivation of neurotoxin. J Neural Transm Suppl 1994; 41: 197-205.
[http://dx.doi.org/10.1007/978-3-7091-9324-2_26] [PMID: 7931227]
[103]
Naoi M, Maruyama W. Cell death of dopamine neurons in aging and Parkinson’s disease. Mech Ageing Dev 1999; 111(2-3): 175-88.
[http://dx.doi.org/10.1016/S0047-6374(99)00064-0 PMID: 10656535]
[104]
Nagatsu T, Yoshida M. An endogenous substance of the brain, tetrahydroisoquinoline, produces parkinsonism in primates with decreased dopamine, tyrosine hydroxylase and biopterin in the nigrostriatal regions. Neurosci Lett 1988; 87(1-2): 178-82.
[http://dx.doi.org/10.1016/0304-3940(88)90166-8] [PMID: 2898112]
[105]
Naoi M, Maruyama W, Matsubara K, Tipton K, Strolin Benedetti M. Analysis of salsolinols, endogenous neurotoxins, in human materials Neurochem markers Degener Nerv Dis drug Addict 1998; 7: 423.
[106]
Naoi M, Maruyama W, Dostert P. An animal model of Parkinson’s disease prepared by endogenous N-methyl(R)salsolinol Pharmacology of Endogenous Neurotoxins. Boston: Birkhäuser 1998; pp. 41-61.
[http://dx.doi.org/10.1007/978-1-4612-2000-8_3]
[107]
Naoi M, Maruyama M. N-Methyl(R)Salsolinol and (R)SalsolinolN-Methyltransferase as Possible Pathogenic Factors in Parkinson’s DiseaseProgress in Alzheimer’s and Parkinson’s Diseases Advances in Behavioral Biology. Boston: Springer 1998; Vol. 49: pp. 413-20.
[http://dx.doi.org/10.1007/978-1-4615-5337-3_59]
[108]
Naoi M, Maruyama W, Akao Y, Zhang J, Parvez H. Apoptosis induced by an endogenous neurotoxin, N-methyl(R)salsolinol, in dopamine neurons. Toxicology 2000; 153(1-3): 123-41.
[http://dx.doi.org/10.1016/S0300-483X(00)00309-7 PMID: 11090952]
[109]
Moser A, Kömpf D. Presence of methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolines, derivatives of the neurotoxin isoquinoline, in parkinsonian lumbar CSF. Life Sci 1992; 50(24): 1885-91.
[http://dx.doi.org/10.1016/0024-3205(92)90549-5] [PMID: 1598074]
[110]
Maruyama W, Abe T, Tohgi H, Dostert P, Naoi M. A dopaminergic neurotoxin, (R)-N-methylsalsolinol, increases in Parkinsonian cerebrospinal fluid. Ann Neurol 1996; 40(1): 119-22.
[http://dx.doi.org/10.1002/ana.410400120] [PMID: 8687181]
[111]
Naoi M, Maruyama W, Dostert P, et al. Dopamine-derived endogenous 1(R),2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoqu-inoline, N-methyl-(R)-salsolinol, induced parkinsonism in rat: biochemical, pathological and behavioral studies. Brain Res 1996; 709(2): 285-95.
[http://dx.doi.org/10.1016/0006-8993(95)01325-3] [PMID: 8833765]
[112]
Mochizuki H, Goto K, Mori H, Mizuno Y. Histochemical detection of apoptosis in Parkinson’s disease. J Neurol Sci 1996; 137(2): 120-3.
[http://dx.doi.org/10.1016/0022-510X(95)00336-Z] [PMID: 8782165]
[113]
Anglade P, Vyas S, Javoy-Agid F, et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 1997; 12(1): 25-31.
[PMID: 9046040]
[114]
Maruyama W, Benedetti MS, Takahashi T, Naoi M. A neurotoxin N-methyl(R)salsolinol induces apoptotic cell death in differentiated human dopaminergic neuroblastoma SH-SY5Y cells. Neurosci Lett 1997; 232(3): 147-50.
[http://dx.doi.org/10.1016/S0304-3940(97)00607-1] [PMID: 9310301]
[115]
Maruyama W, Naoi M, Kasamatsu T, et al. An endogenous dopaminergic neurotoxin, N-methyl-(R)-salsolinol, induces DNA damage in human dopaminergic neuroblastoma SH-SY5Y cells. J Neurochem 1997; 69(1): 322-9.
[http://dx.doi.org/10.1046/j.1471-4159.1997.69010322.x PMID: 9202326]
[116]
Akao Y, Nakagawa Y, Maruyama W, Takahashi T, Naoi M. Apoptosis induced by an endogenous neurotoxin, N-methyl(R)salsolinol, is mediated by activation of caspase 3. Neurosci Lett 1999; 267(3): 153-6.
[http://dx.doi.org/10.1016/S0304-3940(99)00361-4 PMID: 10380999]
[117]
Maruyama W, Akao Y, Youdim MBH, Davis BA, Naoi M. Transfection-enforced Bcl-2 overexpression and an anti-Parkinson drug, rasagiline, prevent nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase induced by an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol. J Neurochem 2001; 78(4): 727-35.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00448.x PMID: 11520893]
[118]
Naoi M, Maruyama W, Akao Y, Yi H. Mitochondria determine the survival and death in apoptosis by an endogenous neurotoxin, N-methyl(R)salsolinol, and neuroprotection by propargylamines. J Neural Transm (Vienna) 2002; 109(5-6): 607-21.
[http://dx.doi.org/10.1007/s007020200050] [PMID: 12111453]
[119]
Kroemer G, Dallaporta B, Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 1998; 60: 619-42.
[http://dx.doi.org/10.1146/annurev.physiol.60.1.619 PMID: 9558479]
[120]
Petit PX, Susin SA, Zamzami N, Mignotte B, Kroemer G. Mitochondria and programmed cell death: back to the future. FEBS Lett 1996; 396(1): 7-13.
[http://dx.doi.org/10.1016/0014-5793(96)00988-X] [PMID: 8906857]
[121]
Maruyama W, Akao Y, Youdim MB, Naoi M. Neurotoxins induce apoptosis in dopamine neurons: protection by N-propargylamine-1(R)- and (S)-aminoindan, rasagiline and TV1022. J Neural Transm Suppl 2000; (60): 171-86.
[http://dx.doi.org/10.1007/978-3-7091-6301-6_11] [PMID: 11205138]
[122]
Maruyama W, Boulton AA, Davis BA, Dostert P, Naoi M. Enantio-specific induction of apoptosis by an endogenous neurotoxin, N-methyl(R)salsolinol, in dopaminergic SH-SY5Y cells: suppression of apoptosis by N-(2-heptyl)-N-methylpropargylamine. J Neural Transm (Vienna) 2001; 108(1): 11-24.
[http://dx.doi.org/10.1007/s007020170093] [PMID: 11261742]
[123]
Kang JH. Salsolinol, a catechol neurotoxin, induces oxidative modification of cytochrome c. BMB Rep 2013; 46(2): 119-23.
[http://dx.doi.org/10.5483/BMBRep.2013.46.2.220 PMID: 23433116]
[124]
Surh YJ, Jung YJ, Jang JH, Lee JS, Yoon HR. Iron enhancement of oxidative DNA damage and neuronal cell death induced by salsolinol. J Toxicol Environ Health A 2002; 65(5-6): 473-88.
[http://dx.doi.org/10.1080/15287390252808127] [PMID: 11936226]
[125]
Jung Y, Surh Y. Oxidative DNA damage and cytotoxicity induced by copper-stimulated redox cycling of salsolinol, a neurotoxic tetrahydroisoquinoline alkaloid. Free Radic Biol Med 2001; 30(12): 1407-17.
[http://dx.doi.org/10.1016/S0891-5849(01)00548-2 PMID: 11390186]
[126]
Kumar A, Ganini D, Mason RP. Role of cytochrome c in α-synuclein radical formation: implications of α-synuclein in neuronal death in Maneb- and paraquat-induced model of Parkinson’s disease. Mol Neurodegener 2016; 11(1): 70.
[http://dx.doi.org/10.1186/s13024-016-0135-y] [PMID: 27884192]
[127]
Wanpen S, Kooncumchoo P, Shavali S, Govitrapong P, Ebadi M. Salsolinol, an endogenous neurotoxin, activates JNK and NF-kappaB signaling pathways in human neuroblastoma cells. Neurochem Res 2007; 32(3): 443-50.
[http://dx.doi.org/10.1007/s11064-006-9246-0] [PMID: 17268850]
[128]
Lei K, Nimnual A, Zong WX, et al. The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH(2)-terminal kinase. Mol Cell Biol 2002; 22(13): 4929-42.
[http://dx.doi.org/10.1128/MCB.22.13.4929-4942.2002 PMID: 12052897]
[129]
Morikawa N, Naoi M, Maruyama W, et al. Effects of various tetrahydroisoquinoline derivatives on mitochondrial respiration and the electron transfer complexes. J Neural Transm (Vienna) 1998; 105(6-7): 677-88.
[http://dx.doi.org/10.1007/s007020050087] [PMID: 9826110]
[130]
McNaught KSP, Thull U, Carrupt PA, et al. Inhibition of complex I by isoquinoline derivatives structurally related to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Biochem Pharmacol 1995; 50(11): 1903-11.
[http://dx.doi.org/10.1016/0006-2952(95)02086-1] [PMID: 8615871]
[131]
Willets JM, Lambert DG, Lunec J, Griffiths HR. Studies on the neurotoxicity of 6,7-dihydroxy-1-methyl-1,2,3,4-tetrahydroisoquinoline (salsolinol) in SH-SY5Y cells. Eur J Pharmacol 1995; 293(4): 319-26.
[http://dx.doi.org/10.1016/0926-6917(95)90051-9] [PMID: 8748684]
[132]
Melzig MF, Zipper J. Effects of salsolinol on cultivated endothelial cells. Neurochem Res 1993; 18(6): 689-93.
[http://dx.doi.org/10.1007/BF00966783] [PMID: 8510795]
[133]
Takahashi T, Maruyama W, Deng Y, et al. Cytotoxicity of endogenous isoquinolines to human dopaminergic neuroblastoma SH-SY5Y cells. J Neural Transm (Vienna) 1997; 104(1): 59-66.
[http://dx.doi.org/10.1007/BF01271294] [PMID: 9085193]
[134]
Deng Y, Luan Y, Qing H, Xie H, Lu J, Zhou J. The formation of catechol isoquinolines in PC12 cells exposed to manganese. Neurosci Lett 2008; 444(2): 122-6.
[http://dx.doi.org/10.1016/j.neulet.2008.07.096] [PMID: 18722506]
[135]
Tatton NA. Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp Neurol 2000; 166(1): 29-43.
[http://dx.doi.org/10.1006/exnr.2000.7489] [PMID: 11031081]
[136]
Mogi M, Togari A, Kondo T, et al. Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J Neural Transm (Vienna) 2000; 107(3): 335-41.
[http://dx.doi.org/10.1007/s007020050028] [PMID: 10821442]
[137]
Hartmann A, Hunot S, Michel PP, et al. Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci USA 2000; 97(6): 2875-80.
[http://dx.doi.org/10.1073/pnas.040556597] [PMID: 10688892]
[138]
Dougherty DA, Stauffer DA. Acetylcholine binding by a synthetic receptor: implications for biological recognition. Science 1990; 250(4987): 1558-60.
[http://dx.doi.org/10.1126/science.2274786] [PMID: 2274786]
[139]
McNaught KSP, Altomare C, Cellamare S, et al. Inhibition of αketoglutarate dehydrogenase by isoquinoline derivatives structurally related to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neuroreport 1995; 6(8): 1105-8.
[http://dx.doi.org/10.1097/00001756-199505300-00008] [PMID: 7662887]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy