Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

Three-Component Efficient Synthesis of 2-Amino-3-cyano-4H-pyrans Catalyzed by Diammonium Hydrogen Phosphate in Aqueous Media

Author(s): Pardis H. Taghva and Hassan Kabirifard*

Volume 8, Issue 2, 2021

Published on: 26 July, 2020

Page: [187 - 194] Pages: 8

DOI: 10.2174/2213337207999200726235542

Price: $65

Abstract

Background: The present method is facile, green and effective for the synthesis of 2- amino-3-cyano-4H-pyran derivatives which are obtained by one-pot three-component condensation reactions of aromatic aldehydes, malononitrile and methyl acetoacetate using diammonium hydrogen phosphate (DAHP) in aqueous ethanol at room temperature.

Methods: 2-Amino-3-cyano-4H-pyrans were synthesized through a one-pot three-component tandem Knoevenagel cyclocondensation reaction of aromatic aldehydes, malononitrile, and methyl acetoacetate in the presence of 10 mol% of DAHP as a catalyst under aqueous ethanol medium at room temperature. All obtained structures were confirmed by their physical constant, IR, 1H NMR, 13C NMR spectroscopy, and also elemental analyses for new derivatives.

Results: Three-component synthesis of 2-amino-3-cyano-4H-pyrans catalyzed by DAHP with aromatic aldehydes, malononitrile and methyl acetoacetate in aqueous ethanol medium at room temperature was prepared. The achieved derivatives (nine entries) were well synthesized in excellent yields.

Conclusion: The present method is straightforward, quick, and most efficient green protocol for the synthesis of 2-amino-3-cyano-4H-pyran derivatives using highly inexpensive, easily handle and, nontoxic DAHP as an efficient catalyst in aqueous ethanol medium at room temperature.

Keywords: Aromatic aldehyde, malononitrile, methyl acetoacetate, DAHP, aqueous media, 2 amino-3-cyano-4H-pyran.

Graphical Abstract

[1]
Fravel, B.W. Pyrans and their Benzo Derivatives: Applications. Comprehensive Heterocyclic Chemistry III; Katritzky, A.R.; Ramsden, C.A.; Scriven, E.F.V.; Taylor, R.J.K. Elsevier: Amesterdam, 2008, Vol. 7, pp. 701-726.
[2]
Kumar, D.; Reddy, V.B.; Sharad, S.; Dube, U.; Kapur, S. A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes. Eur. J. Med. Chem., 2009, 44(9), 3805-3809.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.017] [PMID: 19419801]
[3]
Fathalla, O.A.; Awad, S.M.; Mohamed, M.S. Synthesis of new 2-thiouracil-5-sulphonamide derivatives with antibacterial and antifungal activity. Arch. Pharm. Res., 2005, 28(11), 1205-1212.
[http://dx.doi.org/10.1007/BF02978199] [PMID: 16350842]
[4]
Mahdavi, S.M.; Habibi, A.; Dolati, H.; Shahcheragh, S.M.; Sardari, S.; Azerang, P. Synthesis and antimicrobial evaluation of 4H-pyrans and schiff bases fused 4H-pyran derivatives as inhibitors of Mycobacterium bovis (BCG). Iran. J. Pharm. Res., 2018, 17(4), 1229-1239.
[PMID: 30568683]
[5]
Amr, A.G.; Mohamed, A.M.; Mohamed, S.F.; Abdel-Hafez, N.A.; Hammam, Ael-F. Anticancer activities of some newly synthesized pyridine, pyrane, and pyrimidine derivatives. Bioorg. Med. Chem., 2006, 14(16), 5481-5488.
[http://dx.doi.org/10.1016/j.bmc.2006.04.045] [PMID: 16713269]
[6]
Magedov, I.V.; Manpadi, M.; Ogasawara, M.A.; Dhawan, A.S.; Rogelj, S.; Van Slambrouck, S.; Steelant, W.F.; Evdokimov, N.M.; Uglinskii, P.Y.; Elias, E.M.; Knee, E.J.; Tongwa, P.; Antipin, M.Y.; Kornienko, A. Structural simplification of bioactive natural products with multicomponent synthesis. 2. antiproliferative and antitubulin activities of pyrano[3,2-c]pyridones and pyrano[3,2-c]quinolones. J. Med. Chem., 2008, 51(8), 2561-2570.
[http://dx.doi.org/10.1021/jm701499n] [PMID: 18361483]
[7]
Nasakin, O.E.; Lyshchikov, A.N.; Kayukov, Ya.S.; Sheverdov, V.P. Antitumor activity of some polynitrile derivatives. Pharm. Chem. J., 2000, 34(4), 170-185.
[http://dx.doi.org/10.1007/BF02524593]
[8]
Abdel-Rahman, A.H.; Keshk, E.M.; Hanna, M.A.; el-Bady, ShM. Synthesis and evaluation of some new spiro indoline-based heterocycles as potentially active antimicrobial agents. Bioorg. Med. Chem., 2004, 12(9), 2483-2488.
[http://dx.doi.org/10.1016/j.bmc.2003.10.063] [PMID: 15080944]
[9]
Martinez-Grau, A.; Marco, J. Friedländer reaction on 2-amino-3-cyano-4H-pyrans: Synthesis of derivatives of 4H-pyran[2,3-b]quinoline, new tacrine analogues. Bioorg. Med. Chem. Lett., 1997, 7(24), 3165-3170.
[http://dx.doi.org/10.1016/S0960-894X(97)10165-2]
[10]
Mar’yasov, M.A.; Davydova, V.V.; Sheverdov, V.P.; Nasakin, O.E.; Gein, V.L. Synthesis and antimicrobial, analgesic, antipyretic, and immunotropic activity of methyl 3-aryl-6-amino-4-aryl-5-cyano-4H-pyran-2-carboxylates. Pharm. Chem. J., 2016, 50(8), 519-522.
[http://dx.doi.org/10.1007/s11094-016-1480-4]
[11]
Hafez, E.A.A.; Elnagdi, M.H.; Elagemey, A.G.A. EI-Taweel, F.M.A.A. Nitriles in heterocyclic synthesis: novel synthesis of benzo[c]coumarin and of benzo[c]pyrano[3,2-c]quinoline derivatives. Heterocycles, 1987, 26(4), 903-907.
[http://dx.doi.org/10.3987/R-1987-04-0903]
[12]
Sun, W.; Jiang, Y.; Yan, H.; Song, X. Synthesis and photoreaction of 2-amino-3-cyano-4-aryl-4H-pyrans. Aust. J. Chem., 2015, 68, 273-281.
[http://dx.doi.org/10.1071/CH14113]
[13]
Armesto, D.; Horspool, W.M.; Martin, N.; Ramos, A.; Seoane, C. Synthesis of cyclobutenes by the novel photochemical ring contraction of 4-substituted 2-amino-3,5-dicyano-6-phenyl-4H-pyrans. J. Org. Chem., 1989, 54(13), 3069-3072.
[http://dx.doi.org/10.1021/jo00274a021]
[14]
Ellis, G.P. The Chemistry of Heterocyclic Compounds. Chromenes, Chromanes and Chromones; Weissberger, A.; Taylor, E.C., Eds.; John Wiley: New York, NY, USA, 1977, Vol. 31, pp. 11-139.
[http://dx.doi.org/10.1002/9780470187012]
[15]
Konkoy, C.S.; Fick, D.B.; Cai, S.X.; Lan, N.C.; Keana, J.F.W. Substituted 5-oxo-5,6,7,8-tetrahydro-4H-1-benzopyrans and benzothiopyrans and their use as potentiators of AMPA. U.S. Patent 2000075123, 2000, 14 December.
[16]
O’Callaghan, C.N.; McMurry, T.B.H. Synthetic reactions of methyl XY-carbonyl-4H-1-benzopyran-4-yl cyanoethanoate. J. Chem. Res. Synop., 1995, 214-218.
[17]
Harb, A-F.A.; Hesien, A-H.M.; Metwally, S.A.; Elnagdi, M.H. The reaction of ethyl 6-amino-5-cyano-4-aryl-2-methyl-4H-pyran-3-carboxylate with nucleophilic reagents. Liebigs Ann. Chem., 1989, 1989(6), 585-588.
[http://dx.doi.org/10.1002/jlac.1989198901102]
[18]
Quintela, J.M.; Peinador, C.; Moreira, M.J. A novel synthesis of pyrano[2,3-d]pyrimidine derivatives. Tetrahedron, 1995, 51(20), 5901-5912.
[http://dx.doi.org/10.1016/0040-4020(95)00258-A]
[19]
Ghashang, M.; Mansoor, S.S.; Aswin, K. Pentafluorophenylammonium triflate (PFPAT) catalyzed facile construction of substituted chromeno[2,3-d]pyrimidinone derivatives and their antimicrobial activity. J. Adv. Res., 2014, 5(2), 209-218.
[http://dx.doi.org/10.1016/j.jare.2013.03.003] [PMID: 25685489]
[20]
Bhattacharyya, P.; Pradhan, K.; Paul, S.; Das, A.R. Nano crystalline ZnO catalyzed one pot multicomponent reaction for an easy access of fully decorated 4H-pyran scaffolds and its rearrangement to 2-pyridone nucleus in aqueous media. Tetrahedron Lett., 2012, 53(35), 4687-4691.
[http://dx.doi.org/10.1016/j.tetlet.2012.06.086]
[21]
Tietze, L.F.; Brasche, G.; Gericke, K. Domino reactions in organic synthesis, Ed; Wiley: Weinheim, 2006.
[22]
Zhu, J.; Bienayme, H. Multicomponent reactions, Ed; Wiley: Weinheim, 2005.
[23]
Ruijter, E.; Scheffelaar, R.; Orru, R.V.A. Multicomponent reaction design in the quest for molecular complexity and diversity. Angew. Chem. Int. Ed. Engl., 2011, 50(28), 6234-6246.
[http://dx.doi.org/10.1002/anie.201006515] [PMID: 21710674]
[24]
Jin, T-S.; Liu, L-B.; Zhao, Y.; Li, T-S. Clean, one‐pot synthesis of 4H‐pyran derivatives catalyzed by hexadecyltrimethyl ammonium bromide in aqueous media. Synth. Commun., 2005, 35(14), 1859-1863.
[http://dx.doi.org/10.1081/SCC-200064898]
[25]
Babu, N.S.; Pasha, N.; Rao, K.T.V.; Prasad, P.S.S.; Lingaiah, N. A heterogeneous strong basic Mg/La mixed oxide catalyst for efficient synthesis of polyfunctionalized pyrans. Tetrahedron Lett., 2008, 49(17), 2730-2733.
[http://dx.doi.org/10.1016/j.tetlet.2008.02.154]
[26]
Heravi, M.M.; Beheshtiha, Y.S.; Pirnia, Z.; Sadjadi, S.; Adibi, M. One-pot, three-component synthesis of 4H-pyrans using Cu(II) oxymetasilicate. Synth. Commun., 2009, 39(20), 3663-3667.
[http://dx.doi.org/10.1080/00397910902796102]
[27]
Elnagdi, M.H.; Adbel-Motaleb, R.M.; Mustafa, M. Studies on heterocyclic enamines: New syntheses of 4H-pyranes, pyranopyrazoles and pyranopyrimidines. J. Heterocycl. Chem., 1987, 24(6), 1677-1681.
[http://dx.doi.org/10.1002/jhet.5570240635]
[28]
Pratap, U.R.; Jawale, D.V.; Netankar, P.D.; Mane, R.A. Baker’s yeast catalyzed one-pot three-component synthesis of polyfunctionalized 4H-pyrans. Tetrahedron Lett., 2011, 52(44), 5817-5819.
[http://dx.doi.org/10.1016/j.tetlet.2011.08.135]
[29]
Hu, H.; Qiu, F.; Ying, A.; Yang, J.; Meng, H. An environmentally benign protocol for aqueous synthesis of tetrahydrobenzo[b]pyrans catalyzed by cost-effective ionic liquid. Int. J. Mol. Sci., 2014, 15(4), 6897-6909.
[http://dx.doi.org/10.3390/ijms15046897] [PMID: 24758931]
[30]
Yang, J.; Liu, S.; Hu, H.; Ren, S.; Ying, A. One-pot three-component synthesis of tetrahydrobenzo[b]pyrans catalyzed by cost-effective ionic liquid in aqueous medium. Chin. J. Chem. Eng., 2015, 23(8), 1416-1420.
[http://dx.doi.org/10.1016/j.cjche.2015.04.020]
[31]
Pagadala, R.; Maddila, S.; Jonnalagadda, S.B. An efficient, multicomponent, one-pot synthesis of tetra substituted pyrans in water. J. Heterocycl. Chem., 2015, 52(4), 1226-1229.
[http://dx.doi.org/10.1002/jhet.2125]
[32]
Molla, A.; Hossain, E.; Hussain, S. Multicomponent domino reactions: Borax catalyzed synthesis of highly functionalised pyran-annulated heterocycles. RSC Advances, 2013, 3(44), 21517-21523.
[http://dx.doi.org/10.1039/c3ra43514h]
[33]
Pandharpatte, M.S.; Mulani, K.B.; Gulam Mohammed, N.N. Microwave promoted, sodium acetate catalyzed one pot synthesis of poly functionalized 4H-pyrans. J. Chin. Chem. Soc. (Taipei), 2012, 59(5), 645-649.
[http://dx.doi.org/10.1002/jccs.201100304]
[34]
Yi, F.; Peng, Y.; Song, G. Microwave-assisted liquid-phase synthesis of methyl 6-amino-5-cyano-4-aryl-2-methyl-4H-pyran-3-carboxylate using functional ionic liquid as soluble support. Tetrahedron Lett., 2005, 46(22), 3931-3933.
[http://dx.doi.org/10.1016/j.tetlet.2005.03.197]
[35]
Maleki, B.; Sheikh, S. One-pot synthesis of 2-amino-2-chromene and 2-amino-3-cyano-4H-pyran derivatives promoted by potassium fluoride. Org. Prep. Proced. Int., 2015, 47(5), 368-378.
[http://dx.doi.org/10.1080/00304948.2015.1066647]
[36]
Yousefi, M.R.; Goli-Jolodar, O.; Shirini, F. Piperazine: An excellent catalyst for the synthesis of 2-amino-3-cyano-4H-pyrans derivatives in aqueous medium. Bioorg. Chem., 2018, 81, 326-333.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.026] [PMID: 30179795]
[37]
Brahmachari, G.; Banerjee, B. Facile and one-pot access to diverse and densely functionalized 2-amino-3-cyano-4H-pyrans and pyran-annulated heterocyclic scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst. ACS Sustain. Chem.& Eng., 2014, 2(3), 411-422.
[http://dx.doi.org/10.1021/sc400312n]
[38]
Waghmare, A.S.; Pandit, S.S.; Suryawanshi, D.M. DABCO catalyzed green and efficient synthesis of 2-amino-4H-pyrans and their biological evaluation as antimicrobial and anticancer agents. Comb. Chem. High. T. Comb. Chem. High Throughput Screen., 2018, 21(4), 254-261.
[http://dx.doi.org/10.2174/1386207321666180315095422] [PMID: 29542410]
[39]
Nazemi Nasirmahale, L.; Shirini, F.; Tajik, H.; Goli Jolodar, O. Efficient synthesis of 5-oxo-5,6,7,8-tetrahydro-4H-chromenes assisted by poly(4-vinylpyridine). Polycycl. Aromat. Comp., 2018, 1-9.
[40]
Lewis, R.J., Sr Hawley’s Condensed Chemical Dictionary, 13th Ed; Von Nostrand Reinhold: New York, 1997.
[41]
Kirk-Othmer. In Encyclopedia of Chemical Technology, 3rd Ed; John Wiley: New York, 1980, Vol. 10, pp. 93-97.
[42]
Balalaie, S.; Bararjanian, M.; Sheikh-Ahmadi, M.; Hekmat, S.; Salehi, P. Diammonium hydrogen phosphate; An efficient and versatile catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran derivatives in aqueous media. Synth. Commun., 2007, 37(7), 1097-1108.
[http://dx.doi.org/10.1080/00397910701196579]
[43]
Salehi, P.; Dabiri, M.; Khosropour, A.R.; Roozbehniya, P. Diammonium hydrogen phosphate: A versatile and inexpensive reagent for one-pot synthesis of dihydropyrimidinones, quinazolinones and azalactones under solvent-free conditions. J. Iran. Chem. Soc., 2006, 3(1), 98-104.
[http://dx.doi.org/10.1007/BF03245798]
[44]
Balalaie, S.; Bararjanian, M.; Hekmat, S.; Salehi, P. Novel, efficient, and green procedure for the knoevenagel condensation catalyzed by diammonium hydrogen phosphate in water. Synth. Commun., 2006, 36(17), 2549-2557.
[http://dx.doi.org/10.1080/00397910600781471]
[45]
Darviche, F.; Balalaie, S.; Chadegani, F.; Salehi, P. Diammonium hydrogen phosphate as a neutral and efficient catalyst for synthesis of 1,8-dioxo-octahydroxanthene derivatives in aqueous media. Synth. Commun., 2007, 37(7), 1059-1066.
[http://dx.doi.org/10.1080/00397910701196520]
[46]
Abdolmohammadi, S.; Balalaie, S. Novel and efficient catalysts for the one-pot synthesis of 3,4-dihydropyrano[c]chromene derivatives in aqueous media. Tetrahedron Lett., 2007, 48(18), 3299-3303.
[http://dx.doi.org/10.1016/j.tetlet.2007.02.135]
[47]
Balalaie, S.; Abdolmohammadi, S.; Bijanzadeh, H.R.; Amani, A.M. Diammonium hydrogen phosphate as a versatile and efficient catalyst for the one-pot synthesis of pyrano[2,3-d]pyrimidinone derivatives in aqueous media. Mol. Divers., 2008, 12(2), 85-91.
[http://dx.doi.org/10.1007/s11030-008-9079-7] [PMID: 18512127]
[48]
Mehrparvar, S.; Balalaie, S.; Rabbanizadeh, M.; Ghabraie, E.; Rominger, F. An efficient tandem approach for the synthesis of functionalized 2-pyridone-3-carboxylic acids using three-component reaction in aqueous media. Mol. Divers., 2014, 18(3), 535-543.
[http://dx.doi.org/10.1007/s11030-014-9522-x] [PMID: 24792225]
[49]
Balalaie, S.; Nikoo, S.; Haddadi, S. Aqueous-phase synthesis of 2-aminothiazole and 2-iminothiazolidine derivatives catalyzed by diammonium hydrogen phosphate and DABCO. Synth. Commun., 2008, 38(15), 2521-2528.
[http://dx.doi.org/10.1080/00397910802219155]
[50]
Dehghan Khalilia, Sh.; Banitabab, S.H.; Safaric, J. An efficient method for the catalyst-free one-pot green synthesis of 2,4,5-trisubstituted imidazoles in water. Scientia Iranica C, 2013, 20(6), 1855-1862.
[51]
Jun, Zh.; Xiaoyun, H.; Zhongqiang, Zh. Efficient and eco-friendly procedure for the synthesis of 2-amino-4H-chromenes catalyzed by diammonium hydrogen phosphate. Iran. J. Chem. Chem. Eng., 2015, 34(4), 47-51.
[52]
Wakodkar, R.R.; Kulkarani, P.; Kayande, D.D. Diammonium hydrogen phosphate: An efficient catalyst for the one pot synthesis of pyrano[2,3-c]pyrazoles derivatives in aqueous medium. IJUP, 2018, 4(3), 158-166.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy