Systematic Review Article

细胞因子在牙周炎和靶向治疗中的中枢调节作用

卷 28, 期 15, 2021

发表于: 24 August, 2020

页: [3032 - 3058] 页: 27

弟呕挨: 10.2174/0929867327666200824112732

价格: $65

摘要

背景:牙周炎是一种免疫炎症性疾病,可导致牙周区域的骨骼和结缔组织进行性破坏。细胞因子网络在组织稳态、免疫细胞募集以控制致病影响和破骨细胞功能的调节中起主要作用,从而调节免疫反应的强度和持续时间。本综述提供了与牙周炎发病机制和进展有关的主要细胞因子及其靶向潜力的更新,以丰富当前的治疗选择。 方法:对文献数据库(PubMed、MEDLINE、Scopus)进行结构化搜索,以进行同行评审的细胞因子研究,重点是过去十年的牙周炎。在筛选的论文中进行了定性内容分析,并提供了对主要发现的批判性讨论。 结果:在牙周炎患者中检测到细胞因子谱的改变,促炎和/或抗炎细胞因子的相互作用与疾病发病机制有关。在最突出的促炎细胞因子中,TNF-α、IL-1β、IL-17、IL-6 和趋化因子 CXCL-6、CXCL-8 在牙周炎患者中过度表达并与疾病进展相关。另一方面,抗炎性 IL-4 和 IL-11 水平降低,而 IL-12 和 IFN-γ 表达在牙周病中起双重作用。目前的牙周炎治疗策略包括选择性抗生素、抗菌光动力疗法和益生菌,它们可以调节细胞因子网络,并且当与特定的抗细胞因子药物联合应用时,可以发挥额外的有益作用。 结论:很明显,细胞因子在牙周炎骨破坏的炎症过程和免疫细胞反应中起着重要的调节作用。应将特定的细胞因子靶向作为当前牙周治疗的补充治疗方案。

关键词: 牙周炎、炎症、细胞因子、促炎、抗炎、治疗。

« Previous
[1]
Khalaf, H.; Lönn, J.; Bengtsson, T. Cytokines and chemokines are differentially expressed in patients with periodontitis: possible role for TGF-β1 as a marker for disease progression. Cytokine, 2014, 67(1), 29-35.
[http://dx.doi.org/10.1016/j.cyto.2014.02.007] [PMID: 24680479]
[2]
Carrizales-Sepúlveda, E.F.; Ordaz-Farías, A.; Vera-Pineda, R.; Flores-Ramírez, R. Periodontal disease, systemic inflammation and the risk of cardiovascular disease. Heart Lung Circ., 2018, 27(11), 1327-1334.
[http://dx.doi.org/10.1016/j.hlc.2018.05.102] [PMID: 29903685]
[3]
Meyle, J.; Dommisch, H.; Groeger, S.; Giacaman, R.A.; Costalonga, M.; Herzberg, M. The innate host response in caries and periodontitis. J. Clin. Periodontol., 2017, 44(12), 1215-1225.
[http://dx.doi.org/10.1111/jcpe.12781] [PMID: 28727164]
[4]
Bjarnsholt, T.; Buhlin, K.; Dufrêne, Y.F.; Gomelsky, M.; Moroni, A.; Ramstedt, M.; Rumbaugh, K.P.; Schulte, T.; Sun, L.; Åkerlund, B.; Römling, U. Biofilm formation - what we can learn from recent developments. J. Intern. Med., 2018, 284(4), 332-345.
[http://dx.doi.org/10.1111/joim.12782] [PMID: 29856510]
[5]
Hughes, F.J.; Bartold, P.M. Periodontal complications of prescription and recreational drugs. Periodontol. 2000, 2018, 78(1), 47-58.
[http://dx.doi.org/10.1111/prd.12230] [PMID: 30198137]
[6]
Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal diseases. Nat. Rev. Dis. Primers, 2017, 3, 17038.
[http://dx.doi.org/10.1038/nrdp.2017.38] [PMID: 28805207]
[7]
Arweiler, N.B.; Netuschil, L. The oral microbiota. Adv. Exp. Med. Biol., 2016, 902, 45-60.
[http://dx.doi.org/10.1007/978-3-319-31248-4_4] [PMID: 27161350]
[8]
Herrera, D.; Alonso, B.; de Arriba, L.; Santa Cruz, I.; Serrano, C.; Sanz, M. Acute periodontal lesions. Periodontol. 2000, 2014, 65(1), 149-177.
[http://dx.doi.org/10.1111/prd.12022] [PMID: 24738591]
[9]
Cekici, A.; Kantarci, A.; Hasturk, H.; Van Dyke, T.E. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol. 2000, 2014, 64(1), 57-80.
[http://dx.doi.org/10.1111/prd.12002] [PMID: 24320956]
[10]
Armitage, G.C.; Cullinan, M.P. Comparison of the clinical features of chronic and aggressive periodontitis. Periodontol. 2000, 2010, 53, 12-27.
[http://dx.doi.org/10.1111/j.1600-0757.2010.00353.x] [PMID: 20403102]
[11]
Hegde, R.; Awan, K.H. Effects of periodontal disease on systemic health. Dis. Mon., 2019, 65(6), 185-192.
[http://dx.doi.org/10.1016/j.disamonth.2018.09.011] [PMID: 30384973]
[12]
Ebersole, J.L.; Graves, C.L.; Gonzalez, O.A.; Dawson, D., III; Morford, L.A.; Huja, P.E.; Hartsfield, J.K., Jr; Huja, S.S.; Pandruvada, S.; Wallet, S.M. Aging, inflammation, immunity and periodontal disease. Periodontol. 2000, 2016, 72(1), 54-75.
[http://dx.doi.org/10.1111/prd.12135] [PMID: 27501491]
[13]
Marques-Rocha, J.L.; Samblas, M.; Milagro, F.I.; Bressan, J.; Martínez, J.A.; Marti, A. Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J., 2015, 29(9), 3595-3611.
[http://dx.doi.org/10.1096/fj.14-260323] [PMID: 26065857]
[14]
Kuang, X.; Chen, V.; Xu, X. Novel approaches to the control of oral microbial biofilms. BioMed Res. Int., 2018, 2018, 6498932.
[http://dx.doi.org/10.1155/2018/6498932] [PMID: 30687755]
[15]
Jiao, Y.; Tay, F.R.; Niu, L.N.; Chen, J.H. Advancing antimicrobial strategies for managing oral biofilm infections. Int. J. Oral Sci., 2019, 11(3), 28.
[http://dx.doi.org/10.1038/s41368-019-0062-1] [PMID: 31570700]
[16]
Duyck, J.; Vandamme, K.; Krausch-Hofmann, S.; Boon, L.; De Keersmaecker, K.; Jalon, E.; Teughels, W. Impact of denture cleaning method and overnight storage condition on denture biofilm mass and composition: a cross-over randomized clinical trial. PLoS One, 2016, 11(1), e0145837.
[http://dx.doi.org/10.1371/journal.pone.0145837] [PMID: 26730967]
[17]
de Lollo, C.; Vasconcelos, D.M.; da Silva Oliveira, L.M.; Domingues, R.; de Carvalho, G.C. da Silva Duarte, A.J.; Sato, M.N. Chemokine, cytokine and type I interferon production induced by Toll-like receptor activation in common variable immune deficiency. Clin. Immunol., 2016, 169, 121-127.
[http://dx.doi.org/10.1016/j.clim.2016.07.001] [PMID: 27392462]
[18]
Azher, T.N.; Yin, X.T.; Stuart, P.M. Understanding the role of chemokines and cytokines in experimental models of herpes simplex keratitis. J. Immunol. Res., 2017, 2017, 7261980.
[http://dx.doi.org/10.1155/2017/7261980] [PMID: 28491875]
[19]
Garlet, G.P. Destructive and protective roles of cytokines in periodontitis: a re-appraisal from host defense and tissue destruction viewpoints. J. Dent. Res., 2010, 89(12), 1349-1363.
[http://dx.doi.org/10.1177/0022034510376402] [PMID: 20739705]
[20]
Hienz, S.A.; Paliwal, S.; Ivanovski, S. Mechanisms of bone resorption in periodontitis. J. Immunol. Res., 2015, 2015, 615486.
[http://dx.doi.org/10.1155/2015/615486] [PMID: 26065002]
[21]
Di Benedetto, A.; Gigante, I.; Colucci, S.; Grano, M. Periodontal disease: linking the primary inflammation to bone loss. Clin. Dev. Immunol., 2013, 2013, 503754.
[http://dx.doi.org/10.1155/2013/503754] [PMID: 23762091]
[22]
Preshaw, P.M.; Taylor, J.J. How has research into cytokine interactions and their role in driving immune responses impacted our understanding of periodontitis? J. Clin. Periodontol., 2011, 38(Suppl. 11), 60-84.
[http://dx.doi.org/10.1111/j.1600-051X.2010.01671.x] [PMID: 21323705]
[23]
Ding, C.; Ji, X.; Chen, X.; Xu, Y.; Zhong, L. TNF-α gene promoter polymorphisms contribute to periodontitis susceptibility: evidence from 46 studies. J. Clin. Periodontol., 2014, 41(8), 748-759.
[http://dx.doi.org/10.1111/jcpe.12279] [PMID: 24905365]
[24]
Algate, K.; Haynes, D.R.; Bartold, P.M.; Crotti, T.N.; Cantley, M.D. The effects of tumour necrosis factor-α on bone cells involved in periodontal alveolar bone loss; osteoclasts, osteoblasts and osteocytes. J. Periodontal Res., 2016, 51(5), 549-566.
[http://dx.doi.org/10.1111/jre.12339] [PMID: 26667183]
[25]
Thomas, M.V.; Puleo, D.A. Infection, inflammation, and bone regeneration: a paradoxical relationship. J. Dent. Res., 2011, 90(9), 1052-1061.
[http://dx.doi.org/10.1177/0022034510393967] [PMID: 21248364]
[26]
Barksby, H.E.; Lea, S.R.; Preshaw, P.M.; Taylor, J.J. The expanding family of interleukin-1 cytokines and their role in destructive inflammatory disorders. Clin. Exp. Immunol., 2007, 149(2), 217-225.
[http://dx.doi.org/10.1111/j.1365-2249.2007.03441.x] [PMID: 17590166]
[27]
Binderman, I.; Gadban, N.; Yaffe, A. Extracellular ATP is a key modulator of alveolar bone loss in periodontitis. Arch. Oral Biol., 2017, 81, 131-135.
[http://dx.doi.org/10.1016/j.archoralbio.2017.05.002] [PMID: 28528307]
[28]
Graunaite, I.; Lodiene, G.; Maciulskiene, V. Pathogenesis of apical periodontitis: a literature review. J. Oral Maxillofac. Res., 2012, 2(4), e1.
[http://dx.doi.org/10.5037/jomr.2011.2401] [PMID: 24421998]
[29]
Azuma, M.M.; Samuel, R.O.; Gomes-Filho, J.E.; Dezan-Junior, E.; Cintra, L.T. The role of IL-6 on apical periodontitis: a systematic review. Int. Endod. J., 2014, 47(7), 615-621.
[http://dx.doi.org/10.1111/iej.12196] [PMID: 24224782]
[30]
Memmert, S.; Nogueira, A.V.B.; Damanaki, A.; Nokhbehsaim, M.; Eick, S.; Divnic-Resnik, T.; Spahr, A.; Rath-Deschner, B.; Till, A.; Götz, W.; Cirelli, J.A.; Jäger, A.; Deschner, J. Damage-regulated autophagy modulator 1 in oral inflammation and infection. Clin. Oral Investig., 2018, 22(8), 2933-2941.
[http://dx.doi.org/10.1007/s00784-018-2381-6] [PMID: 29442188]
[31]
Gilowski, L.; Wiench, R.; Płocica, I.; Krzemiński, T.F. Amount of interleukin-1β and interleukin-1 receptor antagonist in periodontitis and healthy patients. Arch. Oral Biol., 2014, 59(7), 729-734.
[http://dx.doi.org/10.1016/j.archoralbio.2014.04.007] [PMID: 24798982]
[32]
Reis, C.D.A.; Costa, A.V.; Guimarães, J.T.; Tuna, D.; Braga, A.C.; Pacheco, J.J.; Arosa, F.A.; Salazar, F.; Cardoso, E.M. Clinical improvement following therapy for periodontitis: association with a decrease in IL-1 and IL-6. Exp. Ther. Med., 2014, 8(1), 323-327.
[http://dx.doi.org/10.3892/etm.2014.1724] [PMID: 24944641]
[33]
Souza, P.P.C.; Lerner, U.H. The role of cytokines in inflammatory bone loss. Immunol. Invest., 2013, 42(7), 555-622.
[http://dx.doi.org/10.3109/08820139.2013.822766] [PMID: 24004059]
[34]
Schenkein, H.A.; Barbour, S.E.; Tew, J.G. Cytokines and inflammatory factors regulating immunoglobulin production in aggressive periodontitis. Periodontol. 2000, 2007, 45, 113-127.
[http://dx.doi.org/10.1111/j.1600-0757.2007.00214.x] [PMID: 17850452]
[35]
Chitrapriya, M.N.; Rao, S.R.; Lavu, V. Interleukin-17 and interleukin-18 levels in different stages of inflammatory periodontal disease. J. Indian Soc. Periodontol., 2015, 19(1), 14-17.
[http://dx.doi.org/10.4103/0972-124X.145798] [PMID: 25810587]
[36]
Yoshinaka, K.; Shoji, N.; Nishioka, T.; Sugawara, Y.
Hoshino, T.; Sugawara, S.; Sasano, T. Increased interleukin-18 in the gingival tissues evokes chronic periodontitis after bacterial infection. Tohoku J. Exp. Med., 2014, 232(3), 215-222.
[http://dx.doi.org/10.1620/tjem.232.215] [PMID: 24646956]
[37]
Tada, H.; Suzuki, R.; Nemoto, E.; Shimauchi, H.; Matsushita, K.; Takada, H. Increases in IL-33 production by fimbriae and lipopeptide from Porphyromonas gingivalis in mouse bone marrow-derived dendritic cells via toll-like receptor 2. Biomed. Res. (Aligarh), 2017, 38(3), 189-195.
[http://dx.doi.org/10.2220/biomedres.38.189] [PMID: 28637954]
[38]
Lapérine, O.; Cloitre, A.; Caillon, J.; Huck, O.; Bugueno, I.M.; Pilet, P.; Sourice, S.; Le Tilly, E.; Palmer, G.; Davideau, J.L.; Geoffroy, V.; Guicheux, J.; Beck-Cormier, S.; Lesclous, P. Interleukin-33 and RANK-L interplay in the alveolar bone loss associated to periodontitis. PLoS One, 2016, 11(12), e0168080.
[http://dx.doi.org/10.1371/journal.pone.0168080] [PMID: 27992569]
[39]
Tada, H.; Matsuyama, T.; Nishioka, T.; Hagiwara, M.; Kiyoura, Y.; Shimauchi, H.; Matsushita, K. Porphyromonas gingivalis gingipain-dependently enhances il-33 production in human gingival epithelial cells. PLoS One, 2016, 11(4), e0152794.
[http://dx.doi.org/10.1371/journal.pone.0152794] [PMID: 27058037]
[40]
Lee, Y. The role of interleukin-17 in bone metabolism and inflammatory skeletal diseases. BMB Rep., 2013, 46(10), 479-483.
[http://dx.doi.org/10.5483/BMBRep.2013.46.10.141] [PMID: 24148767]
[41]
Zenobia, C.; Hajishengallis, G. Basic biology and role of interleukin-17 in immunity and inflammation. Periodontol. 2000, 2015, 69(1), 142-159.
[http://dx.doi.org/10.1111/prd.12083] [PMID: 26252407]
[42]
Abusleme, L.; Moutsopoulos, N.M. IL-17: overview and role in oral immunity and microbiome. Oral Dis., 2017, 23(7), 854-865.
[http://dx.doi.org/10.1111/odi.12598] [PMID: 27763707]
[43]
Corrêa, J.D.; Madeira, M.F.; Resende, R.G. Correia-Silva, Jde.F.; Gomez, R.S.; de Souza, Dda.G.; Teixeira, M.M.; Queiroz-Junior, C.M.; da Silva, T.A. Association between polymorphisms in interleukin-17A and -17F genes and chronic periodontal disease. Mediators Inflamm., 2012, 2012, 846052.
[http://dx.doi.org/10.1155/2012/846052] [PMID: 23304063]
[44]
Cortés-Vieyra, R.; Rosales, C.; Uribe-Querol, E. Neutrophil functions in periodontal homeostasis. J. Immunol. Res., 2016, 2016, 1396106.
[http://dx.doi.org/10.1155/2016/1396106] [PMID: 27019855]
[45]
Naruishi, K.; Nagata, T. Biological effects of interleukin-6 on gingival fibroblasts: cytokine regulation in periodontitis. J. Cell. Physiol., 2018, 233(9), 6393-6400.
[http://dx.doi.org/10.1002/jcp.26521] [PMID: 29574949]
[46]
Stadler, A.F.; Angst, P.D.; Arce, R.M.; Gomes, S.C.; Oppermann, R.V.; Susin, C. Gingival crevicular fluid levels of cytokines/chemokines in chronic periodontitis: a meta-analysis. J. Clin. Periodontol., 2016, 43(9), 727-745.
[http://dx.doi.org/10.1111/jcpe.12557] [PMID: 27027257]
[47]
Ebersole, J.L.; Kirakodu, S.; Novak, M.J.; Stromberg, A.J.; Shen, S.; Orraca, L.; Gonzalez-Martinez, J.; Burgos, A.; Gonzalez, O.A. Cytokine gene expression profiles during initiation, progression and resolution of periodontitis. J. Clin. Periodontol., 2014, 41(9), 853-861.
[http://dx.doi.org/10.1111/jcpe.12286] [PMID: 24975876]
[48]
Wu, Q.; Zhou, X.; Huang, D.; Ji, Y.; Kang, F. IL-6 enhances osteocyte mediated osteoclastogenesis by promoting JAK2 and RANKL activity in vitro. Cell. Physiol. Biochem., 2017, 41(4), 1360-1369.
[http://dx.doi.org/10.1159/000465455] [PMID: 28278513]
[49]
Colotta, F.; Re, F.; Polentarutti, N.; Sozzani, S.; Mantovani, A. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood, 1992, 80(8), 2012-2020.
[50]
Yongchaitrakul, T.; Lertsirirangson, K.; Pavasant, P. Human periodontal ligament cells secrete macrophage colony-stimulating factor in response to tumor necrosis factor-alpha in vitro. J. Periodontol., 2006, 77(6), 955-962.
[http://dx.doi.org/10.1902/jop.2006.050338] [PMID: 16734568]
[51]
N Guruprasad, C.; R Pradeep, A. Influence of smoking on interleukin-34 levels in gingival crevicular fluid and plasma in periodontal health and disease: a clinico-biochemical study. Bull. Tokyo Dent. Coll., 2018, 59(4), 247-255.
[http://dx.doi.org/10.2209/tdcpublication.2017-0051] [PMID: 30333369]
[52]
Watanabe, K.; Blew, B.; Scherer, M.; Burke, J.; Koh, G.; Block, C.; Ramakrishnan, V.; Frommel, T.O. CD11b mRNA expression in neutrophils isolated from peripheral blood and gingival crevicular fluid. J. Clin. Periodontol., 1997, 24(11), 814-822.
[http://dx.doi.org/10.1111/j.1600-051X.1997.tb01195.x] [PMID: 9402503]
[53]
Enomoto, T.; Takami, M.; Yamamoto, M.; Kamijo, R. LPS administration increases CD11b+ c-Fms+ CD14+ cell population that possesses osteoclast differentiation potential in mice. Cytotechnology, 2017, 69(3), 529-537.
[http://dx.doi.org/10.1007/s10616-017-0094-3] [PMID: 28429166]
[54]
Wong, H.C.; Ooi, Y.; Pulikkotil, S.J.; Naing, C. The role of three interleukin 10 gene polymorphisms (- 1082 A > G, -819 C > T, - 592 A > C) in the risk of chronic and aggressive periodontitis: a meta-analysis and trial sequential analysis. BMC Oral Health, 2018, 18(1), 171.
[http://dx.doi.org/10.1186/s12903-018-0637-9] [PMID: 30348144]
[55]
Zhang, Q.; Chen, B.; Yan, F.; Guo, J.; Zhu, X.; Ma, S.; Yang, W. Interleukin-10 inhibits bone resorption: a potential therapeutic strategy in periodontitis and other bone loss diseases. BioMed Res. Int., 2014, 2014, 284836.
[http://dx.doi.org/10.1155/2014/284836] [PMID: 24696846]
[56]
Olsen, I.; Taubman, M.A.; Singhrao, S.K. Porphyromonas gingivalis suppresses adaptive immunity in periodontitis, atherosclerosis, and Alzheimer’s disease. J. Oral Microbiol., 2016, 8, 33029.
[http://dx.doi.org/10.3402/jom.v8.33029] [PMID: 27882863]
[57]
Toker, H.; Gorgun, E.P.; Korkmaz, E.M.; Yüce, H.B.; Poyraz, O. The effects of IL-10 gene polymorphism on serum, and gingival crevicular fluid levels of IL-6 and IL-10 in chronic periodontitis. J. Appl. Oral Sci., 2018, 26, e20170232.
[http://dx.doi.org/10.1590/1678-7757-2017-0232] [PMID: 29489938]
[58]
Kato-Kogoe, N.; Nishioka, T.; Kawabe, M.; Kataoka, F.; Yamanegi, K.; Yamada, N.; Hata, M.; Yamamoto, T.; Nakasho, K.; Urade, M.; Terada, N.; Ohyama, H. The promotional effect of IL-22 on mineralization activity of periodontal ligament cells. Cytokine, 2012, 59(1), 41-48.
[http://dx.doi.org/10.1016/j.cyto.2012.03.024] [PMID: 22537848]
[59]
Berezniakova, A.I.; Cheremisina, V.F. 4 and 6 interleukin’s action in the pathogenesis of periodontitis, gingivitis and dental alveolitis. Wiad. Lek., 2017, 70(5), 910-912.
[PMID: 29203739]
[60]
Finoti, L.S.; Anovazzi, G.; Pigossi, S.C.; Corbi, S.C.T.; Teixeira, S.R.L.; Braido, G.V.V.; Kim, Y.J.; Orrico, S.R.P.; Cirelli, J.A.; Mayer, M.P.; Scarel-Caminaga, R.M. Periodontopathogens levels and clinical response to periodontal therapy in individuals with the interleukin-4 haplotype associated with susceptibility to chronic periodontitis. Eur. J. Clin. Microbiol. Infect. Dis., 2013, 32(12), 1501-1509.
[http://dx.doi.org/10.1007/s10096-013-1903-z] [PMID: 23748736]
[61]
Anil, S.; Vellappally, S.; Preethanath, R.S.; Mokeem, S.A.; AlMoharib, H.S.; Patil, S.; Chalisserry, E.P.; Al Kheraif, A.A. Hepatocyte growth factor levels in the saliva and gingival crevicular fluid in smokers with periodontitis. Dis. Markers, 2014, 2014, 146974.
[http://dx.doi.org/10.1155/2014/146974] [PMID: 25389376]
[62]
Beklen, A.; Sarp, A.S.; Uckan, D.; Tsaous Memet, G. The function of TLR4 in interferon gamma or interleukin-13 exposed and lipopolysaccharide stimulated gingival epithelial cell cultures. Biotech. Histochem., 2014, 89(7), 505-512.
[http://dx.doi.org/10.3109/10520295.2014.903299] [PMID: 24773607]
[63]
Beklen, A. Effects of IL-13 on TGF-β and MMP-1 in periodontitis. Biotech. Histochem., 2017, 92(5), 374-380.
[http://dx.doi.org/10.1080/10520295.2017.1312526] [PMID: 28682139]
[64]
Yucel-Lindberg, T.; Båge, T. Inflammatory mediators in the pathogenesis of periodontitis. Expert Rev. Mol. Med., 2013, 15, e7.
[http://dx.doi.org/10.1017/erm.2013.8] [PMID: 23915822]
[65]
Silva, N.; Abusleme, L.; Bravo, D.; Dutzan, N.; Garcia-Sesnich, J.; Vernal, R.; Hernández, M.; Gamonal, J. Host response mechanisms in periodontal diseases. J. Appl. Oral Sci., 2015, 23(3), 329-355.
[http://dx.doi.org/10.1590/1678-775720140259] [PMID: 26221929]
[66]
Babaloo, A.; Rahbar, M.; Babaloo, Z.; Ghasemi, S.; Amini, A. Evaluation of clinical periodontal indices and serum interleukin-27 by one-stage full-mouth disinfection and quadrant scaling and root planing in periodontitis. J. Contemp. Dent. Pract., 2018, 19(8), 997-1004.
[http://dx.doi.org/10.5005/jp-journals-10024-2372] [PMID: 30150504]
[67]
Prasad, R.; Suchetha, A.; Lakshmi, P.; Darshan, M.B.; Apoorva, S.M.; Ashit, G.B. Interleukin-11 - its role in the vicious cycle of inflammation, periodontitis and diabetes: A clinicobiochemical cross-sectional study. J. Indian Soc. Periodontol., 2015, 19(2), 159-163.
[http://dx.doi.org/10.4103/0972-124X.152108] [PMID: 26015665]
[68]
Tew, J.G.; El Shikh, M.E.; El Sayed, R.M.; Schenkein, H.A. Dendritic cells, antibodies reactive with oxLDL, and inflammation. J. Dent. Res., 2012, 91(1), 8-16.
[http://dx.doi.org/10.1177/0022034511407338] [PMID: 21531918]
[69]
Issaranggun Na Ayuthaya, B.; Everts, V.; Pavasant, P. The immunopathogenic and immunomodulatory effects of interleukin-12 in periodontal disease. Eur. J. Oral Sci., 2018, 126(2), 75-83.
[http://dx.doi.org/10.1111/eos.12405] [PMID: 29411897]
[70]
Gaffen, S.L.; Hajishengallis, G. A new inflammatory cytokine on the block: re-thinking periodontal disease and the Th1/Th2 paradigm in the context of Th17 cells and IL-17. J. Dent. Res., 2008, 87(9), 817-828.
[http://dx.doi.org/10.1177/154405910808700908] [PMID: 18719207]
[71]
Gowen, M.; Mundy, G.R. Actions of recombinant interleukin 1, interleukin 2, and interferon-gamma on bone resorption in vitro. J. Immunol., 1986, 136(7), 2478-2482.
[PMID: 3081643]
[72]
Fokkema, S.J.; Loos, B.G.; de Slegte, C.; Burger, W.; Piscaer, M.; IJzerman, Y.; Van der Velden, U. Increased release of IL-12p70 by monocytes after periodontal therapy. J. Clin. Periodontol., 2003, 30(12), 1091-1096.
[http://dx.doi.org/10.1046/j.0303-6979.2003.00435.x] [PMID: 15002896]
[73]
Johnson, R.B.; Serio, F.G. Interleukin-18 concentrations and the pathogenesis of periodontal disease. J. Periodontol., 2005, 76(5), 785-790.
[http://dx.doi.org/10.1902/jop.2005.76.5.785] [PMID: 15898940]
[74]
Liukkonen, J.; Gürsoy, U.K.; Pussinen, P.J.; Suominen, A.L.; Könönen, E. Salivary concentrations of interleukin (IL)-1β, IL-17A, and IL-23 vary in relation to periodontal status. J. Periodontol., 2016, 87(12), 1484-1491.
[http://dx.doi.org/10.1902/jop.2016.160146] [PMID: 27541079]
[75]
Moutsopoulos, N.M.; Zerbe, C.S.; Wild, T.; Dutzan, N.; Brenchley, L.; DiPasquale, G.; Uzel, G.; Axelrod, K.C.; Lisco, A.; Notarangelo, L.D.; Hajishengallis, G.; Notarangelo, L.D.; Holland, S.M. Interleukin-12 and interleukin-23 blockade in leukocyte adhesion deficiency type 1. N. Engl. J. Med., 2017, 376(12), 1141-1146.
[http://dx.doi.org/10.1056/NEJMoa1612197] [PMID: 28328326]
[76]
Ohyama, H.; Kato-Kogoe, N.; Kuhara, A.; Nishimura, F.; Nakasho, K.; Yamanegi, K.; Yamada, N.; Hata, M.; Yamane, J.; Terada, N. The involvement of IL-23 and the Th17 pathway in periodontitis. J. Dent. Res., 2009, 88(7), 633-638.
[http://dx.doi.org/10.1177/0022034509339889] [PMID: 19605880]
[77]
Cifcibasi, E.; Koyuncuoglu, C.; Ciblak, M.; Badur, S.; Kasali, K.; Firatli, E.; Cintan, S. Evaluation of local and systemic levels of interleukin-17, interleukin-23, and myeloperoxidase in response to periodontal therapy in patients with generalized aggressive periodontitis. Inflammation, 2015, 38(5), 1959-1968.
[http://dx.doi.org/10.1007/s10753-015-0176-3] [PMID: 25939876]
[78]
Shindo, S.; Hosokawa, Y.; Hosokawa, I.; Shiba, H. Interleukin (IL)-35 suppresses IL-6 and IL-8 production in IL-17A-stimulated human periodontal ligament cells. Inflammation, 2019, 42(3), 835-840.
[http://dx.doi.org/10.1007/s10753-018-0938-9] [PMID: 30484005]
[79]
Jin, Y.; Liu, D.; Lin, X. IL-35 may maintain homeostasis of the immune microenvironment in periodontitis. Exp. Ther. Med., 2017, 14(6), 5605-5610.
[http://dx.doi.org/10.3892/etm.2017.5255] [PMID: 29285099]
[80]
Shi, Q.; Cai, C.; Xu, J.; Liu, J.; Liu, H.; Huo, N. Is there an association between IFN-γ +874A/T polymorphism and periodontitis susceptibility?: a meta-analysis. Medicine (Baltimore), 2017, 96(25), e7288.
[http://dx.doi.org/10.1097/MD.0000000000007288] [PMID: 28640144]
[81]
Booth, V.; Solakoglu, O.; Bavisha, N.; Curtis, M.A. Serum IgG1 and IgG2 antibody responses to Porphyromonas gingivalis in patients with periodontitis. Oral Microbiol. Immunol., 2006, 21(2), 93-99.
[http://dx.doi.org/10.1111/j.1399-302X.2006.00265.x] [PMID: 16476018]
[82]
Yang, S.; Madyastha, P.; Ries, W.; Key, L.L. Characterization of interferon gamma receptors on osteoclasts: effect of interferon gamma on osteoclastic superoxide generation. J. Cell. Biochem., 2002, 84(3), 645-654.
[http://dx.doi.org/10.1002/jcb.10074] [PMID: 11813269]
[83]
Fiorillo, L.; Cervino, G.; Herford, A.S.; Lauritano, F.; D’Amico, C.; Lo Giudice, R.; Laino, L.; Troiano, G.; Crimi, S.; Cicciù, M. Interferon crevicular fluid profile and correlation with periodontal disease and wound healing: a systemic review of recent data. Int. J. Mol. Sci., 2018, 19(7), 1908.
[http://dx.doi.org/10.3390/ijms19071908] [PMID: 29966238]
[84]
Franco-Topete, R.; Zepeda-Nuño, J.S.; Zamora-Perez, A.L.; Fuentes-Lerma, M.G.; Gómez-Meda, B.C.; Guerrero-Velázquez, C. IFN-γR2 is strongly expressed on endothelial cells of gingival tissues from patients with chronic periodontitis. J. Appl. Oral Sci., 2018, 26, e20170291.
[http://dx.doi.org/10.1590/1678-7757-2017-0291] [PMID: 30304122]
[85]
Baker, P.J.; Dixon, M.; Evans, R.T.; Dufour, L.; Johnson, E.; Roopenian, D.C. CD4(+) T cells and the proinflammatory cytokines gamma interferon and interleukin-6 contribute to alveolar bone loss in mice. Infect. Immun., 1999, 67(6), 2804-2809.
[http://dx.doi.org/10.1128/IAI.67.6.2804-2809.1999] [PMID: 10338484]
[86]
Ouhara, K.; Kawai, T.; Silva, M.J.; Fujita, T.; Hayashida, K.; Karimbux, N.Y.; Kajiya, M.; Shiba, H.; Kawaguchi, H.; Kurihara, H. Expression levels of novel cytokine IL-32 in periodontitis and its role in the suppression of IL-8 production by human gingival fibroblasts stimulated with Porphyromonas gingivalis. J. Oral Microbiol., 2012, 4.
[http://dx.doi.org/10.3402/jom.v4i0.14832] [PMID: 22435084]
[87]
Öngöz Dede, F.; Balli, U.; Bozkurt Doğan, Ş.; Güven, B. Interleukin-32 levels in gingival crevicular fluid and saliva of patients with chronic periodontitis after periodontal treatment. J. Periodontal Res., 2017, 52(3), 397-407.
[http://dx.doi.org/10.1111/jre.12404] [PMID: 27501514]
[88]
Kebschull, M.; Demmer, R.; Behle, J.H.; Pollreisz, A.; Heidemann, J.; Belusko, P.B.; Celenti, R.; Pavlidis, P.; Papapanou, P.N. Granulocyte chemotactic protein 2 (gcp-2/cxcl6) complements interleukin-8 in periodontal disease. J. Periodontal Res., 2009, 44(4), 465-471.
[http://dx.doi.org/10.1111/j.1600-0765.2008.01134.x] [PMID: 18842116]
[89]
Rath-Deschner, B.; Memmert, S.; Damanaki, A.; Nokhbehsaim, M.; Eick, S.; Cirelli, J.A.; Götz, W.; Deschner, J.; Jäger, A.; Nogueira, A.V.B. CXCL1, CCL2, and CCL5 modulation by microbial and biomechanical signals in periodontal cells and tissues-in vitro and in vivo studies. Clin. Oral Investig., 2020, 24(10), 3661-3670.
[http://dx.doi.org/10.1007/s00784-020-03244-1] [PMID: 32124070]
[90]
Van der Sluijs, M.; Van der Sluijs, E.; Van der Weijden, F.; Slot, D.E. The effect on clinical parameters of periodontal inflammation following non-surgical periodontal therapy with ultrasonics and chemotherapeutic cooling solutions: a systematic review. J. Clin. Periodontol., 2016, 43(12), 1074-1085.
[http://dx.doi.org/10.1111/jcpe.12613] [PMID: 27509308]
[91]
Petelin, M.; Perkič, K.; Seme, K.; Gašpirc, B. Effect of repeated adjunctive antimicrobial photodynamic therapy on subgingival periodontal pathogens in the treatment of chronic periodontitis. Lasers Med. Sci., 2015, 30(6), 1647-1656.
[http://dx.doi.org/10.1007/s10103-014-1632-2] [PMID: 25056413]
[92]
Wohlfeil, M.; Scharf, S.; Siegelin, Y.; Schacher, B.; Oremek, G.M. SauerEppel, H.; Schubert, R.; Eickholz, P. Increased systemic elastase and C-reactive protein in aggressive periodontitis (CLOI-D-00160R2). Clin. Oral Investig., 2012, 16(4), 199-207.
[http://dx.doi.org/10.1007/s00784-011-0627-7] [PMID: 22009184]
[93]
Teles, F.R.; Teles, R.P.; Martin, L.; Socransky, S.S.; Haffajee, A.D. Relationships among interleukin-6, tumor necrosis factor-α, adipokines, vitamin D, and chronic periodontitis. J. Periodontol., 2012, 83(9), 1183-1191.
[http://dx.doi.org/10.1902/jop.2011.110346] [PMID: 22181684]
[94]
Zhang, J.; Zhang, A.M.; Zhang, Z.M.; Jia, J.L.; Sui, X.X.; Yu, L.R.; Liu, H.T. Efficacy of combined orthodontic-periodontic treatment for patients with periodontitis and its effect on inflammatory cytokines: a comparative study. Am. J. Orthod. Dentofacial Orthop., 2017, 152(4), 494-500.
[http://dx.doi.org/10.1016/j.ajodo.2017.01.028] [PMID: 28962734]
[95]
Zandbergen, D.; Slot, D.E.; Cobb, C.M.; Van der Weijden, F.A. The clinical effect of scaling and root planing and the concomitant administration of systemic amoxicillin and metronidazole: a systematic review. J. Periodontol., 2013, 84(3), 332-351.
[http://dx.doi.org/10.1902/jop.2012.120040] [PMID: 22612369]
[96]
Sampaio, E.; Rocha, M.; Figueiredo, L.C.; Faveri, M.; Duarte, P.M.; Gomes Lira, E.A.; Feres, M. Clinical and microbiological effects of azithromycin in the treatment of generalized chronic periodontitis: a randomized placebo-controlled clinical trial. J. Clin. Periodontol., 2011, 38(9), 838-846.
[http://dx.doi.org/10.1111/j.1600-051X.2011.01766.x] [PMID: 21770996]
[97]
Rabelo, C.C.; Feres, M.; Gonçalves, C.; Figueiredo, L.C.; Faveri, M.; Tu, Y.K.; Chambrone, L. Systemic antibiotics in the treatment of aggressive periodontitis. A systematic review and a Bayesian network meta-analysis. J. Clin. Periodontol., 2015, 42(7), 647-657.
[http://dx.doi.org/10.1111/jcpe.12427] [PMID: 26087839]
[98]
de Lima Oliveira, A.P.; de Faveri, M.; Gursky, L.C.; Mestnik, M.J.; Feres, M.; Haffajee, A.D.; Socransky, S.S.; Teles, R.P. Effects of periodontal therapy on GCF cytokines in generalized aggressive periodontitis subjects. J. Clin. Periodontol., 2012, 39(3), 295-302.
[http://dx.doi.org/10.1111/j.1600-051X.2011.01817.x] [PMID: 22126282]
[99]
Skurska, A.; Dolinska, E.; Pietruska, M.; Pietruski, J.K.; Dymicka, V.; Kemona, H.; Arweiler, N.B.; Milewsk, R.; Sculean, A. Effect of nonsurgical periodontal treatment in conjunction with either systemic administration of amoxicillin and metronidazole or additional photodynamic therapy on the concentration of matrix metalloproteinases 8 and 9 in gingival crevicular fluid in patients with aggressive periodontitis. BMC Oral Health, 2015, 15, 63.
[http://dx.doi.org/10.1186/s12903-015-0048-0] [PMID: 26007680]
[100]
Beliveau, D.; Magnusson, I.; Bidwell, J.A.; Zapert, E.F.; Aukhil, I.; Wallet, S.M.; Shaddox, L.M. Benefits of early systemic antibiotics in localized aggressive periodontitis: a retrospective study. J. Clin. Periodontol., 2012, 39(11), 1075-1081.
[http://dx.doi.org/10.1111/jcpe.12001] [PMID: 22931240]
[101]
Jentsch, H.F.R.; Buchmann, A.; Friedrich, A.; Eick, S. Nonsurgical therapy of chronic periodontitis with adjunctive systemic azithromycin or amoxicillin/metronidazole. Clin. Oral Investig., 2016, 20(7), 1765-1773.
[http://dx.doi.org/10.1007/s00784-015-1683-1] [PMID: 26685849]
[102]
Emingil, G.; Han, B.; O¨zdemir, G.; Tervahartiala, T.; Vural, C.; Atilla, G.; Baylas, H.; Sorsa, T. Effect of azithromycin, as an adjunct to nonsurgical periodontal treatment, on microbiological parameters and gingival crevicular fluid biomarkers in generalized aggressive periodontitis. J. Periodontal Res., 2012, 47(6), 729-739.
[http://dx.doi.org/10.1111/j.1600-0765.2012.01488.x] [PMID: 22571226]
[103]
Faramarzi, M.; Marami, Z.; Shirmohmmadi, A.; Chitsazi, M.; Rahbar, M.; Sadighi, M. Effects of locally delivered doxycycline on Pperiodontal clinical parameters and gingival crevicular fluid matrix metalloproteinase-8. J. Int. Oral Health, 2016, 8(7), 781-786.
[http://dx.doi.org/10.2047/jioh-08-07-08 ]
[104]
Emingil, G.; Gürkan, A.; Atilla, G.; Kantarci, A. Subantimicrobial-dose doxycycline and cytokine-chemokine levels in gingival crevicular fluid. J. Periodontol., 2011, 82(3), 452-461.
[http://dx.doi.org/10.1902/jop.2010.100036] [PMID: 20932155]
[105]
Moreno Villagrana, A.P.; Gómez Clavel, J.F. Antimicrobial or subantimicrobial antibiotic therapy as an adjunct to the nonsurgical periodontal treatment: a meta-analysis. ISRN Dent., 2012, 2012, 581207.
[http://dx.doi.org/10.5402/2012/581207] [PMID: 23150830]
[106]
Han, S.; Zhang, Q. Effect of minocycline combined with metronidazole on periodontitis and gingival crevicular fluid cytokines. Int. J. Clin. Exp. Med., 2018, 11(7), 7400-7407.
[107]
Abdelhamid, A.I. Effect of periodontal therapy using minocycline gel on gingival crevicular fluid osteoprotegerin in chronic periodontitis. J. Am. Sci., 2012, 8(7), 821-829.
[108]
Basegmez, C.; Berber, L.; Yalcin, F. Clinical and biochemical efficacy of minocycline in nonsurgical periodontal therapy: a randomized controlled pilot study. J. Clin. Pharmacol., 2011, 51(6), 915-922.
[http://dx.doi.org/10.1177/0091270010373929] [PMID: 20663998]
[109]
Szkaradkiewicz, A.K.; Stopa, J.; Karpiński, T.M. Effect of oral administration involving a probiotic strain of Lactobacillus reuteri on pro-inflammatory cytokine response in patients with chronic periodontitis. Arch. Immunol. Ther. Exp. (Warsz.), 2014, 62(6), 495-500.
[http://dx.doi.org/10.1007/s00005-014-0277-y] [PMID: 24509697]
[110]
İnce, G.; Gürsoy, H.; İpçi, S.D.; Cakar, G.; Emekli-Alturfan, E.; Yılmaz, S. Clinical and biochemical evaluation of lozenges containing lactobacillus reuteri as an adjunct to non-surgical periodontal therapy in chronic periodontitis. J. Periodontol., 2015, 86(6), 746-754.
[http://dx.doi.org/10.1902/jop.2015.140612] [PMID: 25741580]
[111]
Invernici, M.M.; Salvador, S.L.; Silva, P.H.F.; Soares, M.S.M.; Casarin, R.; Palioto, D.B.; Souza, S.L.S.; Taba, M., Jr; Novaes, A.B., Jr; Furlaneto, F.A.C.; Messora, M.R. Effects of Bifidobacterium probiotic on the treatment of chronic periodontitis: A randomized clinical trial. J. Clin. Periodontol., 2018, 45(10), 1198-1210.
[http://dx.doi.org/10.1111/jcpe.12995] [PMID: 30076613]
[112]
Kuru, B.E.; Laleman, I.; Yalnızoğlu, T.; Kuru, L.; Teughels, W. The Influence of a Bifidobacterium animalis probiotic on Ggingival health: a randomized controlled clinical trial. J. Periodontol., 2017, 88(11), 1115-1123.
[http://dx.doi.org/10.1902/jop.2017.170213] [PMID: 28753102]
[113]
Deore, G.D.; Gurav, A.N.; Patil, R.; Shete, A.R.; Naiktari, R.S.; Inamdar, S.P. Herbal anti-inflammatory immunomodulators as host modulators in chronic periodontitis patients: a randomised, double-blind, placebo-controlled, clinical trial. J. Periodontal Implant Sci., 2014, 44(2), 71-78.
[http://dx.doi.org/10.5051/jpis.2014.44.2.71] [PMID: 24778901]
[114]
Oduncuoglu, B.F.; Kayar, N.A.; Haliloglu, S.; Serpek, B.; Ataoglu, T.; Alptekin, N.O. Effects of a cyclic NSAID regimen on levels of gingival crevicular fluid prostaglandin E2and interleukin-1β: A 6-month randomized controlled clinical trial. Niger. J. Clin. Pract., 2018, 21(5), 658-666.
[http://dx.doi.org/10.4103/njcp.njcp_221_17] [PMID: 29735869]
[115]
Ozgören, O.; Develioglu, H.; Güncü, G.; Akman, A.; Berker, E. The adjunctive effect of tenoxicam during non-surgical periodontal treatment on clinical parameters and gingival crevicular fluid levels of MMP-8 and TNF-α in patients with chronic periodontitis - randomized, double-blind clinical trial. Adv. Clin. Exp. Med., 2014, 23(4), 559-565.
[http://dx.doi.org/10.17219/acem/37223] [PMID: 25166440]
[116]
Giannopoulou, C.; Cappuyns, I.; Cancela, J.; Cionca, N.; Mombelli, A. Effect of photodynamic therapy, diode laser, and deep scaling on cytokine and acute-phase protein levels in gingival crevicular fluid of residual periodontal pockets. J. Periodontol., 2012, 83(8), 1018-1027.
[http://dx.doi.org/10.1902/jop.2011.110281] [PMID: 22181685]
[117]
Zhao, L.; Zhou, Y.; Xu, Y.; Sun, Y.; Li, L.; Chen, W. Effect of non-surgical periodontal therapy on the levels of Th17/Th1/Th2 cytokines and their transcription factors in Chinese chronic periodontitis patients. J. Clin. Periodontol., 2011, 38(6), 509-516.
[http://dx.doi.org/10.1111/j.1600-051X.2011.01712.x] [PMID: 21392046]
[118]
Mistry, A.; Pereira, R.; Kini, V.; Padhye, A. Effect of combined therapy using diode laser and photodynamic therapy on levels of IL-17 in gingival crevicular fluid in patients with chronic periodontitis. J. Lasers Med. Sci., 2016, 7(4), 250-255.
[http://dx.doi.org/10.15171/jlms.2016.44] [PMID: 28491261]
[119]
Farhad, S.H.Z.; Aryam, M.; Mohammadi, F.; Birang, E.; Barekatain, M.; Zarei, E. Effect of photodynamic therapy as adjunctive periodontal therapy on TNF-α level in gingival crevicular fluid. J. Res. Dent. Sci., 2015, 12(2), 78-84.
[120]
Pourabbas, R.; Kashefimehr, A.; Rahmanpour, N.; Babaloo, Z.; Kishen, A.; Tenenbaum, H.C.; Azarpazhooh, A. Effects of photodynamic therapy on clinical and gingival crevicular fluid inflammatory biomarkers in chronic periodontitis: a split-mouth randomized clinical trial. J. Periodontol., 2014, 85(9), 1222-1229.
[http://dx.doi.org/10.1902/jop.2014.130464] [PMID: 24527853]
[121]
Franco, E.J.; Pogue, R.E.; Sakamoto, L.H.; Cavalcante, L.L.; Carvalho, D.R.; de Andrade, R.V. Increased expression of genes after periodontal treatment with photodynamic therapy. Photodiagn. Photodyn. Ther., 2014, 11(1), 41-47.
[http://dx.doi.org/10.1016/j.pdpdt.2013.10.002] [PMID: 24184796]
[122]
Segarra-Vidal, M.; Guerra-Ojeda, S.; Vallés, L.S.; López-Roldán, A.; Mauricio, M.D.; Aldasoro, M.; Alpiste-Illueca, F.; Vila, J.M. Effects of photodynamic therapy in periodontal treatment: A randomized, controlled clinical trial. J. Clin. Periodontol., 2017, 44(9), 915-925.
[http://dx.doi.org/10.1111/jcpe.12768] [PMID: 28667678]
[123]
da Cruz Andrade, P.V.; Euzebio Alves, V.T.; de Carvalho, V.F.; De Franco Rodrigues, M.; Pannuti, C.M.; Holzhausen, M.; De Micheli, G.; Conde, M.C. Photodynamic therapy decrease immune-inflammatory mediators levels during periodontal maintenance. Lasers Med. Sci., 2017, 32(1), 9-17.
[http://dx.doi.org/10.1007/s10103-016-2076-7] [PMID: 27704296]
[124]
Moreira, A.L.; Novaes, A.B., Jr; Grisi, M.F.; Taba, M., Jr; Souza, S.L.; Palioto, D.B.; de Oliveira, P.G.; Casati, M.Z.; Casarin, R.C.; Messora, M.R. Antimicrobial photodynamic therapy as an adjunct to non-surgical treatment of aggressive periodontitis: a split-mouth randomized controlled trial. J. Periodontol., 2015, 86(3), 376-386.
[http://dx.doi.org/10.1902/jop.2014.140392] [PMID: 25415245]
[125]
Vohra, F.; Akram, Z.; Bukhari, I.A.; Sheikh, S.A.; Javed, F. Short-term effects of adjunctive antimicrobial photodynamic therapy in obese patients with chronic periodontitis: a randomized controlled clinical trial. Photodiagn. Photodyn. Ther., 2018, 21, 10-15.
[http://dx.doi.org/10.1016/j.pdpdt.2017.10.022] [PMID: 29111391]
[126]
Naso, M.F.; Tomkowicz, B.; Perry, W.L. III.; Strohl, W.R. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs, 2017, 31(4), 317-334.
[http://dx.doi.org/10.1007/s40259-017-0234-5] [PMID: 28669112]
[127]
Chen, W.; Gao, B.; Hao, L.; Zhu, G.; Jules, J.; MacDougall, M.J.; Wang, J.; Han, X.; Zhou, X.; Li, Y.P. The silencing of cathepsin K used in gene therapy for periodontal disease reveals the role of cathepsin K in chronic infection and inflammation. J. Periodontal Res., 2016, 51(5), 647-660.
[http://dx.doi.org/10.1111/jre.12345] [PMID: 26754272]
[128]
Zhu, Z.; Chen, W.; Hao, L.; Zhu, G.; Lu, Y.; Li, S.; Wang, L.; Li, Y.P. Ac45 silencing mediated by AAV-sh-Ac45-RNAi prevents both bone loss and inflammation caused by periodontitis. J. Clin. Periodontol., 2015, 42(7), 599-608.
[http://dx.doi.org/10.1111/jcpe.12415] [PMID: 25952706]
[129]
Cardoso, C.; Afonso, C.; Bandarra, N.M. Dietary DHA and health: cognitive function ageing. Nutr. Res. Rev., 2016, 29(2), 281-294.
[http://dx.doi.org/10.1017/S0954422416000184] [PMID: 27866493]
[130]
Choi, E.Y.; Jin, J.Y.; Choi, J.I.; Choi, I.S.; Kim, S.J. DHA suppresses Prevotella intermedia lipopolysaccharide-induced production of proinflammatory mediators in murine macrophages. Br. J. Nutr., 2014, 111(7), 1221-1230.
[http://dx.doi.org/10.1017/S0007114513003681] [PMID: 24252501]
[131]
Sherry, L.; Millhouse, E.; Lappin, D.F.; Murray, C.; Culshaw, S.; Nile, C.J.; Ramage, G. Investigating the biological properties of carbohydrate derived fulvic acid (CHD-FA) as a potential novel therapy for the management of oral biofilm infections. BMC Oral Health, 2013, 13, 47.
[http://dx.doi.org/10.1186/1472-6831-13-47] [PMID: 24063298]
[132]
Najeeb, S.; Khurshid, Z.; Sohail Zafar, M.; Zohaib, S.; Siddiqui, F. Efficacy of enamel matrix derivative in vital pulp therapy: a review of literature. Iran. Endod. J., 2017, 12(3), 269-275.
[http://dx.doi.org/10.22037/iej.v12i3.12036] [PMID: 28808449]
[133]
Villa, O.; Wohlfahrt, J.C.; Koldsland, O.C.; Brookes, S.J.; Lyngstadaas, S.P.; Aass, A.M.; Reseland, J.E. EMD in periodontal regenerative surgery modulates cytokine profiles: a randomised controlled clinical trial. Sci. Rep., 2016, 6, 23060.
[http://dx.doi.org/10.1038/srep23060] [PMID: 26976446]
[134]
Cui, D.; Lyu, J.; Li, H.; Lei, L.; Bian, T.; Li, L.; Yan, F. Human β-defensin 3 inhibits periodontitis development by suppressing inflammatory responses in macrophages. Mol. Immunol., 2017, 91, 65-74.
[http://dx.doi.org/10.1016/j.molimm.2017.08.012] [PMID: 28886588]
[135]
Hou, Y.; Yu, H.; Liu, X.; Li, G.; Pan, J.; Zheng, C.; Yu, W. Gingipain of Porphyromonas gingivalis manipulates M1 macrophage polarization through C5a pathway. In Vitro Cell. Dev. Biol. Anim., 2017, 53(7), 593-603.
[http://dx.doi.org/10.1007/s11626-017-0164-z] [PMID: 28634882]
[136]
Wilensky, A.; Potempa, J.; Houri-Haddad, Y.; Shapira, L. Vaccination with recombinant RgpA peptide protects against Porphyromonas gingivalis-induced bone loss. J. Periodontal Res., 2017, 52(2), 285-291.
[http://dx.doi.org/10.1111/jre.12393] [PMID: 27282938]
[137]
Kataoka, S.; Baba, A.; Suda, Y.; Takii, R.; Hashimoto, M.; Kawakubo, T.; Asao, T.; Kadowaki, T.; Yamamoto, K. A novel, potent dual inhibitor of Arg-gingipains and Lys-gingipain as a promising agent for periodontal disease therapy. FASEB J., 2014, 28(8), 3564-3578.
[http://dx.doi.org/10.1096/fj.14-252130] [PMID: 24776743]
[138]
Liu, N.; Guan, S.; Wang, H.; Li, C.; Cheng, J.; Yu, H.; Lin, L.; Pan, Y. The antimicrobial peptide Nal-P-113 exerts a reparative effect by promoting cell proliferation, migration, and cell cycle progression. BioMed Res. Int., 2018, 2018, 7349351.
[http://dx.doi.org/10.1155/2018/7349351] [PMID: 30298136]
[139]
Wang, H.Y.; Lin, L.; Fu, W.; Yu, H.Y.; Yu, N.; Tan, L.S.; Cheng, J.W.; Pan, Y.P. Preventive effects of the novel antimicrobial peptide Nal-P-113 in a rat Periodontitis model by limiting the growth of Porphyromonas gingivalis and modulating IL-1β and TNF-α production. BMC Complement. Altern. Med., 2017, 17(1), 426.
[http://dx.doi.org/10.1186/s12906-017-1931-9] [PMID: 28851350]
[140]
Herrera, P.K.; Zambolin, A.P.; Fernandes, M.D.S.; Cestari, T.M.; Iano, F.G.; Zambuzzi, W.F.; Buzalaf, M.A.R.; Oliveira, R.C. Fluoride affects bone repair differently in mice models with distinct bone densities. J. Trace Elem. Med. Biol., 2017, 39, 129-134.
[http://dx.doi.org/10.1016/j.jtemb.2016.09.004] [PMID: 27908404]
[141]
Bhawal, U.K.; Lee, H.J.; Arikawa, K.; Shimosaka, M.; Suzuki, M.; Toyama, T.; Sato, T.; Kawamata, R.; Taguchi, C.; Hamada, N.; Nasu, I.; Arakawa, H.; Shibutani, K. Micromolar sodium fluoride mediates anti-osteoclastogenesis in Porphyromonas gingivalis-induced alveolar bone loss. Int. J. Oral Sci., 2015, 7(4), 242-249.
[http://dx.doi.org/10.1038/ijos.2015.28] [PMID: 26674426]
[142]
Singh, A.V.; Dad Ansari, M.H.; Dayan, C.B.; Giltinan, J.; Wang, S.; Yu, Y.; Kishore, V.; Laux, P.; Luch, A.; Sitti, M. Multifunctional magnetic hairbot for untethered osteogenesis, ultrasound contrast imaging and drug delivery. Biomaterials, 2019, 219, 119394.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119394] [PMID: 31382208]
[143]
Mayer, Y.; Balbir-Gurman, A.; Machtei, E.E. Anti-tumor necrosis factor-alpha therapy and periodontal parameters in patients with rheumatoid arthritis. J. Periodontol., 2009, 80(9), 1414-1420.
[http://dx.doi.org/10.1902/jop.2009.090015] [PMID: 19722791]
[144]
Kobayashi, T.; Yokoyama, T.; Ito, S.; Kobayashi, D.; Yamagata, A.; Okada, M.; Oofusa, K.; Narita, I.; Murasawa, A.; Nakazono, K.; Yoshie, H. Periodontal and serum protein profiles in patients with rheumatoid arthritis treated with tumor necrosis factor inhibitor adalimumab. J. Periodontol., 2014, 85(11), 1480-1488.
[http://dx.doi.org/10.1902/jop.2014.140194] [PMID: 24857321]
[145]
Di Paola, R.; Mazzon, E.; Muià, C.; Crisafulli, C.; Terrana, D.; Greco, S.; Britti, D.; Santori, D.; Oteri, G.; Cordasco, G.; Cuzzocrea, S. Effects of etanercept, a tumour necrosis factor-alpha antagonist, in an experimental model of periodontitis in rats. Br. J. Pharmacol., 2007, 150(3), 286-297.
[http://dx.doi.org/10.1038/sj.bjp.0706979] [PMID: 17200677]
[146]
Cheng, R.; Wu, Z.; Li, M.; Shao, M.; Hu, T. Interleukin-1β is a potential therapeutic target for periodontitis: a narrative review. Int. J. Oral Sci., 2020, 12(1), 2.
[http://dx.doi.org/10.1038/s41368-019-0068-8] [PMID: 31900383]
[147]
Kobayashi, T.; Okada, M.; Ito, S.; Kobayashi, D.; Ishida, K.; Kojima, A.; Narita, I.; Murasawa, A.; Yoshie, H. Assessment of interleukin-6 receptor inhibition therapy on periodontal condition in patients with rheumatoid arthritis and chronic periodontitis. J. Periodontol., 2014, 85(1), 57-67.
[http://dx.doi.org/10.1902/jop.2013.120696] [PMID: 23489234]
[148]
Singh, A.V.; Ansari, M.H.D.; Rosenkranz, D.; Maharjan, R.S.; Kriegel, F.L.; Gandhi, K.; Kanase, A.; Singh, R.; Laux, P.; Luch, A. Artificial intelligence and machine learning in computational nanotoxicology: unlocking and empowering nanomedicine. Adv. Healthc. Mater., 2020, 9(17), e1901862.
[http://dx.doi.org/10.1002/adhm.201901862] [PMID: 32627972]
[149]
Singh, A.V.; Mehta, K.K. Top-down versus bottom-up nanoengineering routes to design advanced oropharmacological products. Curr. Pharm. Des., 2016, 22(11), 1534-1545.
[http://dx.doi.org/10.2174/1381612822666151210124001] [PMID: 26675228]
[150]
Singh, A.V.; Ansari, M.H.D.; Laux, P.; Luch, A. Micro-nanorobots: important considerations when developing novel drug delivery platforms. Expert Opin. Drug Deliv., 2019, 16(11), 1259-1275.
[http://dx.doi.org/10.1080/17425247.2019.1676228] [PMID: 31580731]
[151]
Singh, A.V.; Batuwangala, M.; Mundra, R.; Mehta, K.; Patke, S.; Falletta, E.; Patil, R.; Gade, W.N. Biomineralized anisotropic gold microplate-macrophage interactions reveal frustrated phagocytosis-like phenomenon: a novel paclitaxel drug delivery vehicle. ACS Appl. Mater. Interfaces, 2014, 6(16), 14679-14689.
[http://dx.doi.org/10.1021/am504051b] [PMID: 25046687]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy