Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

通过共表达网络分析探索阿尔茨海默氏病和2型糖尿病的共享发病机制

卷 17, 期 6, 2020

页: [566 - 575] 页: 10

弟呕挨: 10.2174/1567205017666200810164932

价格: $65

摘要

背景:阿尔茨海默氏病(AD)和2型糖尿病(T2DM)在现代社会中的发病率不断上升。尽管越来越多的证据支持这两种疾病之间的紧密联系,但相互关系的机制仍有待充分阐明。 目的:本研究的主要目的是探讨AD和T2DM的共同病理生理机制。 方法:我们从基因表达综合数据库(GEO)下载了AD和T2DM的微阵列数据,并通过加权基因共表达网络分析(WGCNA)构建了共表达网络,以鉴定与AD和T2DM相关的基因网络模块。然后,通过clusterProfiler和DOSE软件包对AD和T2DM相关模块中存在的常见基因进行基因本体论(GO)和途径富集分析。最后,我们利用STRING数据库构建了蛋白质-蛋白质相互作用网络,并在网络中找到了轮毂基因。 结果:我们的研究结果表明,AD和T2DM分别具有七个和四个模块最为重要。功能富集分析表明AD和T2DM共同基因主要富集在昼夜节律夹带,吞噬体,谷胱甘肽代谢和突触小泡循环等信号传导途径中。蛋白质-蛋白质相互作用网络的构建确定了AD和T2DM共享基因中的10个中枢基因(CALM1,LRRK2,RBX1,SLC6A1,TXN,SNRPF,GJA1,VWF,LPL,AGT)。 结论:我们的工作确定了AD和T2DM的常见发病机制。这些共有的途径可能为进一步的机理研究和枢纽基因提供新思路,这些枢纽基因可以作为诊断和治疗AD和T2DM的新型治疗靶标。

关键词: 阿尔茨海默氏病,2型糖尿病,WGCNA,功能富集分析,蛋白质-蛋白质相互作用网络,Hub基因。

[1]
Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 2010; 87(1): 4-14.
[http://dx.doi.org/10.1016/j.diabres.2009.10.007] [PMID: 19896746]
[2]
Xia X, Jiang Q, McDermott J, Han JJ. Aging and Alzheimer’s disease: Comparison and associations from molecular to system level. Aging Cell 2018; 17(5) e12802
[http://dx.doi.org/10.1111/acel.12802] [PMID: 29963744]
[3]
Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol 2011; 7(3): 137-52.
[http://dx.doi.org/10.1038/nrneurol.2011.2] [PMID: 21304480]
[4]
Baranello RJ, Bharani KL, Padmaraju V, et al. Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer’s disease. Curr Alzheimer Res 2015; 12(1): 32-46.
[http://dx.doi.org/10.2174/1567205012666141218140953] [PMID: 25523424]
[5]
Nalivaeva NN, Belyaev ND, Kerridge C, Turner AJ. Amyloid-clearing proteins and their epigenetic regulation as a therapeutic target in Alzheimer’s disease. Front Aging Neurosci 2014; 6: 235.
[http://dx.doi.org/10.3389/fnagi.2014.00235] [PMID: 25278875]
[6]
Lee J, Kim DE, Griffin P, et al. Inhibition of REV-ERBs stimulates microglial amyloid-beta clearance and reduces amyloid plaque deposition in the 5XFAD mouse model of Alzheimer’s disease. Aging Cell 2020; 19(2) e13078
[PMID: 31800167]
[7]
Fernández-de Frutos M, Galán-Chilet I, Goedeke L, et al. MICRORNA 7 impairs insulin signaling and regulates Aβ levels through posttranscriptional regulation of the insulin receptor substrate 2, insulin receptor, insulin-degrading enzyme, and liver X receptor pathway. Mol Cell Biol 2019; 39(22): e00170-19.
[http://dx.doi.org/10.1128/MCB.00170-19] [PMID: 31501273]
[8]
Su M, Naderi K, Samson N, et al. Mechanisms Associated with type 2 diabetes as a risk factor for Alzheimer-related pathology. Mol Neurobiol 2019; 56(8): 5815-34.
[http://dx.doi.org/10.1007/s12035-019-1475-8] [PMID: 30684218]
[9]
Vagelatos NT, Eslick GD. Type 2 diabetes as a risk factor for Alzheimer’s disease: The confounders, interactions, and neuropathology associated with this relationship. Epidemiol Rev 2013; 35: 152-60.
[http://dx.doi.org/10.1093/epirev/mxs012] [PMID: 23314404]
[10]
Adeghate E, Donáth T, Adem A. Alzheimer disease and diabetes mellitus: Do they have anything in common? Curr Alzheimer Res 2013; 10(6): 609-17.
[http://dx.doi.org/10.2174/15672050113109990009] [PMID: 23627758]
[11]
Akter K, Lanza EA, Martin SA, Myronyuk N, Rua M, Raffa RB. Diabetes mellitus and Alzheimer’s disease: Shared pathology and treatment? Br J Clin Pharmacol 2011; 71(3): 365-76.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03830.x] [PMID: 21284695]
[12]
Karki R, Kodamullil AT, Hofmann-Apitius M. Comorbidity analysis between Alzheimer’s disease and type 2 diabetes mellitus (T2DM) based on shared pathways and the role of T2DM drugs. J Alzheimers Dis 2017; 60(2): 721-31.
[http://dx.doi.org/10.3233/JAD-170440] [PMID: 28922161]
[13]
Lovestone S, Reynolds CH, Latimer D, et al. Alzheimer’s disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells. Curr Biol 1994; 4(12): 1077-86.
[http://dx.doi.org/10.1016/S0960-9822(00)00246-3] [PMID: 7704571]
[14]
Ge X, Yang Y, Sun Y, Cao W, Ding F. Islet amyloid polypeptide promotes amyloid-beta aggregation by binding-induced helix-unfolding of the amyloidogenic core. ACS Chem Neurosci 2018; 9(5): 967-75.
[http://dx.doi.org/10.1021/acschemneuro.7b00396] [PMID: 29378116]
[15]
Hirose H, Takayama M, Iwao Y, Kawabe H. Effects of aging on visceral and subcutaneous fat areas and on homeostasis model assessment of insulin resistance and insulin secretion capacity in a comprehensive health checkup. J Atheroscler Thromb 2016; 23(2): 207-15.
[http://dx.doi.org/10.5551/jat.30700] [PMID: 26412583]
[16]
Zhang J, Liu F. Tissue-specific insulin signaling in the regulation of metabolism and aging. IUBMB Life 2014; 66(7): 485-95.
[http://dx.doi.org/10.1002/iub.1293] [PMID: 25087968]
[17]
Bassil F, Fernagut PO, Bezard E, Meissner WG. Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: Targets for disease modification? Prog Neurobiol 2014; 118: 1-18.
[http://dx.doi.org/10.1016/j.pneurobio.2014.02.005] [PMID: 24582776]
[18]
Kurochkin IV, Guarnera E, Berezovsky IN. Insulin-degrading enzyme in the fight against Alzheimer’s disease. Trends Pharmacol Sci 2018; 39(1): 49-58.
[http://dx.doi.org/10.1016/j.tips.2017.10.008] [PMID: 29132916]
[19]
Langfelder P, Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 2008; 9: 559.
[http://dx.doi.org/10.1186/1471-2105-9-559] [PMID: 19114008]
[20]
Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 2005; 4: Article 7.
[http://dx.doi.org/10.2202/1544-6115.1128]
[21]
Langfelder P, Zhang B, Horvath S. Defining clusters from a hierarchical cluster tree: The Dynamic Tree Cut package for R. Bioinformatics 2008; 24(5): 719-20.
[http://dx.doi.org/10.1093/bioinformatics/btm563] [PMID: 18024473]
[22]
Langfelder P, Horvath S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol 2007; 1: 54.
[http://dx.doi.org/10.1186/1752-0509-1-54] [PMID: 18031580]
[23]
Langfelder P, Luo R, Oldham MC, Horvath S. Is my network module preserved and reproducible? PLOS Comput Biol 2011; 7(1) e1001057
[http://dx.doi.org/10.1371/journal.pcbi.1001057] [PMID: 21283776]
[24]
Oldham MC, Horvath S, Geschwind DH. Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc Natl Acad Sci USA 2006; 103(47): 17973-8.
[http://dx.doi.org/10.1073/pnas.0605938103] [PMID: 17101986]
[25]
Fuller TF, Ghazalpour A, Aten JE, Drake TA, Lusis AJ, Horvath S. Weighted gene coexpression network analysis strategies applied to mouse weight. Mamm Genome 2007; 18(6-7): 463-72.
[http://dx.doi.org/10.1007/s00335-007-9043-3] [PMID: 17668265]
[26]
Ghazalpour A, Doss S, Zhang B, et al. Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet 2006; 2(8) e130
[http://dx.doi.org/10.1371/journal.pgen.0020130] [PMID: 16934000]
[27]
Horvath S, Zhang B, Carlson M, et al. Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci USA 2006; 103(46): 17402-7.
[http://dx.doi.org/10.1073/pnas.0608396103] [PMID: 17090670]
[28]
Yu G, Wang LG, Han Y, He QY. Cluster profiler: An R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284-7.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[29]
Yu G, Wang LG, Yan GR, He QY. DOSE: An R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics 2015; 31(4): 608-9.
[http://dx.doi.org/10.1093/bioinformatics/btu684] [PMID: 25677125]
[30]
Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 2017; 45(D1): D362-8.
[http://dx.doi.org/10.1093/nar/gkw937] [PMID: 27924014]
[31]
Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[32]
Copple IM, den Hollander W, Callegaro G, et al. Characterisation of the NRF2 transcriptional network and its response to chemical insult in primary human hepatocytes: Implications for prediction of drug-induced liver injury. Arch Toxicol 2019; 93(2): 385-99.
[http://dx.doi.org/10.1007/s00204-018-2354-1] [PMID: 30426165]
[33]
Zhai X, Xue Q, Liu Q, Guo Y, Chen Z. Colon cancer recurrence-associated genes revealed by WGCNA co-expression network analysis. Mol Med Rep 2017; 16(5): 6499-505.
[http://dx.doi.org/10.3892/mmr.2017.7412] [PMID: 28901407]
[34]
Pei G, Chen L, Zhang W. WGCNA Application to proteomic and metabolomic data analysis. Methods Enzymol 2017; 585: 135-58.
[http://dx.doi.org/10.1016/bs.mie.2016.09.016] [PMID: 28109426]
[35]
Son SM, Song H, Byun J, et al. Accumulation of autophagosomes contributes to enhanced amyloidogenic APP processing under insulin-resistant conditions. Autophagy 2012; 8(12): 1842-4.
[http://dx.doi.org/10.4161/auto.21861] [PMID: 22931791]
[36]
Zhao N, Liu CC, Van Ingelgom AJ, et al. Apolipoprotein E4 impairs neuronal insulin signaling by trapping insulin receptor in the endosomes. Neuron 2017; 96(1): 115.
[http://dx.doi.org/10.1016/j.neuron.2017.09.003]
[37]
Sposato V, Canu N, Fico E, et al. The medial septum is insulin resistant in the ad presymptomatic phase: Rescue by nerve growth factor-driven IRS1 activation. Mol Neurobiol 2019; 56(4): 3068.
[38]
Gubin DG, Nelaeva AA, Uzhakova AE, Hasanova YV, Cornelissen G, Weinert D. Disrupted circadian rhythms of body temperature, heart rate and fasting blood glucose in prediabetes and type 2 diabetes mellitus. Chronobiol Int 2017; 34(8): 1136-48.
[http://dx.doi.org/10.1080/07420528.2017.1347670] [PMID: 28759269]
[39]
Blume C, Lechinger J, Santhi N, et al. Significance of circadian rhythms in severely brain-injured patients: A clue to consciousness? Neurology 2017; 88(20): 1933-41.
[http://dx.doi.org/10.1212/WNL.0000000000003942] [PMID: 28424270]
[40]
Esteras N, Muñoz Ú, Alquézar C, Bartolomé F, Bermejo-Pareja F, Martín-Requero Á. Altered calmodulin degradation and signaling in non-neuronal cells from Alzheimer’s disease patients. Curr Alzheimer Res 2012; 9(3): 267-77.
[http://dx.doi.org/10.2174/156720512800107564] [PMID: 22044025]
[41]
Rieker C, Migliavacca E, Vaucher A, et al. Apolipoprotein E4 expression causes gain of toxic function in isogenic human induced pluripotent stem cell-derived endothelial cells. Arterioscler Thromb Vasc Biol 2019; 39(9): e195-207.
[http://dx.doi.org/10.1161/ATVBAHA.118.312261] [PMID: 31315437]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy