Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Tylophora hirsuta (Wall.) Extracts Ameliorate Diabetes Associated with Inflammation in Alloxan-induced Diabetic Rats

Author(s): Faisal Razzaque, Ali Sharif*, Bushra Akhtar, Humaira M. Khan, Muhammad F. Akhtar, Maryam Zaib, Abdullah Muhammad, Kashif Sohail, Irfan Hamid and Naeem Qaisar

Volume 21, Issue 6, 2021

Published on: 21 August, 2020

Page: [1031 - 1042] Pages: 12

DOI: 10.2174/1871530320666200821154340

Price: $65

Abstract

Background: Tylophora hirsuta (Wall) has long been used as traditional medicine for the treatment of diabetes. The current study is designed to evaluate the anti-diabetic and anti-inflammatory activity of different extracts of aerial parts of Tylophora hirsuta.

Methods: Sequential maceration was conducted to obtain extracts. Total phenolic contents were determined by the Folin-Ciocalteau method. The anti-oxidant activity was assessed by DPPH free radical scavenging assay. The extracts were tested for its inhibitory activity against α-amylase in-vitro. In-vivo anti-diabetic assay was conducted using alloxan-induced diabetic model and OGTT was conducted on normal rats. ELISA was used to determine the pro-inflammatory cytokines (TNF-α and IL-6). The polyphenolic composition of the extract was analyzed using an HPLC system.

Results: Aqueous extract exhibited highest total phenolic contents (985.24± 3.82 mg GAE/100 g DW), antioxidant activity (IC50 = 786.70 ± 5.23 μg/mL), and alpha-amylase inhibition (IC50 =352.8 μg/mL). The aqueous extract of Tylophora hirsuta showed remarkable in-vivo anti-diabetic activity. Results were compared with standard drug glibenclamide. Alloxan induced diabetic mediated alterations in liver function enzymes, renal function determinants, and lipid parameters were significantly restored in aqueous extract treated diabetic rats. A significant reduction in pro-inflammatory cytokines (p<0.001) was observed when compared to the control group. HPLC analysis confirms the presence of quercetin, gallic acid, cinnamic acid, and p-coumaric acid.

Conclusion: These results showed that Tylophora hirsuta possesses strong anti-diabetic and anti-inflammatory potentials and justify its folklore use for the management of diabetes.

Keywords: Tylophora hirsuta, anti-oxidant activity, anti-diabetic activity, flavonoids, alloxan, diabetic rats.

Graphical Abstract

[1]
Alkofahi, A.S.; Abdul-Razzak, K.K.; Alzoubi, K.H.; Khabour, O.F. Report - Screening of the Anti-hyperglycemic activity of some medicinal plants of Jordan. Pak. J. Pharm. Sci., 2017, 30(3), 907-912.
[PMID: 28653938]
[2]
Association, A.D. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014, 37(Suppl. 1), S81-S90.
[http://dx.doi.org/10.2337/dc14-S081]
[3]
Chandirasegaran, G.; Elanchezhiyan, C.; Ghosh, K.; Sethupathy, S. Berberine chloride ameliorates oxidative stress, inflammation and apoptosis in the pancreas of Streptozotocin induced diabetic rats. Biomed. Pharmacother., 2017, 95, 175-185.
[http://dx.doi.org/10.1016/j.biopha.2017.08.040] [PMID: 28843149]
[4]
Bouzakri, K.; Plomgaard, P.; Berney, T.; Donath, M.Y.; Pedersen, B.K.; Halban, P.A. Bimodal effect on pancreatic β-cells of secretory products from normal or insulin-resistant human skeletal muscle. Diabetes, 2011, 60(4), 1111-1121.
[http://dx.doi.org/10.2337/db10-1178] [PMID: 21378173]
[5]
Akhlaghi, M. Non-alcoholic Fatty Liver Disease: Beneficial Effects of Flavonoids. Phytother. Res., 2016, 30(10), 1559-1571.
[http://dx.doi.org/10.1002/ptr.5667] [PMID: 27307131]
[6]
Hemmati, M.; Zohoori, E.; Mehrpour, O.; Karamian, M.; Asghari, S.; Zarban, A.; Nasouti, R. Anti-atherogenic potential of jujube, saffron and barberry: anti-diabetic and antioxidant actions. EXCLI J., 2015, 14, 908-915.
[PMID: 26600752]
[7]
Siddiqui, S.Z.; Saleem, H.; Abbasi, M.A.; Rehman, A.; Ajaib, M. Lonicera quinquelocularis: A rich source of antioxidant for protection against chronic diseases. Pak. J. Pharm. Sci., 2017, 30(2), 347-353.
[PMID: 28649055]
[8]
Babu, P.V.A.; Liu, D.; Gilbert, E.R. Recent advances in understanding the anti-diabetic actions of dietary flavonoids. J. Nutr. Biochem., 2013, 24(11), 1777-1789.
[http://dx.doi.org/10.1016/j.jnutbio.2013.06.003] [PMID: 24029069]
[9]
Poodineh, J.; Khazaei Feizabad, A.; Nakhaee, A. Antioxidant Activities of Caralluma tuberculata on Streptozotocin-Induced Diabetic Rats. Drug Dev. Res., 2015, 76(1), 40-47.
[http://dx.doi.org/10.1002/ddr.21239] [PMID: 25620374]
[10]
Yazdanpanah, Z.; Ghadiri-Anari, A.; Mehrjardi, A.V.; Dehghani, A.; Zardini, H.Z.; Nadjarzadeh, A. Effect of Ziziphus jujube Fruit Infusion on Lipid Profiles, Glycaemic Index and Antioxidant Status in Type 2 Diabetic Patients: A Randomized Controlled Clinical Trial. Phytother. Res., 2017, 31(5), 755-762.
[http://dx.doi.org/10.1002/ptr.5796] [PMID: 28271568]
[11]
Hamid, J.; Ahmed, D.; Waheed, A. Evaluation of anti-oxidative, antimicrobial and anti-diabetic potential of Adiantum venustum and identification of its phytochemicals through GC-MS. Pak. J. Pharm. Sci., 2017, 30(3), 705-712.
[PMID: 28653913]
[12]
Abbasi, A.; Khan, M.; Ahmad, M.; Zafar, M. Medicinal plant biodiversity of Lesser Himalayas-Pakistan; Springer: New York, 2012.
[http://dx.doi.org/10.1007/978-1-4614-1575-6]
[13]
Yaseen, G.; Ahmad, M.; Zafar, M.; Sultana, S.; Kayani, S.; Cetto, A.A.; Shaheen, S. Traditional management of diabetes in Pakistan: Ethnobotanical investigation from Traditional Health Practitioners. J. Ethnopharmacol., 2015, 174, 91-117.
[http://dx.doi.org/10.1016/j.jep.2015.07.041] [PMID: 26231447]
[14]
Marwat, S.K.; Rehman, F.; Khan, E.A.; Khakwani, A.A.; Ullah, I.; Khan, K.U.; Khan, I.U. Useful ethnophytomedicinal recipes of angiosperms used against diabetes in South East Asian Countries (India, Pakistan & Sri Lanka). Pak. J. Pharm. Sci., 2014, 27(5), 1333-1358.
[PMID: 25176368]
[15]
Khan, D.; Sharif, A.; Zafar, M.; Akhtar, B.; Akhtar, M.F.; Awan, S. Delonix regia a Folklore Remedy for Diabetes; Attenuates Oxidative Stress and Modulates Type II Diabetes Mellitus. Curr. Pharm. Biotechnol., 2020, 21(11), 1059-1069.
[http://dx.doi.org/10.2174/1389201021666200217112244] [PMID: 32065099]
[16]
Awah, F.M.; Uzoegwu, P.N.; Ifeonu, P.; Oyugi, J.O.; Rutherford, J.; Yao, X.; Fehrmann, F.; Fowke, K.R.; Eze, M.O. Free radical scavenging activity, phenolic contents and cytotoxicity of selected Nigerian medicinal plants. Food Chem., 2012, 131(4), 1279-1286.
[http://dx.doi.org/10.1016/j.foodchem.2011.09.118]
[17]
Barros, L.M.; Duarte, A.E.; Pansera Waczuk, E.; Roversi, K.; da Cunha, F.A.B.; Rolon, M.; Coronel, C.; Gomez, M.C.V.; de Menezes, I.R.A.; da Costa, J.G.M.; Boligon, A.A.; Hassan, W.; Souza, D.O.; da Rocha, J.B.T.; Kamdem, J.P. Safety assessment and antioxidant activity of Lantana montevidensis leaves: Contribution to its phytochemical and pharmacological activity. EXCLI J., 2017, 16, 566-582.
[http://dx.doi.org/10.17179/excli2017-163] [PMID: 28694758]
[18]
Shobana, S.; Sreerama, Y.; Malleshi, N. Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: Mode of inhibition of α-glucosidase and pancreatic amylase. Food Chem., 2009, 115(4), 1268-1273.
[http://dx.doi.org/10.1016/j.foodchem.2009.01.042]
[19]
Aragão, D.M.; Guarize, L.; Lanini, J.; da Costa, J.C.; Garcia, R.M.; Scio, E. Hypoglycemic effects of Cecropia pachystachya in normal and alloxan-induced diabetic rats. J. Ethnopharmacol., 2010, 128(3), 629-633.
[http://dx.doi.org/10.1016/j.jep.2010.01.008] [PMID: 20064597]
[20]
Zafar, M.; Sharif, A.; Khan, D.; Akhtar, B.; Muhammad, F.; Akhtar, M.F.; Fatima, T. Preventive effect of Euphorbia royleana Boiss on diabetes induced by streptozotocin via modulating oxidative stress and deoxyribonucleic acid damage. Toxin Rev., 2020, 1-14.
[http://dx.doi.org/10.1080/15569543.2020.1780262]
[21]
Liu, H.P.; Shi, X.F.; Zhang, Y.C.; Li, Z.X.; Zhang, L.; Wang, Z.Y. Quantitative analysis of quercetin in Euphorbia helioscopia L by RP-HPLC. Cell Biochem. Biophys., 2011, 61(1), 59-64.
[http://dx.doi.org/10.1007/s12013-011-9161-0] [PMID: 21327945]
[22]
Rains, J.L.; Jain, S.K. Oxidative stress, insulin signaling, and diabetes. Free Radic. Biol. Med., 2011, 50(5), 567-575.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.12.006] [PMID: 21163346]
[23]
Ahmed, A.S.; Ahmed, Q.; Saxena, A.K.; Jamal, P. Evaluation of in vitro antidiabetic and antioxidant characterizations of Elettaria cardamomum (L.) Maton (Zingiberaceae), Piper cubeba L. f. (Piperaceae), and Plumeria rubra L. (Apocynaceae). Pak. J. Pharm. Sci., 2017, 30(1), 113-126.
[PMID: 28603121]
[24]
Uzzaman, R.; Ghaffar, M. Anti-diabetic and hypolipidemic effects of extract from the seed of Gossypium herbaceum L. in Alloxan-induced diabetic rabbits. Pak. J. Pharm. Sci., 2017, 30(1), 75-86.
[PMID: 28603116]
[25]
Rehman, R.U.; Chaudhary, M.F.; Khawar, K.M.; Lu, G.; Mannan, A.; Zia, M. In vitro propagation of Caralluma tuberculata and evaluation of antioxidant potential. Biologia, 2014, 69(3), 341-349.
[http://dx.doi.org/10.2478/s11756-013-0322-z]
[26]
Hyun, T.K.; Kim, M.O.; Lee, H.; Kim, Y.; Kim, E.; Kim, J-S. Evaluation of anti-oxidant and anti-cancer properties of Dendropanax morbifera Léveille. Food Chem., 2013, 141(3), 1947-1955.
[http://dx.doi.org/10.1016/j.foodchem.2013.05.021] [PMID: 23870914]
[27]
Pyrzynska, K.; Pękal, A. Application of free radical diphenylpicrylhydrazyl (DPPH) to estimate the antioxidant capacity of food samples. Anal. Methods, 2013, 5(17), 4288-4295.
[http://dx.doi.org/10.1039/c3ay40367j]
[28]
Liu, Z.; Zhai, J.; Han, N.; Yin, J. Assessment of anti-diabetic activity of the aqueous extract of leaves of Astilboides tabularis. J. Ethnopharmacol., 2016, 194, 635-641.
[http://dx.doi.org/10.1016/j.jep.2016.10.003] [PMID: 27751828]
[29]
Shewale, V.D.; Deshmukh, T.A.; Patil, L.S.; Patil, V.R. Anti-Inflammatory Activity of Delonix regia (Boj. Ex. Hook). Adv. Pharmacol. Sci., 2012, 2012, 789713.
[http://dx.doi.org/10.1155/2012/789713] [PMID: 22110490]
[30]
Latha, R.C.R.; Daisy, P. Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia bellerica Roxb. in streptozotocin-induced diabetic rats. Chem. Biol. Interact., 2011, 189(1-2), 112-118.
[http://dx.doi.org/10.1016/j.cbi.2010.11.005] [PMID: 21078310]
[31]
Prasad, C.N.; Anjana, T.; Banerji, A.; Gopalakrishnapillai, A. Gallic acid induces GLUT4 translocation and glucose uptake activity in 3T3-L1 cells. FEBS Lett., 2010, 584(3), 531-536.
[http://dx.doi.org/10.1016/j.febslet.2009.11.092] [PMID: 19962377]
[32]
Ambika, S.; Saravanan, R.; Thirumavalavan, K. Antidiabetic and antihyperlipidemic effect of p-hydroxycinnamic acid on streptozotocin-induced diabetic Wistar rats. Biomed. Aging Pathol., 2013, 3(4), 253-257.
[http://dx.doi.org/10.1016/j.biomag.2013.09.004]
[33]
Ao, Y.; Chen, J.; Yue, J.; Peng, R-X. Effects of 18α-glycyrrhizin on the pharmacodynamics and pharmacokinetics of glibenclamide in alloxan-induced diabetic rats. Eur. J. Pharmacol., 2008, 587(1-3), 330-335.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.043] [PMID: 18462715]
[34]
Song, Y.; Wen, L.; Sun, J.; Bai, W.; Jiao, R.; Hu, Y.; Peng, X.; He, Y.; Ou, S. Cytoprotective mechanism of ferulic acid against high glucose-induced oxidative stress in cardiomyocytes and hepatocytes. Food Nutr. Res., 2016, 60(1), 30323.
[http://dx.doi.org/10.3402/fnr.v60.30323] [PMID: 26869273]
[35]
Mohammed, A.; Islam, M.S. Spice-Derived Bioactive Ingredients: Potential Agents or Food Adjuvant in the Management of Diabetes Mellitus. Front. Pharmacol., 2018, 9, 893.
[http://dx.doi.org/10.3389/fphar.2018.00893] [PMID: 30186162]
[36]
Najafi, S. Effect OF Tylophora indica on Diabete in Diabetic Mice.
[37]
Patel, K.; Gadewar, M.; Tripathi, R. Pharmacological and analytical aspects of gymnemic acid: a concise report. Asian Pac. J. Trop. Dis., 2012, 2(5), 414-416.
[http://dx.doi.org/10.1016/S2222-1808(12)60090-5]
[38]
Vinayagam, R.; Jayachandran, M.; Xu, B. Antidiabetic effects of simple phenolic acids: A comprehensive review. Phytother. Res., 2016, 30(2), 184-199.
[http://dx.doi.org/10.1002/ptr.5528] [PMID: 26634804]
[39]
Sheikh, Y.; Maibam, B.C.; Talukdar, N.C.; Deka, D.C.; Borah, J.C. In vitro and in vivo anti-diabetic and hepatoprotective effects of edible pods of Parkia roxburghii and quantification of the active constituent by HPLC-PDA. J. Ethnopharmacol., 2016, 191, 21-28.
[http://dx.doi.org/10.1016/j.jep.2016.06.015] [PMID: 27282664]
[40]
Ali, H.; Houghton, P.J.; Soumyanath, A. α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. J. Ethnopharmacol., 2006, 107(3), 449-455.
[http://dx.doi.org/10.1016/j.jep.2006.04.004] [PMID: 16678367]
[41]
Wang, H.; Du, Y-J.; Song, H-C. α-Glucosidase and α-amylase inhibitory activities of guava leaves. Food Chem., 2010, 123(1), 6-13.
[http://dx.doi.org/10.1016/j.foodchem.2010.03.088]
[42]
Dey, P.; Saha, M.R.; Chowdhuri, S.R.; Sen, A.; Sarkar, M.P.; Haldar, B.; Chaudhuri, T.K. Assessment of anti-diabetic activity of an ethnopharmacological plant Nerium oleander through alloxan induced diabetes in mice. J. Ethnopharmacol., 2015, 161, 128-137.
[http://dx.doi.org/10.1016/j.jep.2014.12.012] [PMID: 25498854]
[43]
Shu, X-S.; Lv, J-H.; Tao, J.; Li, G-M.; Li, H-D.; Ma, N. Antihyperglycemic effects of total flavonoids from Polygonatum odoratum in STZ and alloxan-induced diabetic rats. J. Ethnopharmacol., 2009, 124(3), 539-543.
[http://dx.doi.org/10.1016/j.jep.2009.05.006] [PMID: 19454312]
[44]
Giribabu, N.; Karim, K.; Kilari, E.K.; Salleh, N. Phyllanthus niruri leaves aqueous extract improves kidney functions, ameliorates kidney oxidative stress, inflammation, fibrosis and apoptosis and enhances kidney cell proliferation in adult male rats with diabetes mellitus. J. Ethnopharmacol., 2017, 205, 123-137.
[http://dx.doi.org/10.1016/j.jep.2017.05.002] [PMID: 28483637]
[45]
Rath, D.; Kar, D.M.; Panigrahi, S.K.; Maharana, L. Antidiabetic effects of Cuscuta reflexa Roxb. in streptozotocin induced diabetic rats. J. Ethnopharmacol., 2016, 192, 442-449.
[http://dx.doi.org/10.1016/j.jep.2016.09.026] [PMID: 27649679]
[46]
He, Q.; Li, Y.; Li, H.; Zhang, P.; Zhang, A.; You, L.; Wu, H.; Xiao, P.; Liu, J. Hypolipidemic and antioxidant potential of bitter gourd (Momordica charantia L.) leaf in mice fed on a high-fat diet. Pak. J. Pharm. Sci., 2018, 31(5), 1837-1843.
[PMID: 30150178]
[47]
Kim, S-H.; Jun, C-D.; Suk, K.; Choi, B-J.; Lim, H.; Park, S.; Lee, S.H.; Shin, H-Y.; Kim, D-K.; Shin, T-Y. Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells. Toxicol. Sci., 2006, 91(1), 123-131.
[http://dx.doi.org/10.1093/toxsci/kfj063] [PMID: 16322071]
[48]
Pandurangan, A.K.; Mohebali, N.; Esa, N.M.; Looi, C.Y.; Ismail, S.; Saadatdoust, Z. Gallic acid suppresses inflammation in dextran sodium sulfate-induced colitis in mice: Possible mechanisms. Int. Immunopharmacol., 2015, 28(2), 1034-1043.
[http://dx.doi.org/10.1016/j.intimp.2015.08.019] [PMID: 26319951]
[49]
Yoon, C-H.; Chung, S-J.; Lee, S-W.; Park, Y-B.; Lee, S-K.; Park, M-C. Gallic acid, a natural polyphenolic acid, induces apoptosis and inhibits proinflammatory gene expressions in rheumatoid arthritis fibroblast-like synoviocytes. Joint Bone Spine, 2013, 80(3), 274-279.
[http://dx.doi.org/10.1016/j.jbspin.2012.08.010] [PMID: 23058179]
[50]
Yan, S.L.; Wang, Z.H.; Yen, H.F.; Lee, Y.J.; Yin, M.C. Reversal of ethanol-induced hepatotoxicity by cinnamic and syringic acids in mice. Food Chem. Toxicol., 2016, 98(Pt B), 119-126.
[http://dx.doi.org/10.1016/j.fct.2016.10.025]
[51]
Karatas, O.; Balci Yuce, H.; Taskan, M.M.; Gevrek, F.; Alkan, C.; Isiker Kara, G.; Temiz, C. Cinnamic acid decreases periodontal inflammation and alveolar bone loss in experimental periodontitis. J. Periodontal Res., 2020, 55(5), 676-685.
[http://dx.doi.org/10.1111/jre.12754] [PMID: 32335913]
[52]
Cheng, S-C.; Huang, W-C.; S Pang, J.H.; Wu, Y.H.; Cheng, C.Y. J.H.; Wu, Y.H.; Cheng, C.Y. J.-H.; Wu, Y.-H.; Cheng, C.-Y., Quercetin inhibits the production of IL-1β-Induced inflammatory cytokines and chemokines in ARPE-19 cells via the MAPK and NF-κB signaling pathways. Int. J. Mol. Sci., 2019, 20(12), 2957.
[http://dx.doi.org/10.3390/ijms20122957] [PMID: 31212975]
[53]
Ahn, C-B.; Jung, W-K.; Park, S-J.; Kim, Y-T.; Kim, W-S.; Je, J-Y. Gallic acid-g-Chitosan modulates inflammatory responses in LPS-stimulated RAW264. 7 cells via NF-κB, AP-1, and MAPK pathways. Inflammation, 2016, 39(1), 366-374.
[http://dx.doi.org/10.1007/s10753-015-0258-2] [PMID: 26412258]
[54]
Tanaka, M.; Okamoto, Y.; Fukui, T.; Masuzawa, T. Suppression of interleukin 17 production by Brazilian propolis in mice with collagen-induced arthritis. Inflammopharmacology, 2012, 20(1), 19-26.
[http://dx.doi.org/10.1007/s10787-011-0088-2] [PMID: 21861090]
[55]
Cheng, S-C.; Huang, W-C.; S Pang, J.H.; Wu, Y.H.; Cheng, C.Y. Quercetin Inhibits the Production of IL-1β-Induced Inflammatory Cytokines and Chemokines in ARPE-19 Cells via the MAPK and NF-κB Signaling Pathways. Int. J. Mol. Sci., 2019, 20(12), 2957.
[http://dx.doi.org/10.3390/ijms20122957] [PMID: 31212975]
[56]
aKumar, A.; Premoli, M.; Aria, F.; Bonini, S.A.; Maccarinelli, G.; Gianoncelli, A.; Memo, M.; Mastinu, A. Cannabimimetic plants: are they new cannabinoidergic modulators? Planta, 2019, 249(6), 1681-1694.
[http://dx.doi.org/10.1007/s00425-019-03138-x] [PMID: 30877436]
bChen, R.; Hollborn, M.; Grosche, A.; Reichenbach, A.; Wiedemann, P.; Bringmann, A.; Kohen, L. Effects of the vegetable polyphenols epigallocatechin-3-gallate, luteolin, apigenin, myricetin, quercetin, and cyanidin in primary cultures of human retinal pigment epithelial cells. Mol. Vis., 2014, 20, 242-258.
[PMID: 24623967]
[57]
Essafi-Benkhadir, K.; Refai, A.; Riahi, I.; Fattouch, S.; Karoui, H.; Essafi, M. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-κB, p38MAPK and Akt inhibition. Biochem. Biophys. Res. Commun., 2012, 418(1), 180-185.
[http://dx.doi.org/10.1016/j.bbrc.2012.01.003] [PMID: 22252293]
[58]
aLanzilli, G.; Cottarelli, A.; Nicotera, G.; Guida, S.; Ravagnan, G.; Fuggetta, M.P. Anti-inflammatory effect of resveratrol and polydatin by in vitro IL-17 modulation. Inflammation, 2012, 35(1), 240-248.
bMoutia, M.; Seghrouchni, F.; Abouelazz, O.; Elouaddari, A.; Al Jahid, A.; Elhou, A.; Nadifi, S.; Jamal Eddine, J.; Habti, N.; Badou, A. Allium sativum L. regulates in vitro IL-17 gene expression in human peripheral blood mononuclear cells. BMC Complement. Altern. Med., 2016, 16(1), 377.
[http://dx.doi.org/10.1007/s10753-011-9310-z] [PMID: 21369944] [http://dx.doi.org/10.1186/s12906-016-1365-9] [PMID: 27681382]
[59]
Fan, Y.; Piao, C.H.; Hyeon, E.; Jung, S.Y.; Eom, J-E.; Shin, H.S.; Song, C.H.; Chai, O.H. Gallic acid alleviates nasal inflammation via activation of Th1 and inhibition of Th2 and Th17 in a mouse model of allergic rhinitis. Int. Immunopharmacol., 2019, 70, 512-519.
[http://dx.doi.org/10.1016/j.intimp.2019.02.025] [PMID: 30884431]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy