Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

COVID-19 Outbreak and Emerging Management through Pharmaceutical Therapeutic Strategy

Author(s): Md. H. Rahman*, Rokeya Akter, Tapan Behl, Md. A. R. Chowdhury, Manirujjaman Mohammed, Israt J. Bulbul, Shimaa E. Elshenawy and Mohammad A. Kamal*

Volume 26, Issue 41, 2020

Page: [5224 - 5240] Pages: 17

DOI: 10.2174/1381612826666200713174140

Price: $65

Abstract

The latest SARS COV2 coronavirus contributes to a pandemic of millions of COVID-19. As there is no defensive immunity in humans and a virus can overcome inborn immune reaction, it can propagate unhindered, mostly in tissues contaminated. No unique therapies for COVID-19 contaminated patients are available at this time. The insights learned from previous respiratory viral infection control have given guidance into COVID- 19 therapy. Several complementary treatments have been tentatively introduced in hospital environments such as immune-modulators, antiviral, convalescent plasma transfusions and natural products. In COVID-19 patients, some of these therapies have provided substantial curative benefits. Moreover, numerous studies and clinical trials are being carried out in order to determine the efficacy of current pharmaceutical and natural products to establish possible therapeutic strategies for producing novel COVID-19 medicines. We summarized and defined the modes of mechanism, protection and efficacy on the existing therapeutic strategies for diseases linked to COVID-19 infection.

Keywords: COVID-19, immuno-enhancer, vaccine, vitamins, antiviral, natural products.

[1]
World Health Organization (WHO). Coronavirus disease 2019 (COVID-19) Situation Report - 84 World Heal Organ 2020. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200413-sitrep-84-covid-19.pdf?sfvrsn=44f511ab_2
[http://dx.doi.org/10.1001/jama.2020.2633.]
[2]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[3]
Remuzzi A, Remuzzi G. COVID-19 and Italy: what next? Lancet 2020; 395(10231): 1225-8.
[http://dx.doi.org/10.1016/S0140-6736(20)30627-9] [PMID: 32178769]
[4]
Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 2020; 8(4)e21
[http://dx.doi.org/10.1016/S2213-2600(20)30116-8] [PMID: 32171062]
[5]
Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 2020; 395(10226): 809-15.
[http://dx.doi.org/10.1016/S0140-6736(20)30360-3] [PMID: 32151335]
[6]
Stebbing J, Phelan A, Griffin I, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis 2020; 20(4): 400-2.
[http://dx.doi.org/10.1016/S1473-3099(20)30132-8] [PMID: 32113509]
[7]
Zhu N, Zhang D, Wang W, et al. China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[8]
Munster VJ, Koopmans M, van Doremalen N, van Riel D, de Wit E. A novel coronavirus emerging in China - Key questions for impact assessment. N Engl J Med 2020; 382(8): 692-4.
[http://dx.doi.org/10.1056/NEJMp2000929] [PMID: 31978293]
[9]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[10]
Chan JFW, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 2020; 9(1): 221-36.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[11]
World Health Organization. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. Available at: https://www.who.int/publications/m/item/summary-of-probable-sars-cases-with-onset-of-illness-from-1-november-2002-to-31-july-2003
[12]
Kumar S. Poonam, Rathi B. Coronavirus Disease COVID-19: A New Threat to Public Health. Curr Top Med Chem 2020; 20(8): 599-600.
[http://dx.doi.org/10.2174/1568026620999200305144319] [PMID: 32133964]
[13]
Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan. China: JAMA 2020.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[14]
Liu K, Fang YY, Deng Y, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J (Engl) 2020; 133(9): 1025-31.
[http://dx.doi.org/10.1097/CM9.0000000000000744] [PMID: 32044814]
[15]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[16]
Xu X, Yu C, Qu J, et al. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. Eur J Nucl Med Mol Imaging 2020; 47(5): 1275-80.
[http://dx.doi.org/10.1007/s00259-020-04735-9] [PMID: 32107577]
[17]
Yang W, Cao Q, Qin L, et al. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19):A multi-center study in Wenzhou city, Zhejiang, China. J Infect 2020; 80(4): 388-93.
[http://dx.doi.org/10.1016/j.jinf.2020.02.016] [PMID: 32112884]
[18]
Han H, Xie L, Liu R, et al. Analysis of heart injury laboratory parameters in 273 COVID-19 patients in one hospital in Wuhan, China. J Med Virol 2020; 92(7): 819-23.
[http://dx.doi.org/10.1002/jmv.25809] [PMID: 32232979]
[19]
Akhmerov A, Marbán E. COVID-19 and the Heart. Circ Res 2020; 126(10): 1443-55.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317055] [PMID: 32252591]
[20]
Ding Q, Lu P, Fan Y, Xia Y, Liu M. The clinical characteristics of pneumonia patients coinfected with 2019 novel coronavirus and influenza virus in Wuhan, China. J Med Virol 2020.
[http://dx.doi.org/10.1002/jmv.25781] [PMID: 32196707]
[21]
Yao XH, et al. “[A pathological report of three COVID-19 cases by minimally invasive autopsies,” Zhonghua bing li xue za zhi = Chinese. J Pathol 2020.
[http://dx.doi.org/10.3760/cma.j.cn112151-20200312-00193] [PMID: 32172546]
[22]
Liu W, Tao ZW, Wang L, et al. Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. Chin Med J (Engl) 2020; 133(9): 1032-8.
[http://dx.doi.org/10.1097/CM9.0000000000000775] [PMID: 32118640]
[23]
Zu ZY, Jiang MD, Xu PP, et al. Coronavirus Disease 2019 (COVID-19): A Perspective from China. Radiology 2020.200490
[http://dx.doi.org/10.1148/radiol.2020200490] [PMID: 32083985]
[24]
Ye G, Pan Z, Pan Y, et al. Clinical characteristics of severe acute respiratory syndrome coronavirus 2 reactivation. J Infect 2020; 80(5): e14-7.
[http://dx.doi.org/10.1016/j.jinf.2020.03.001] [PMID: 32171867]
[25]
Wu Y, Xu X, Chen Z, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun 2020; 87: 18-22.
[http://dx.doi.org/10.1016/j.bbi.2020.03.031] [PMID: 32240762]
[26]
Mao L, Wang M, Chen S, et al. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: a retrospective case series study. SSRN Electron J 2020.
[http://dx.doi.org/10.2139/ssrn.3544840]
[27]
Zheng M, Gao Y, Wang G, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol 2020; 17(5): 533-5.
[http://dx.doi.org/10.1038/s41423-020-0402-2] [PMID: 32203188]
[28]
Liu J, Liu Y, Xiang P, et al. Neutrophil-to-lymphocyte ratio predicts severe illness patients with 2019 novel coronavirus in the early stage. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.02.10.20021584]
[29]
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8(4): 420-2.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[30]
Wang F, Nie J, Wang H, et al. Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia. J Infect Dis 2020; 221(11): 1762-9.
[http://dx.doi.org/10.1093/infdis/jiaa150] [PMID: 32227123]
[31]
Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z. Review of the Clinical Characteristics of Coronavirus Disease 2019 (COVID-19). J Gen Intern Med 2020; 35(5): 1545-9.
[http://dx.doi.org/10.1007/s11606-020-05762-w] [PMID: 32133578]
[32]
Guan WJ, Ni ZY, Hu Y, et al. China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[33]
A-2019-nCoV Volunteers et al, “Caution on Kidney Dysfunctions of 2019-nCoV Patients,” medRxiv 2020.
[http://dx.doi.org/10.1101/2020.02.08.20021212]
[34]
Mo P, Xing Y, Xiao Y, et al. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. ciaa270 Clin Infect Dis 2020.
[http://dx.doi.org/10.1093/cid/ciaa270] [PMID: 32173725]
[35]
Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020; 382(13): 1199-207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[36]
Shi Y, et al. Knowledge and attitudes of medical staff in Chinese psychiatric hospitals regarding COVID-19. Brain, Behav Immun - Heal 2020.
[http://dx.doi.org/10.1016/j.bbih.2020.100064]
[37]
Bao Y, Sun Y, Meng S, Shi J, Lu L. -nCoV epidemic: address mental health care to empower society. Lancet 2019 2020.
[http://dx.doi.org/10.1016/S0140-6736(20)30309-3] [PMID: 32043982]
[38]
Kang L, Li Y, Hu S, et al. The mental health of medical workers in Wuhan, China dealing with the 2019 novel coronavirus. Lancet Psychiatry 2020; 7(3)e14
[http://dx.doi.org/10.1016/S2215-0366(20)30047-X] [PMID: 32035030]
[39]
Cullen W, Gulati G, Kelly BD. Mental health in the COVID-19 pandemic. QJM 2020; 113(5): 311-2.
[http://dx.doi.org/10.1093/qjmed/hcaa110] [PMID: 32227218]
[40]
Li Z, Ge J, Yang M, et al. Vicarious traumatization in the general public, members, and non-members of medical teams aiding in COVID-19 control. Brain Behav Immun 2020; S0889-1591(20): 30309-.
[http://dx.doi.org/10.1016/j.bbi.2020.03.007] [PMID: 32169498]
[41]
Chandwani A, Shuter J. Lopinavir/ritonavir in the treatment of HIV-1 infection: a review. Ther Clin Risk Manag 2008; 4(5): 1023-33.
[http://dx.doi.org/10.2147/tcrm.s3285] [PMID: 19209283]
[42]
Chu CM, Cheng VC, Hung IF, et al. HKU/UCH SARS Study Group. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax 2004; 59(3): 252-6.
[http://dx.doi.org/10.1136/thorax.2003.012658] [PMID: 14985565]
[43]
Al-Tawfiq JA, Momattin H, Dib J, Memish ZA. Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study. Int J Infect Dis 2014; 20: 42-6.
[http://dx.doi.org/10.1016/j.ijid.2013.12.003] [PMID: 24406736]
[44]
Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med 2020; 382(19): 1787-99.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[45]
Deng L, Li C, Zeng Q, et al. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. J Infect 2020; 81(1): e1-5.
[http://dx.doi.org/10.1016/j.jinf.2020.03.002] [PMID: 32171872]
[46]
Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF, Barnard DL. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res 2013; 100(2): 446-54.
[http://dx.doi.org/10.1016/j.antiviral.2013.09.015] [PMID: 24084488]
[47]
Furuta Y, Takahashi K, Kuno-Maekawa M, et al. Mechanism of action of T-705 against influenza virus. Antimicrob Agents Chemother 2005; 49(3): 981-6.
[http://dx.doi.org/10.1128/AAC.49.3.981-986.2005] [PMID: 15728892]
[48]
Delang L, Abdelnabi R, Neyts J. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antiviral Res 2018; 153: 85-94.
[http://dx.doi.org/10.1016/j.antiviral.2018.03.003] [PMID: 29524445]
[49]
Smither SJ, Eastaugh LS, Steward JA, Nelson M, Lenk RP, Lever MS. Post-exposure efficacy of oral T-705 (Favipiravir) against inhalational Ebola virus infection in a mouse model. Antiviral Res 2014; 104: 153-5.
[http://dx.doi.org/10.1016/j.antiviral.2014.01.012] [PMID: 24462697]
[50]
Oestereich L, Lüdtke A, Wurr S, Rieger T, Muñoz-Fontela C, Günther S. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Res 2014; 105: 17-21.
[http://dx.doi.org/10.1016/j.antiviral.2014.02.014] [PMID: 24583123]
[51]
Sissoko D, Laouenan C, Folkesson E, et al. JIKI Study Group. Experimental Treatment with Favipiravir for Ebola Virus Disease (the JIKI Trial): A Historically Controlled, Single-Arm Proof-of-Concept Trial in Guinea. PLoS Med 2016; 13(3)e1001967
[http://dx.doi.org/10.1371/journal.pmed.1001967] [PMID: 26930627]
[52]
Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase Proceedings of the Japan Academy Series B: Physical and Biological Sciences.
[http://dx.doi.org/10.2183/pjab.93.027]
[53]
Chen C, et al. Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial medRxiv 2020.
[http://dx.doi.org/10.1101/2020.03.17.20037432.]
[54]
Siegel D, Hui HC, Doerffler E, et al. Discovery and Synthesis of a Phosphoramidate Prodrug of a Pyrrolo[2,1-f][triazin-4-amino] Adenine C-Nucleoside (GS-5734) for the Treatment of Ebola and Emerging Viruses. J Med Chem 2017; 60(5): 1648-61.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01594] [PMID: 28124907]
[55]
Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 2017; 9(396)eaal3653
[http://dx.doi.org/10.1126/scitranslmed.aal3653] [PMID: 28659436]
[56]
Agostini ML, Erica L, Sims AC, et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio 2018.
[http://dx.doi.org/10.1128/mBio.00221-18]
[57]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[58]
Holshue ML, DeBolt C, Lindquist S, et al. Washington State 2019-nCoV Case Investigation Team. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020; 382(10): 929-36.
[http://dx.doi.org/10.1056/NEJMoa2001191] [PMID: 32004427]
[59]
Grein J, Ohmagari N, Shin D, et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med 2020; 382(24): 2327-36.
[http://dx.doi.org/10.1056/NEJMoa2007016] [PMID: 32275812]
[60]
Sheahan TP, Sims AC, Zhou S, et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med 2020; 12(541)eabb5883
[http://dx.doi.org/10.1126/scitranslmed.abb5883] [PMID: 32253226]
[61]
Toots M, Yoon JJ, Cox RM, et al. Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia. Sci Transl Med 2019; 11(515)eaax5866
[http://dx.doi.org/10.1126/scitranslmed.aax5866] [PMID: 31645453]
[62]
Agostini ML, Pruijssers AJ, Chappell JD, et al. Small-Molecule Antiviral β-d-N4-Hydroxycytidine Inhibits a Proofreading-Intact Coronavirus with a High Genetic Barrier to Resistance. J Virol 2019; 93(24): e01348-19.
[http://dx.doi.org/10.1128/JVI.01348-19] [PMID: 31578288]
[63]
Reynard O, Nguyen XN, Alazard-Dany N, Barateau V, Cimarelli A, Volchkov VE. Identification of a new ribonucleoside inhibitor of ebola virus replication. Viruses 2015; 7(12): 6233-40.
[http://dx.doi.org/10.3390/v7122934] [PMID: 26633464]
[64]
Painter GR, Bowen RA, Bluemling GR, et al. The prophylactic and therapeutic activity of a broadly active ribonucleoside analog in a murine model of intranasal venezuelan equine encephalitis virus infection. Antiviral Res 2019.171104597
[http://dx.doi.org/10.1016/j.antiviral.2019.104597] [PMID: 31494195]
[65]
Wang L, Li X, Chen H, et al. Coronavirus Disease 19 Infection Does Not Result in Acute Kidney Injury: An Analysis of 116 Hospitalized Patients from Wuhan, China. Am J Nephrol 2020; 51(5): 343-8.
[http://dx.doi.org/10.1159/000507471] [PMID: 32229732]
[66]
Naicker S, Yang CW, Hwang SJ, Liu BC, Chen JH, Jha V. The Novel Coronavirus 2019 epidemic and kidneys. Kidney Int 2020; 97(5): 824-8.
[http://dx.doi.org/10.1016/j.kint.2020.03.001] [PMID: 32204907]
[67]
Kuhn JH, Li W, Choe H, Farzan M. Angiotensin-converting enzyme 2: a functional receptor for SARS coronavirus. Cell Mol Life Sci 2004; 61(21): 2738-43.
[http://dx.doi.org/10.1007/s00018-004-4242-5] [PMID: 15549175]
[68]
Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet 2020; 395(10223): 470-3.
[http://dx.doi.org/10.1016/S0140-6736(20)30185-9] [PMID: 31986257]
[69]
Prabakaran P, Xiao X, Dimitrov DS. A model of the ACE2 structure and function as a SARS-CoV receptor. Biochem Biophys Res Commun 2004; 314(1): 235-41.
[http://dx.doi.org/10.1016/j.bbrc.2003.12.081] [PMID: 14715271]
[70]
Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett 2002; 532(1-2): 107-10.
[http://dx.doi.org/10.1016/S0014-5793(02)03640-2] [PMID: 12459472]
[71]
Xu H, Zhong L, Deng J, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 2020; 12(1): 8.
[http://dx.doi.org/10.1038/s41368-020-0074-x] [PMID: 32094336]
[72]
Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203(2): 631-7.
[http://dx.doi.org/10.1002/path.1570] [PMID: 15141377]
[73]
Ding Y, He L, Zhang Q, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol 2004; 203(2): 622-30.
[http://dx.doi.org/10.1002/path.1560] [PMID: 15141376]
[74]
Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 2002; 417(6891): 822-8.
[http://dx.doi.org/10.1038/nature00786] [PMID: 12075344]
[75]
Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.01.26.919985]
[76]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[77]
Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367(6483): 1260-3.
[http://dx.doi.org/10.1126/science.abb2507]
[78]
Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005; 436(7047): 112-6.
[http://dx.doi.org/10.1038/nature03712] [PMID: 16001071]
[79]
Khan A, Benthin C, Zeno B, et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care 2017; 21(1): 234.
[http://dx.doi.org/10.1186/s13054-017-1823-x] [PMID: 28877748]
[80]
Haschke M, Schuster M, Poglitsch M, et al. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet 2013; 52(9): 783-92.
[http://dx.doi.org/10.1007/s40262-013-0072-7] [PMID: 23681967]
[81]
Lei C, Fu W, Qian K, et al. Potent neutralization of 2019 novel coronavirus by recombinant ACE2-Ig. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.02.01.929976]
[82]
Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 2020; 181(4): 905-913.e7.
[http://dx.doi.org/10.1016/j.cell.2020.04.004] [PMID: 32333836]
[83]
Karram T, et al. Effects of spironolactone and eprosartan on cardiac remodeling and angiotensin-converting enzyme isoforms in rats with experimental heart failure Am J Physiol - Hear Circ Physiol. 2005.
[http://dx.doi.org/10.1152/ajpheart.01186.2004]
[84]
Ishiyama Y, Gallagher PE, Averill DB, Tallant EA, Brosnihan KB, Ferrario CM. Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors. Hypertension 2004; 43(5): 970-6.
[http://dx.doi.org/10.1161/01.HYP.0000124667.34652.1a] [PMID: 15007027]
[85]
Ferrario CM, Jessup J, Chappell MC, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 2005; 111(20): 2605-10.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.510461] [PMID: 15897343]
[86]
Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 2005; 11(8): 875-9.
[http://dx.doi.org/10.1038/nm1267] [PMID: 16007097]
[87]
Guo J, Huang Z, Lin L, Lv J. Coronavirus Disease 2019 (COVID-19) and Cardiovascular Disease: A Viewpoint on the Potential Influence of Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers on Onset and Severity of Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J Am Heart Assoc 2020; 9(7)e016219
[http://dx.doi.org/10.1161/JAHA.120.016219] [PMID: 32233755]
[88]
Cutino-Moguel MT, Eades C, Rezvani K, Armstrong-James D. Immunotherapy for infectious diseases in haematological immunocompromise. Br J Haematol 2017; 177(3): 348-56.
[http://dx.doi.org/10.1111/bjh.14595] [PMID: 28369798]
[89]
Lu RM, Hwang YC, Liu IJ, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 2020; 27(1): 1.
[http://dx.doi.org/10.1186/s12929-019-0592-z] [PMID: 31894001]
[90]
Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426(6965): 450-4.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[91]
Raimondo MG, Biggioggero M, Crotti C, Becciolini A, Favalli EG. Profile of sarilumab and its potential in the treatment of rheumatoid arthritis. Drug Des Devel Ther 2017; 11: 1593-603.
[http://dx.doi.org/10.2147/DDDT.S100302] [PMID: 28579757]
[92]
Tanaka T, Narazaki M, Kishimoto T. Anti-interleukin-6 receptor antibody, tocilizumab, for the treatment of autoimmune diseases. FEBS Lett 2011; 585(23): 3699-709.
[http://dx.doi.org/10.1016/j.febslet.2011.03.023] [PMID: 21419125]
[93]
Sakkas LI. Spotlight on tocilizumab and its potential in the treatment of systemic sclerosis. Drug Des Devel Ther 2016; 10: 2723-8.
[http://dx.doi.org/10.2147/DDDT.S99696] [PMID: 27621593]
[94]
Lee EB, Daskalakis N, Xu C, et al. Disease-Drug Interaction of Sarilumab and Simvastatin in Patients with Rheumatoid Arthritis. Clin Pharmacokinet 2017; 56(6): 607-15.
[http://dx.doi.org/10.1007/s40262-016-0462-8] [PMID: 27722854]
[95]
Shimabukuro-Vornhagen A, Gödel P, Subklewe M, et al. Cytokine release syndrome. J Immunother Cancer 2018; 6(1): 56.
[http://dx.doi.org/10.1186/s40425-018-0343-9] [PMID: 29907163]
[96]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[97]
Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020; 46(5): 846-8.
[http://dx.doi.org/10.1007/s00134-020-05991-x] [PMID: 32125452]
[98]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. HLH Across Speciality Collaboration. UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[99]
Hswen Y, Brownstein JS, Liu J, Hawkins JB. Use of a digital health application for influenza surveillance in China. Am J Public Health 2017; 107(7): 1130-6.
[http://dx.doi.org/10.2105/AJPH.2017.303767] [PMID: 28520492]
[100]
Kremer JM. Toward a better understanding of methotrexate. Arthritis Rheum 2004; 50(5): 1370-82.
[http://dx.doi.org/10.1002/art.20278] [PMID: 15146406]
[101]
Li T, Lu H, Zhang W. Clinical observation and management of COVID-19 patients. Emerg Microbes Infect 2020; 9(1): 687-90.
[http://dx.doi.org/10.1080/22221751.2020.1741327] [PMID: 32208840]
[102]
Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004; 3(5): 391-400.
[http://dx.doi.org/10.1038/nrd1381] [PMID: 15136787]
[103]
Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 1995; 146(5): 1029-39.
[PMID: 7538264]
[104]
Thickett DR, Armstrong L, Christie SJ, Millar AB. Vascular endothelial growth factor may contribute to increased vascular permeability in acute respiratory distress syndrome. Am J Respir Crit Care Med 2001; 164(9): 1601-5.
[http://dx.doi.org/10.1164/ajrccm.164.9.2011071] [PMID: 11719296]
[105]
Fanelli V, Ranieri VM. Mechanisms and clinical consequences of acute lung injury. Ann Am Thorac Soc 2015; 12(Suppl. 1): S3-8.
[http://dx.doi.org/10.1513/AnnalsATS.201407-340MG] [PMID: 25830831]
[106]
Popov D. Treatment of Covid-19 Infection. A Rationale for Current and Future Pharmacological Approach. EC Pulmonol Respir Med 2020; 9(3)
[107]
Rossignol JF. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J Infect Public Health 2016; 9(3): 227-30.
[http://dx.doi.org/10.1016/j.jiph.2016.04.001] [PMID: 27095301]
[108]
Haffizulla J, Hartman A, Hoppers M, et al. US Nitazoxanide Influenza Clinical Study Group. Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: a double-blind, randomised, placebo-controlled, phase 2b/3 trial. Lancet Infect Dis 2014; 14(7): 609-18.
[http://dx.doi.org/10.1016/S1473-3099(14)70717-0] [PMID: 24852376]
[109]
Gamiño-Arroyo AE, Guerrero ML, McCarthy S, et al. Mexico Emerging Infectious Diseases Clinical Research Network (LaRed). Efficacy and Safety of Nitazoxanide in Addition to Standard of Care for the Treatment of Severe Acute Respiratory Illness. Clin Infect Dis 2019; 69(11): 1903-11.
[http://dx.doi.org/10.1093/cid/ciz100] [PMID: 30753384]
[110]
Taylor PC, Keystone EC, van der Heijde D, et al. Baricitinib versus Placebo or Adalimumab in Rheumatoid Arthritis. N Engl J Med 2017; 376(7): 652-62.
[http://dx.doi.org/10.1056/NEJMoa1608345] [PMID: 28199814]
[111]
O’Shea JJ, Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 2012; 36(4): 542-50.
[http://dx.doi.org/10.1016/j.immuni.2012.03.014] [PMID: 22520847]
[112]
Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 2020; 395(10223): e30-1.
[http://dx.doi.org/10.1016/S0140-6736(20)30304-4] [PMID: 32032529]
[113]
O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 2015; 66: 311-28.
[http://dx.doi.org/10.1146/annurev-med-051113-024537] [PMID: 25587654]
[114]
Ströher U, DiCaro A, Li Y, et al. Severe acute respiratory syndrome-related coronavirus is inhibited by interferon- α. J Infect Dis 2004; 189(7): 1164-7.
[http://dx.doi.org/10.1086/382597] [PMID: 15031783]
[115]
Yan Y, Zou Z, Sun Y, et al. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res 2013; 23(2): 300-2.
[http://dx.doi.org/10.1038/cr.2012.165] [PMID: 23208422]
[116]
Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect Dis 2006; 6(2): 67-9.
[http://dx.doi.org/10.1016/S1473-3099(06)70361-9] [PMID: 16439323]
[117]
Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun 2004; 323(1): 264-8.
[http://dx.doi.org/10.1016/j.bbrc.2004.08.085] [PMID: 15351731]
[118]
Huang J, Song W, Huang H, Sun Q. Pharmacological Therapeutics Targeting RNA-Dependent RNA Polymerase, Proteinase and Spike Protein: From Mechanistic Studies to Clinical Trials for COVID-19. J Clin Med 2020; 9(4)E1131
[http://dx.doi.org/10.3390/jcm9041131] [PMID: 32326602]
[119]
Smit C, Peeters MYM, van den Anker JN, Knibbe CAJ. Chloroquine for SARS-CoV-2: Implications of Its Unique Pharmacokinetic and Safety Properties. Clin Pharmacokinet 2020; 59(6): 659-69.
[http://dx.doi.org/10.1007/s40262-020-00891-1] [PMID: 32306288]
[120]
Zhen X, Sun X, Dong H. Health Technology Assessment and Its Use in Drug Policies in China Value Heal Reg Issues 2018.
[http://dx.doi.org/10.1016/j.vhri.2018.01.010.]
[121]
Lim HS, Im JS, Cho JY, et al. Pharmacokinetics of hydroxychloroquine and its clinical implications in chemoprophylaxis against malaria caused by Plasmodium vivax. Antimicrob Agents Chemother 2009; 53(4): 1468-75.
[http://dx.doi.org/10.1128/AAC.00339-08] [PMID: 19188392]
[122]
Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 2020; 6: 16.
[http://dx.doi.org/10.1038/s41421-020-0156-0] [PMID: 32194981]
[123]
Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents 2020; 55(5)105938
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[124]
van den Borne BEEM, Dijkmans BAC, de Rooij HH, le Cessie S, Verweij CL. Chloroquine and hydroxychloroquine equally affect tumor necrosis factor-α, interleukin 6, and interferon-γ production by peripheral blood mononuclear cells. J Rheumatol 1997; 24(1): 55-60.
[PMID: 9002011]
[125]
Chan JFW, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020; 395(10223): 514-23.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[126]
Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020.105949
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[127]
Lane JCE, Weaver J, Kostka K, et al. Safety of hydroxychloroquine, alone and in combination with azithromycin, in light of rapid wide-spread use for COVID-19: a multinational, network cohort and self-controlled case series study. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.04.08.20054551]
[128]
Chen J, Liu D, Liu L, et al. A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19). Randomized Controlled Trial 2020; 49(2): 215-9.
[http://dx.doi.org/10.3785/j.issn.1008-9292.2020.03.03.]
[129]
Chen Z. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial medRxiv 2020. In press.
[http://dx.doi.org/10.1101/2020.03.22.20040758.]
[130]
Molina JM, Delaugerre C, Le Goff J, et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect 2020; 50(4): 384.
[http://dx.doi.org/10.1016/j.medmal.2020.03.006] [PMID: 32240719]
[131]
Gautret P, Lagier JC, Parola P, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. Travel Med Infect Dis 2020.34101663
[http://dx.doi.org/10.1016/j.tmaid.2020.101663] [PMID: 32289548]
[132]
Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020; 14(1): 72-3.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[133]
Dodd RY. Emerging pathogens and their implications for the blood supply and transfusion transmitted infections. Br J Haematol 2012; 159(2): 135-42.
[http://dx.doi.org/10.1111/bjh.12031] [PMID: 22924410]
[134]
Mair-Jenkins J, Saavedra-Campos M, Baillie JK, et al. Convalescent Plasma Study Group. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis 2015; 211(1): 80-90.
[http://dx.doi.org/10.1093/infdis/jiu396] [PMID: 25030060]
[135]
Hung IFN, To KK, Lee CK, et al. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin Infect Dis 2011; 52(4): 447-56.
[http://dx.doi.org/10.1093/cid/ciq106] [PMID: 21248066]
[136]
Roback JD, Guarner J. Convalescent Plasma to Treat COVID-19: Possibilities and Challenges. JAMA 2020.
[http://dx.doi.org/10.1001/jama.2020.4940] [PMID: 32219429]
[137]
Duan K, Liu B, Li C, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA 2020; 117(17): 9490-6.
[http://dx.doi.org/10.1073/pnas.2004168117] [PMID: 32253318]
[138]
FDA. Recommendations for Investigational COVID-19 Convalescent Plasma. Food and Drug Administration 2020.
[139]
Stress W. Research on Work-related Stress 2000. Available at: https://osha.europa.eu/en/publications/report-research-work-related-stress
[140]
Saura M, Zaragoza C, McMillan A, et al. An antiviral mechanism of nitric oxide: inhibition of a viral protease. Immunity 1999; 10(1): 21-8.
[http://dx.doi.org/10.1016/S1074-7613(00)80003-5] [PMID: 10023767]
[141]
Pepke-Zaba J, Higenbottam TW, Dinh-Xuan AT, Stone D, Wallwork J. Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. Lancet 1991; 338(8776): 1173-4.
[http://dx.doi.org/10.1016/0140-6736(91)92033-X] [PMID: 1682593]
[142]
Yu B, Ichinose F, Bloch DB, Zapol WM. Inhaled nitric oxide. Br J Pharmacol 2019; 176(2): 246-55.
[http://dx.doi.org/10.1111/bph.14512] [PMID: 30288739]
[143]
Keyaerts E, Vijgen L, Chen L, Maes P, Hedenstierna G, Van Ranst M. Inhibition of SARS-coronavirus infection in vitro by S-nitroso-N-acetylpenicillamine, a nitric oxide donor compound. Int J Infect Dis 2004; 8(4): 223-6.
[http://dx.doi.org/10.1016/j.ijid.2004.04.012] [PMID: 15234326]
[144]
Chen L, Liu P, Gao H, et al. Inhalation of nitric oxide in the treatment of severe acute respiratory syndrome: a rescue trial in Beijing. Clin Infect Dis 2004; 39(10): 1531-5.
[http://dx.doi.org/10.1086/425357] [PMID: 15546092]
[145]
Lv FJ, Tuan RS, Cheung KMC, Leung VYL. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 2014; 32(6): 1408-19.
[http://dx.doi.org/10.1002/stem.1681] [PMID: 24578244]
[146]
Le Blanc K, Frassoni F, Ball L, et al. Developmental Committee of the European Group for Blood and Marrow Transplantation. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 2008; 371(9624): 1579-86.
[http://dx.doi.org/10.1016/S0140-6736(08)60690-X] [PMID: 18468541]
[147]
Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007; 25(11): 2739-49.
[http://dx.doi.org/10.1634/stemcells.2007-0197] [PMID: 17656645]
[148]
Zheng G, Huang L, Tong H, et al. Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study. Respir Res 2014; 15: 39.
[http://dx.doi.org/10.1186/1465-9921-15-39] [PMID: 24708472]
[149]
Mei SHJ, Haitsma JJ, Dos Santos CC, et al. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med 2010; 182(8): 1047-57.
[http://dx.doi.org/10.1164/rccm.201001-0010OC] [PMID: 20558630]
[150]
Galipeau J, Sensébé L. Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities. Cell Stem Cell 2018; 22(6): 824-33.
[http://dx.doi.org/10.1016/j.stem.2018.05.004] [PMID: 29859173]
[151]
Krasnodembskaya A, Samarani G, Song Y, et al. Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. Am J Physiol Lung Cell Mol Physiol 2012; 302(10): L1003-13.
[http://dx.doi.org/10.1152/ajplung.00180.2011] [PMID: 22427530]
[152]
Asmussen S, Ito H, Traber DL, et al. Human mesenchymal stem cells reduce the severity of acute lung injury in a sheep model of bacterial pneumonia. Thorax 2014; 69(9): 819-25.
[http://dx.doi.org/10.1136/thoraxjnl-2013-204980] [PMID: 24891325]
[153]
Devaney J, Horie S, Masterson C, et al. Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat. Thorax 2015; 70(7): 625-35.
[http://dx.doi.org/10.1136/thoraxjnl-2015-206813] [PMID: 25986435]
[154]
Chimenti L, Luque T, Bonsignore MR, Ramírez J, Navajas D, Farré R. Pre-treatment with mesenchymal stem cells reduces ventilator-induced lung injury. Eur Respir J 2012; 40(4): 939-48.
[http://dx.doi.org/10.1183/09031936.00153211] [PMID: 22441745]
[155]
Xu J, Woods CR, Mora AL, et al. Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. Am J Physiol Lung Cell Mol Physiol 2007; 293(1): L131-41.
[http://dx.doi.org/10.1152/ajplung.00431.2006] [PMID: 17416739]
[156]
Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 2007; 179(3): 1855-63.
[http://dx.doi.org/10.4049/jimmunol.179.3.1855] [PMID: 17641052]
[157]
Gupta N, Krasnodembskaya A, Kapetanaki M, et al. Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax 2012; 67(6): 533-9.
[http://dx.doi.org/10.1136/thoraxjnl-2011-201176] [PMID: 22250097]
[158]
Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105(4): 1815-22.
[http://dx.doi.org/10.1182/blood-2004-04-1559] [PMID: 15494428]
[159]
Parkin J, Cohen B. An overview of the immune system. Lancet 2001; 357(9270): 1777-89.
[http://dx.doi.org/10.1016/S0140-6736(00)04904-7] [PMID: 11403834]
[160]
Liu Y-J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 2005; 23: 275-306.
[http://dx.doi.org/10.1146/annurev.immunol.23.021704.115633] [PMID: 15771572]
[161]
Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res 2020; 24: 91-8.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[162]
Mazaleuskaya L, Veltrop R, Ikpeze N, Martin-Garcia J, Navas-Martin S. Protective role of Toll-like Receptor 3-induced type I interferon in murine coronavirus infection of macrophages. Viruses 2012; 4(5): 901-23.
[http://dx.doi.org/10.3390/v4050901] [PMID: 22754655]
[163]
Sperber SJ, Hayden FG. Comparative susceptibility of respiratory viruses to recombinant interferons-α 2b and -β. J Interferon Res 1989; 9(3): 285-93.
[http://dx.doi.org/10.1089/jir.1989.9.285] [PMID: 2545792]
[164]
De Andrea M, Ravera R, Gioia D, Gariglio M, Landolfo S. The interferon system: an overview. Eur J Paediatr Neurol 2002; 6(Suppl. A): A41-6.
[http://dx.doi.org/10.1053/ejpn.2002.0573] [PMID: 12365360]
[165]
Sainz B Jr, Mossel EC, Peters CJ, Garry RF. Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Virology 2004; 329(1): 11-7.
[http://dx.doi.org/10.1016/j.virol.2004.08.011] [PMID: 15476870]
[166]
Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Treatment of SARS with human interferons. Lancet 2003; 362(9380): 293-4.
[http://dx.doi.org/10.1016/S0140-6736(03)13973-6] [PMID: 12892961]
[167]
Hensley LE, Fritz LE, Jahrling PB, Karp CL, Huggins JW, Geisbert TW. Interferon-β 1a and SARS coronavirus replication. Emerg Infect Dis 2004; 10(2): 317-9.
[http://dx.doi.org/10.3201/eid1002.030482] [PMID: 15030704]
[168]
Gao W. Effects of a SARS-associated coronavirus vaccine in monkeys. Lancet 2003; 632(9399): 1895-6.
[169]
Haagmans BL, Kuiken T, Martina BE, et al. Pegylated interferon-α protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat Med 2004; 10(3): 290-3.
[http://dx.doi.org/10.1038/nm1001] [PMID: 14981511]
[170]
Falzarano D, de Wit E, Martellaro C, Callison J, Munster VJ, Feldmann H. Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin. Sci Rep 2013; 3: 1686.
[http://dx.doi.org/10.1038/srep01686] [PMID: 23594967]
[171]
Goodbourn S, Didcock L, Randall RE. Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol 2000; 81(Pt. 10): 2341-64.
[http://dx.doi.org/10.1099/0022-1317-81-10-2341] [PMID: 10993923]
[172]
Gale M Jr, Sen GC. Viral evasion of the interferon system. J Interferon Cytokine Res 2009; 29(9): 475-6.
[http://dx.doi.org/10.1089/jir.2009.0078] [PMID: 19694549]
[173]
Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol 2008; 9(5): 503-10.
[http://dx.doi.org/10.1038/ni1582] [PMID: 18425107]
[174]
Iannello A, Debbeche O, Samarani S, Ahmad A. Antiviral NK cell responses in HIV infection: I. NK cell receptor genes as determinants of HIV resistance and progression to AIDS. J Leukoc Biol 2008; 84(1): 1-26.
[http://dx.doi.org/10.1189/jlb.0907650] [PMID: 18388298]
[175]
Klingemann H, Boissel L, Toneguzzo F. Natural killer cells for immunotherapy - Advantages of the NK-92 cell line over blood NK cells. Front Immunol 2016; 7: 91.
[http://dx.doi.org/10.3389/fimmu.2016.00091] [PMID: 27014270]
[176]
Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids-new mechanisms for old drugs. N Engl J Med 2005; 353(16): 1711-23.
[http://dx.doi.org/10.1056/NEJMra050541] [PMID: 16236742]
[177]
Annane D, Bellissant E, Bollaert PE, Briegel J, Keh D, Kupfer Y. Corticosteroids for treating sepsis. Cochrane Database Syst Rev 2015; (12): CD002243
[http://dx.doi.org/10.1002/14651858.CD002243.pub3] [PMID: 26633262]
[178]
Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoS Med 2006; 3(9)e343
[http://dx.doi.org/10.1371/journal.pmed.0030343] [PMID: 16968120]
[179]
Han K, Ma H, An X, et al. Early use of glucocorticoids was a risk factor for critical disease and death from pH1N1 infection. Clin Infect Dis 2011; 53(4): 326-33.
[http://dx.doi.org/10.1093/cid/cir398] [PMID: 21810744]
[180]
Siemieniuk RAC, Meade MO, Alonso-Coello P, et al. Corticosteroid therapy for patients hospitalized with community-acquired pneumonia: A systematic review and metaanalysis. Ann Intern Med 2015; 163(7): 519-28.
[http://dx.doi.org/10.7326/M15-0715] [PMID: 26258555]
[181]
Li H, et al. Effect of low-to-moderate-dose corticosteroids on mortality of hospitalized adolescents and adults with influenza A(H1N1)pdm09 viral pneumonia Influenza Other Respi Viruses 2017.
[http://dx.doi.org/10.1111/irv.12456]
[182]
CDC. Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Centers Dis Control Prev 2020. Available at: https://stacks.cdc.gov/view/cdc/89980
[183]
Carr AC, Maggini S. Vitamin C and immune function. Nutrients 2017; 9(11)E1211
[http://dx.doi.org/10.3390/nu9111211] [PMID: 29099763]
[184]
Liu J, Yeo HC, Overvik-Douki E, et al. Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol 2000; 89(1): 21-8.
[http://dx.doi.org/10.1152/jappl.2000.89.1.21] [PMID: 10904031]
[185]
Carr AC, Rosengrave PC, Bayer S, Chambers S, Mehrtens J, Shaw GM. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit Care 2017; 21(1): 300.
[http://dx.doi.org/10.1186/s13054-017-1891-y] [PMID: 29228951]
[186]
Oudemans-van Straaten HM, Spoelstra-de Man AME, de Waard MC. Vitamin C revisited. Crit Care 2014; 18(4): 460.
[http://dx.doi.org/10.1186/s13054-014-0460-x] [PMID: 25185110]
[187]
May JM, Harrison FE. Role of vitamin C in the function of the vascular endothelium. Antioxidants and Redox Signaling 2013.
[http://dx.doi.org/10.1089/ars.2013.5205]
[188]
Wilson JX. Evaluation of Vitamin C for Adjuvant Sepsis Therapy. Antioxidants and Redox Signaling 2013.
[http://dx.doi.org/10.1089/ars.2013.5401]
[189]
Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 2018; 18(2): 134-47.
[http://dx.doi.org/10.1038/nri.2017.105] [PMID: 28990587]
[190]
Mohammed BM, Fisher BJ, Kraskauskas D, et al. Vitamin C: a novel regulator of neutrophil extracellular trap formation. Nutrients 2013; 5(8): 3131-51.
[http://dx.doi.org/10.3390/nu5083131] [PMID: 23939536]
[191]
Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh DM, Al-Nasser AD. Sars-cov-2 and coronavirus disease 2019: What we know so far. Pathogens 2020; 9(3)E231
[http://dx.doi.org/10.3390/pathogens9030231] [PMID: 32245083]
[192]
Releases N. NIH clinical trial of Investigational Vaccine to treat COVID-19 begins Available at: https://www.niaid.nih.gov/news-events/nih-clinical-trial-investigational-vaccine-covid-19-begins
[193]
Ahn DG, Shin HJ, Kim MH, et al. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). J Microbiol Biotechnol 2020; 30(3): 313-24.
[http://dx.doi.org/10.4014/jmb.2003.03011] [PMID: 32238757]
[194]
Kim E, Erdos G, Huang S, et al. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine 2020.55102743
[http://dx.doi.org/10.1016/j.ebiom.2020.102743] [PMID: 32249203]
[195]
Abbas M. Natural polyphenols: An overview. Int J Food Prop 2017; 20(8): 1689-99.
[http://dx.doi.org/10.1080/10942912.2016.1220393]
[196]
Shimizu JF, Lima CS, Pereira CM, et al. Flavonoids from Pterogyne nitens Inhibit Hepatitis C Virus Entry. Sci Rep 2017; 7(1): 16127.
[http://dx.doi.org/10.1038/s41598-017-16336-y] [PMID: 29170411]
[197]
Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem 2020; 35(1): 145-51.
[http://dx.doi.org/10.1080/14756366.2019.1690480] [PMID: 31724441]
[198]
Park JY, Yuk HJ, Ryu HW, et al. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J Enzyme Inhib Med Chem 2017; 32(1): 504-15.
[http://dx.doi.org/10.1080/14756366.2016.1265519] [PMID: 28112000]
[199]
Justesen U, Knuthsen P. Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes. Food Chem 2001; 73(2)
[http://dx.doi.org/10.1016/S0308-8146(01)00114-5]
[200]
Kaack K, Austed T. Interaction of vitamin C and flavonoids in elderberry (Sambucus nigra L.) during juice processing. Plant Foods Hum Nutr 1998; 52(3): 187-98.
[http://dx.doi.org/10.1023/A:1008069422202] [PMID: 9950080]
[201]
Yu MS, Lee J, Lee JM, et al. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorganic Med. Chem Lett 2012; 22(12): 4049-54.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.081]
[202]
Kim DW, Seo KH, Curtis-Long MJ, et al. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J Enzyme Inhib Med Chem 2014; 29(1): 59-63.
[http://dx.doi.org/10.3109/14756366.2012.753591] [PMID: 23323951]
[203]
Mitchell CA, Ramessar K, O’Keefe BR. Antiviral lectins: Selective inhibitors of viral entry. Antiviral Res 2017; 142: 37-54.
[http://dx.doi.org/10.1016/j.antiviral.2017.03.007] [PMID: 28322922]
[204]
Hwang HJ, Han JW, Jeon H, et al. Characterization of a novel mannose-binding lectin with antiviral activities from red alga, grateloupia chiangii. Biomolecules 2020; 10(2)E333
[http://dx.doi.org/10.3390/biom10020333] [PMID: 32092955]
[205]
Covés-Datson EM, Dyall J, DeWald LE, et al. Inhibition of Ebola Virus by a Molecularly Engineered Banana Lectin. PLoS Negl Trop Dis 2019; 13(7)e0007595
[http://dx.doi.org/10.1371/journal.pntd.0007595] [PMID: 31356611]
[206]
Michelow IC, Lear C, Scully C, et al. High-dose mannose-binding lectin therapy for Ebola virus infection. J Infect Dis 2011; 203(2): 175-9.
[http://dx.doi.org/10.1093/infdis/jiq025] [PMID: 21288816]
[207]
Keyaerts E, Vijgen L, Pannecouque C, et al. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res 2007; 75(3): 179-87.
[http://dx.doi.org/10.1016/j.antiviral.2007.03.003] [PMID: 17428553]
[208]
Petersen KA, Matthiesen F, Agger T, et al. Phase I safety, tolerability, and pharmacokinetic study of recombinant human mannan-binding lectin. J Clin Immunol 2006; 26(5): 465-75.
[http://dx.doi.org/10.1007/s10875-006-9037-z] [PMID: 16990992]
[209]
Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res 2020; 178104787
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[210]
Zhang K, Zhou X, Liu H, Hashimoto K. Treatment concerns for psychiatric symptoms in COVID-19-infected patients with or without psychiatric disorders. Br J Psychiatry 2020; 1.
[http://dx.doi.org/10.1192/bjp.2020.84] [PMID: 32270760]
[211]
Anderson DE. Orthogonal genome-wide screenings in bat cells identify MTHFD1 as a target of broad antiviral therapy. bioRxiv 2020. In press
[http://dx.doi.org/10.1101/2020.03.29.014209]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy