Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Research Article

Mechanistic Insights into the Anticandidal Action of Vanillin Reveal Disruption of Cell Surface Integrity and Mitochondrial Functioning

Author(s): Venkata Saibabu, Zeeshan Fatima*, Luqman Ahmad Khan and Saif Hameed*

Volume 21, Issue 3, 2021

Published on: 02 July, 2020

Page: [405 - 415] Pages: 11

DOI: 10.2174/1871526520666200702134110

Price: $65

Abstract

Background: Considering the emergence of multidrug resistance (MDR) in prevalent human fungal pathogen, Candida albicans, there is a parallel spurt in the development of novel strategies aimed to disrupt MDR. Compounds from natural resources could be exploited as efficient antifungal drugs owing to their structural diversity, cost effectiveness and negligible side effects.

Objective: The present study elucidates the antifungal mechanisms of Vanillin (Van), a natural food flavoring agent against Candida albicans.

Methods: Antifungal activities were assessed by broth microdilution and spot assays. Membrane and cell wall perturbations were studied by PI uptake, electron microscopy, plasma membrane H+ extrusion activity and estimation of ergosterol and chitin contents. Mitochondrial functioning was studied by growth on non-fermentable carbon sources, rhodamine B labeling and using retrograde signaling mutants. Gene expressions were validated by semi-quantitative RT-PCR.

Results: We observed that the antifungal activity of Van was not only limited to clinical isolates of C. albicans but also against non-albicans species of Candida. Mechanistic insights revealed the effect of Van on cell surface integrity as evident from hypersensitivity against membrane perturbing agent SDS, depleted ergosterol levels, transmission electron micrographs and diminished plasma membrane H+ extrusion activity. In addition, spot assays with cell wall perturbing agents, scanning electron micrographs, delayed sedimentation rate and lower chitin content further substantiate cell wall damage by Van. Furthermore, Van treated cells underwent mitochondrial dysfunctioning via impaired retrograde signaling leading to abrogated iron homeostasis and DNA damage. All the perturbed phenotypes were also validated by RT-PCR depicting differential regulation of genes (NPC2, KRE62, FTR2 and CSM3) in response to Van.

Conclusion: Together, our results suggested that Van is promising antifungal agent that may be advocated for further investigation in therapeutic strategies to treat Candida infections.

Keywords: Vanillin, ergosterol, cell wall, chitin, mitochondria, iron, DNA damage.

Graphical Abstract

[1]
Pfaller, M.A.; Diekema, D.J. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev., 2007, 20(1), 133-163.
[http://dx.doi.org/10.1128/CMR.00029-06] [PMID: 17223626]
[2]
Inchem (International Programme on Chemical Safety-INCHEM). Summary of Evaluations Performed by the Joint FAO/WHO Expert Committee on Food Additives, 2004, Available from: http://www.inchem.org
[3]
Mourtzinos, I.; Konteles, S.; Kalogeropoulos, N.; Karathanos, V. Thermal oxidation of vanillin affects its antioxidant and antimicrobial properties. Food Chem., 2009, 114(3), 791-797.
[http://dx.doi.org/10.1016/j.foodchem.2008.10.014]
[4]
Maurya, D.K.; Adhikari, S.; Nair, C.K.; Devasagayam, T.P. DNA protective properties of vanillin against gamma-radiation under different conditions: possible mechanisms. Mutat. Res., 2007, 634(1-2), 69-80.
[http://dx.doi.org/10.1016/j.mrgentox.2007.06.003] [PMID: 17644025]
[5]
Fitzgerald, D.J.; Stratford, M.; Gasson, M.J.; Ueckert, J.; Bos, A.; Narbad, A. Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. J. Appl. Microbiol., 2004, 97(1), 104-113.
[http://dx.doi.org/10.1111/j.1365-2672.2004.02275.x] [PMID: 15186447]
[6]
Fitzgerald, D.J.; Stratford, M.; Gasson, M.J.; Narbad, A. Structure-function analysis of the vanillin molecule and its antifungal properties. J. Agric. Food Chem., 2005, 53(5), 1769-1775.
[http://dx.doi.org/10.1021/jf048575t] [PMID: 15740072]
[7]
Saibabu, V.; Fatima, Z.; Singh, S.; Khan, L.A.; Hameed, S. Vanillin confers antifungal drug synergism in Candida albicans by impeding CaCdr2p driven efflux. J. Mycol. Med., 2020, 30(1), 100921.
[http://dx.doi.org/10.1016/j.mycmed.2019.100921] [PMID: 31937429]
[8]
National Committee for Clinical and Laboratory Standards. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved standard M27-A3, National Committee for Clinical and Laboratory Standards: Wayne, Ill, USA, 2008, 28, . (14)
[9]
Ansari, M.A.; Fatima, Z.; Hameed, S. Anticandidal effect and mechanisms of monoterpenoid, Perillyl Alcohol against Candida albicans. PLoS One, 2016, 11(9), e0162465.
[http://dx.doi.org/10.1371/journal.pone.0162465] [PMID: 27627759]
[10]
Singh, S; Fatima, Z; Hameed, S Insights into the mode of action of anticandidal herbal monoterpenoid geraniol reveal disruption of multiple MDR mechanisms and virulence attributes in Candida albicans . Arch Microbiol, 2016, 198(5), 459-72.
[11]
Amber, K.; Aijaz, A.; Immaculata, X.; Luqman, K.A.; Nikhat, M. Anticandidal effect of Ocimum sanctum essential oil and its synergy with fluconazole and ketoconazole. Phytomedicine, 2010, 17(12), 921-925.
[http://dx.doi.org/10.1016/j.phymed.2010.02.012] [PMID: 20378320]
[12]
Heilmann, C.J.; Sorgo, A.G.; Mohammadi, S.; Sosinska, G.J.; de Koster, C.G.; Brul, S.; de Koning, L.J.; Klis, F.M. Surface stress induces a conserved cell wall stress response in the pathogenic fungus Candida albicans. Eukaryot. Cell, 2013, 12(2), 254-264.
[http://dx.doi.org/10.1128/EC.00278-12] [PMID: 23243062]
[13]
Yang, F.; Kravets, A.; Bethlendy, G.; Welle, S.; Rustchenko, E. Chromosome 5 monosomy of Candida albicans controls susceptibility to various toxic agents, including major antifungals. Antimicrob. Agents Chemother., 2013, 57(10), 5026-5036.
[http://dx.doi.org/10.1128/AAC.00516-13] [PMID: 23896475]
[14]
Ansari, M.A.; Fatima, Z.; Hameed, S. Mechanistic insights into the mode of action of anticandidal sesamol. Microb. Pathog., 2016, 98, 140-148.
[http://dx.doi.org/10.1016/j.micpath.2016.07.004] [PMID: 27392701]
[15]
Starovoytova, A.N.; Sorokin, M.I.; Sokolov, S.S.; Severin, F.F.; Knorre, D.A. Mitochondrial signaling in Saccharomyces cerevisiae pseudohyphae formation induced by butanol. FEMS Yeast Res., 2013, 13(4), 367-374.
[http://dx.doi.org/10.1111/1567-1364.12039] [PMID: 23448552]
[16]
Kaur, R.; Castaño, I.; Cormack, B.P. Functional genomic analysis of fluconazole susceptibility in the pathogenic yeast Candida glabrata: roles of calcium signaling and mitochondria. Antimicrob. Agents Chemother., 2004, 48(5), 1600-1613.
[http://dx.doi.org/10.1128/AAC.48.5.1600-1613.2004] [PMID: 15105111]
[17]
Lunde, C.S.; Kubo, I. Effect of polygodial on the mitochondrial ATPase of Saccharomyces cerevisiae. Antimicrob. Agents Chemother., 2000, 44(7), 1943-1953.
[http://dx.doi.org/10.1128/AAC.44.7.1943-1953.2000] [PMID: 10858359]
[18]
Permyakov, S.; Suzina, N.; Valiakhmetov, A. Activation of H+-ATPase of the plasma membrane of Saccharomyces cerevisiae by glucose: the role of sphingolipid and lateral enzyme mobility. PLoS One, 2012, 7(2), e30966.
[http://dx.doi.org/10.1371/journal.pone.0030966] [PMID: 22359558]
[19]
Dünkler, A.; Walther, A.; Specht, C.A.; Wendland, J. Candida albicans CHT3 encodes the functional homolog of the Cts1 chitinase of Saccharomyces cerevisiae. Fungal Genet. Biol., 2005, 42(11), 935-947.
[http://dx.doi.org/10.1016/j.fgb.2005.08.001] [PMID: 16214381]
[20]
Kim, J.H.; Haff, R.P.; Faria, N.C.G.; Martins, Mde.L.; Chan, K.L.; Campbell, B.C. Targeting the mitochondrial respiratory chain of Cryptococcus through antifungal chemosensitization: a model for control of non-fermentative pathogens. Molecules, 2013, 18(8), 8873-8894.
[http://dx.doi.org/10.3390/molecules18088873] [PMID: 23892633]
[21]
Shingu-Vazquez, M.; Traven, A. Mitochondria and fungal pathogenesis: drug tolerance, virulence, and potential for antifungal therapy. Eukaryot. Cell, 2011, 10(11), 1376-1383.
[http://dx.doi.org/10.1128/EC.05184-11] [PMID: 21926328]
[22]
Zhang, X.; Ting, L.; Chen, X.; Wang, S.; Liu, Z. Nystatin enhances the immune responses in Candida albicans and protects the ultrastructure of vaginal epithelium in a rat model of vulvovaginal candidiasis. BMC Microbiol., 2018, 18(1), 116.
[http://dx.doi.org/10.1186/s12866-018-1316-3] [PMID: 30208852]
[23]
da Cunha, F.M.; Torelli, N.Q.; Kowaltowski, A.J. Mitochondrial retrograde signaling: triggers, pathways, and outcomes. Oxid Med Cell Longev; , 2015, 2015, p. 482582.
[24]
Liu, Z.; Butow, R.A. Mitochondrial retrograde signaling. Annu. Rev. Genet., 2006, 40, 159-185.
[http://dx.doi.org/10.1146/annurev.genet.40.110405.090613] [PMID: 16771627]
[25]
Ferreira Júnior, J.R.; Spírek, M.; Liu, Z.; Butow, R.A. Interaction between Rtg2p and Mks1p in the regulation of the RTG pathway of Saccharomyces cerevisiae. Gene, 2005, 354, 2-8.
[http://dx.doi.org/10.1016/j.gene.2005.03.048] [PMID: 15967597]
[26]
Yan, H.; Zhao, Y.; Jiang, L. The putative transcription factor CaRtg3 is involved in tolerance to cations and antifungal drugs as well as serum-induced filamentation in Candida albicans. FEMS Yeast Res., 2014, 14(4), 614-623.
[http://dx.doi.org/10.1111/1567-1364.12148] [PMID: 24606409]
[27]
Hans, S.; Fatima, Z.; Hameed, S. Retrograde signaling disruption influences ABC superfamily transporter, ergosterol and chitin levels along with biofilm formation in Candida albicans. J. Mycol. Med., 2019, 29(3), 210-218.
[http://dx.doi.org/10.1016/j.mycmed.2019.07.003] [PMID: 31400863]
[28]
Thomas, E; Roman, E; Claypool, S; Manzoor, N; Pla, J; Panwar, SL Mitochondria influences CDR1 efflux pump activity, Hog1- mediated oxidative stress pathway, iron homeostasis and ergosterol levels in Candida albicans Antimicrob. Agents Chemother, 2013, 57(11), 5580-5599.
[29]
Chepelev, N.L.; Willmore, W.G. Regulation of iron pathways in response to hypoxia. Free Radic. Biol. Med., 2011, 50(6), 645-666.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.12.023] [PMID: 21185934]
[30]
Hameed, S.; Fatima, Z. Novel regulatory mechanisms of pathogenicity and virulence to combat MDR in Candida albicans. Int. J. Microbiol., 2013, 2013, 240209.
[http://dx.doi.org/10.1155/2013/240209] [PMID: 24163696]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy