Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Research Article

Preparation and Characterization of Calcium Carbonate Reinforced Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) Biocomposites

Author(s): Semra Kirboga, Mualla Öner* and Süleyman Deveci

Volume 17, Issue 2, 2021

Published on: 23 July, 2020

Page: [266 - 278] Pages: 13

DOI: 10.2174/1573413716999200723120228

Price: $65

Abstract

Background: The objective of this work was to develop biopolymer/calcium carbonate biocomposites with enhanced properties, relative to the neat polymer, by using low-cost filler calcium carbonate (CaCO3). To this end, we selected as matrices Poly (3-hydroxybutyrate-co-3- hydroxyvalerate, PHBV), which has attracted the most considerable interest among the biopolymers in industry.

Methods: Novel biodegradable PHBV/CaCO3 composites with 0.1-1 wt% of CaCO3 content were manufactured by melt extrusion. The effect of the CaCO3 on the thermal, barrier and dynamic mechanical properties of the PHBV was comprehensively investigated by SEM, XRD, FTIR, TGA, DSC, and DMA. The water and oxygen barrier properties of the biocomposites were also measured.

Results: DSC and XRD analysis showed that CaCO3 served as a nucleating agent, promoting crystallinity and crystal size. The addition of CaCO3 particles has a small effect on lamellae thickness and distribution. DMA measurements showed considerable improvements in storage modulus and viscose damping by incorporating CaCO3 particles. The storage modulus of the PHBV at 20°C in the DMA was increased up to 76% and loss modulus was increased up to 175% when composite was prepared with 0.1wt% coated CaCO3 particle. Water vapor and oxygen permeability were measured to study the effect of particles on the barrier properties of composite samples. Biocomposites exhibited smaller oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) due to the increase in crystallinity and tortuosity of the composite samples.

Conclusion: The results of this study have demonstrated that properties of biocomposites prepared by using low-cost commercially available filler are greatly improved to obtain high-performance composites.

Keywords: Green polymer, biocomposite, PHBV, calcium carbonate, thermal and barrier properties, DSC and XRD analysis.

Graphical Abstract

[1]
Suzuki, M.; Tachibana, Y.; Kazahaya, J.; Takizawa, R.; Muroi, F.; Kasuya, K. Difference in environmental degradability between poly(ethylene succinate) and poly(3-hydroxybutyrate). J. Polym. Res., 2017, 24(12), 217.
[http://dx.doi.org/10.1007/s10965-017-1383-4]
[2]
Andreopoulos, A.G.; Theophanides, T. Degradable plastics - A smart approach to various applications. J. Elastomers Plast., 1994, 26(4), 308-326.
[http://dx.doi.org/10.1177/009524439402600401]
[3]
Naphade, R.; Jog, J. Electrospinning of PHBV/ZnO membranes: Structure and properties. Fibers Polym., 2012, 13, 692-697.
[http://dx.doi.org/10.1007/s12221-012-0692-9]
[4]
Chen, G.Q.; Patel, M.K. Plastics derived from biological sources: present and future: a technical and environmental review. Chem. Rev., 2012, 112(4), 2082-2099.
[http://dx.doi.org/10.1021/cr200162d] [PMID: 22188473]
[5]
Jost, V.; Miesbauer, O. Effect of different biopolymers and polymers on the mechanical and permeation properties of extruded PHBV cast films. J. Appl. Polym. Sci., 2018, 135(15), 46153.
[http://dx.doi.org/10.1002/app.46153]
[6]
Oner, M.; Keskin, G.; Kizil, G.; Pochat-Bohatier, C.; Bechelany, M. Development of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/boron nitride bionanocomposites with enhanced barrier properties. Polym. Compos., 2019, 40(1), 78-90.
[http://dx.doi.org/10.1002/pc.24603]
[7]
Li, Y.; Fang, Q.F.; Yi, Z.G.; Zheng, K. Study of internal friction in polypropylene (PP) filled with nanorneter-scale CaCO3 particles. Mater. Sci. Eng. Struct., 2004, 370(1-2), 268-272.
[http://dx.doi.org/10.1016/j.msea.2003.07.014]
[8]
Mishra, S.; Sonawane, S.H.; Badgujar, N.; Gurav, K.; Patil, D. Comparative study of the mechanical and flame-retarding properties of polybutadiene rubber filled with nanoparticles and fly ash. J. Appl. Polym. Sci., 2005, 96(1), 6-9.
[http://dx.doi.org/10.1002/app.21114]
[9]
Chan, C.M.; Wu, J.S.; Li, J.X.; Cheung, Y.K. Polypropylene/calcium carbonate nanocomposites. Polymer (Guildf.), 2002, 43(10), 2981-2992.
[http://dx.doi.org/10.1016/S0032-3861(02)00120-9]
[10]
Szegda, D.; Duangphet, S.; Song, J.; Tarverdi, K. Extrusion foaming of PHBV. J. Cell. Plast., 2014, 50(2), 145-162.
[http://dx.doi.org/10.1177/0021955X13505249]
[11]
Duangphet, S.; Szegda, D.; Tarverdi, K.; Song, J. Effect of calcium carbonate on crystallization behavior and morphology of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Key Eng. Mater., 2017, 751, 242-251.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.751.242]
[12]
Öner, M.; Kızıl, G.; Keskin, G.; Pochat-Bohatier, C.; Bechelany, M. The Effect of boron nitride on the thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Nanomaterials (Basel), 2018, 8(11), 940-959.
[http://dx.doi.org/10.3390/nano8110940] [PMID: 30445720]
[13]
Mihajlovic, S.; Sekulic, Z.; Dakovic, A.; Vucinic, D.; Jovanovic, V.; Stojanovic, J. Surface properties of natural calcite filler treated with stearic acid. Ceram. Silik., 2009, 53(4), 268-275.
[14]
Juhasz-Bortuzzo, J.A.; Myszka, B.; Silva, R.; Boccaccini, A.R. Sonosynthesis of vaterite-type calcium carbonate. Cryst. Growth Des., 2017, 17(5), 2351-2356.
[http://dx.doi.org/10.1021/acs.cgd.6b01493]
[15]
Pechyen, C.; Ummartyotin, S. Development of isotactic polypropylene and stearic acid-modified calcium carbonate composite: A promising material for microwavable packaging. Polym. Bull., 2017, 74(2), 431-444.
[http://dx.doi.org/10.1007/s00289-016-1722-3]
[16]
Gilbert, M.; Sutherland, I.; Guest, A. Characterization of coated particulate fillers. J. Mater. Sci., 2000, 35(2), 391-397.
[http://dx.doi.org/10.1023/A:1004759115462]
[17]
Osman, M.A.; Suter, U.W. Surface treatment of calcite with fatty acids: Structure and properties of the organic monolayer. Chem. Mater., 2002, 14(10), 4408-4415.
[http://dx.doi.org/10.1021/cm021222u]
[18]
Kirboga, S.; Oner, M. Investigation of calcium carbonate precipitation in the presence of carboxymethyl inulin. CrystEngComm, 2013, 15(18), 3678-3686.
[http://dx.doi.org/10.1039/c3ce27022j]
[19]
Zhang, Y.; Yu, J.R.; Zhou, C.J.; Chen, L.; Hu, Z.M. Preparation, morphology, and adhesive and mechanical properties of ultrahigh-molecular-weight polyethylene/SiO2 nanocomposite fibers. Polym. Compos., 2010, 31(4), 684-690.
[20]
Luo, S.P.; Cao, J.Z.; McDonald, A.G. Interfacial improvements in a green biopolymer alloy of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and lignin via in situ reactive extrusion. ACS Sustain. Chem.& Eng., 2016, 4(6), 3465-3476.
[http://dx.doi.org/10.1021/acssuschemeng.6b00495]
[21]
Sahebian, S.; Hamed Mosavian, M.T. Thermal stability of CaCO3/polyethylene (PE) nanocomposites. Polym. Polymer Compos., 2019, 27(7), 371-382.
[http://dx.doi.org/10.1177/0967391119845994]
[22]
Reis, K.C.; Pereira, J.; Smith, A.C.; Carvalho, C.W.P.; Wellner, N.; Yakimets, I. Characterization of polyhydroxybutyrate-hydroxyvalerate (PHB-HV)/maize starch blend films. J. Food Eng., 2008, 89(4), 361-369.
[http://dx.doi.org/10.1016/j.jfoodeng.2008.04.022]
[23]
Matsuda, H.; Asakura, T.; Nagasaka, B.; Sato, K. Relationship between sequence distribution and thermal properties of the transesterification product between poly(ethylene terephthalate) and poly(butylene terephthalate). Macromolecules, 2004, 37(12), 4651-4657.
[http://dx.doi.org/10.1021/ma049490w]
[24]
Deveci, S.; Kaliappan, S.K.; Fawaz, J.; Gadgoli, U.; Das, B. Sensitivity of post yield axial deformation properties of high-density ethylene/alpha-olefin copolymers in relation to molecular structure and slow crack growth resistance. Polym. Test., 2018, 72, 285-297.
[http://dx.doi.org/10.1016/j.polymertesting.2018.10.032]
[25]
Liu, W.J.; Yang, H.L.; Wang, Z.; Dong, L.S.; Liu, J.J. Effect of nucleating agents on the crystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). J. Appl. Polym. Sci., 2002, 86(9), 2145-2152.
[http://dx.doi.org/10.1002/app.11023]
[26]
Pavlidou, S.; Papaspyrides, C.D. A review on polymer-layered silicate nanocomposites. Prog. Polym. Sci., 2008, 33, 1119-1198.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.07.008]
[27]
Karamipour, S.; Ebadi-Dehaghani, H.; Ashouri, D.; Mousavian, S. Effect of nano-CaCO3 on rheological and dynamic mechanical properties of polypropylene: Experiments and models. Polym. Test., 2011, 30(1), 110-117.
[http://dx.doi.org/10.1016/j.polymertesting.2010.10.009]
[28]
Jacob, M.; Francis, B.; Thomas, S.; Varughese, K.T. Dynamical mechanical analysis of sisal/oil palm hybrid fiber-reinforced natural rubber composites. Polym. Compos., 2006, 27(6), 671-680.
[http://dx.doi.org/10.1002/pc.20250]
[29]
Malekzadeh, Y.; Shelesh-Nezhad, K. The effects of HNO3-surface treated carbon fiber and nano-CaCO3 inclusions on dynamic mechanical and heat properties of PA6/ABS-based composites. J. Thermoplast. Compos. Mater., 2019, 32, 867-883.
[http://dx.doi.org/10.1177/0892705718804604]
[30]
Xie, X.L.; Liu, Q.X.; Li, R.K.Y.; Zhou, X.P.; Zhang, Q.X.; Yu, Z.Z.; Mai, Y.W. Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization. Polymer (Guildf.), 2004, 45(19), 6665-6673.
[http://dx.doi.org/10.1016/j.polymer.2004.07.045]
[31]
Thellen, C.; Coyne, M.; Froio, D.; Auerbach, M.; Wirsen, C.; Ratto, J.A. A processing, characterization and marine biodegradation study of melt-extruded Polyhydroxyalkanoate (PHA) films. J. Polym. Environ., 2008, 16, 1-11.
[http://dx.doi.org/10.1007/s10924-008-0079-6]
[32]
Madhup, M.K.; Shah, N.K.; Parekh, N.R. Investigation and improvement of abrasion resistance, water vapor barrier and anticorrosion properties of mixed clay epoxy nanocomposite coating. Prog. Org. Coat., 2017, 102, 186-193.
[http://dx.doi.org/10.1016/j.porgcoat.2016.10.012]
[33]
Kumar, P.; Sandeep, K.P.; Alavi, S.; Truong, V.D. A review of experimental and modeling techniques to determine properties of biopolymer-based nanocomposites. J. Food Sci., 2011, 76(1), E2-E14.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy