Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

利用基于机器学习的脑灰质体积优化组合特征集和定量易感性图谱对早期阿尔茨海默病进行评价和预测

卷 17, 期 5, 2020

页: [428 - 437] 页: 10

弟呕挨: 10.2174/1567205017666200624204427

价格: $65

摘要

背景:由于阿尔茨海默病(AD)的模式变化非常复杂,很难用特定的因素对其进行评估。最近,新的机器学习方法被用于解决局限性。 目的:本研究的目的是调查分类和预测的方法——即采用基于机器学习(ML)的脑灰质体积(GMV)优化组合特征集(OCF)和定量易感性图谱(QSM)对认知正常(CN)老年人、遗忘型轻度认知损害者(aMCI)、轻度和中度AD患者进行预测的方法。 材料与方法:共纳入57例患者,CN患者19例,aMCI患者19例,AD患者19例,合并GMV和QSM。感兴趣区域(ROIs)被定义为AD脑内铁含量丰富和淀粉样蛋白聚集区。为了区分这三组被试,利用GMV值和QSM值对三种不同核心的支持向量机(SVM)和OCF集的支持向量机(SVM)进行运算。为了预测aMCI阶段,使用OCF集建立基于回归的ML模型,并将预测结果与临床数据的准确性进行比较。 结果:在CN和aMCI组的分类中,使用第2 SVM分类器(AUC = 0.94)的GMVs(海马和内嗅觉皮质)和QSMs(海马和丘脑后结节)数据组合显示了最高的准确率。在aMCI和AD组的分类中,使用第2 SVM分类器(AUC = 0.93) 的GMVs(扁桃体、内嗅觉皮层和后扣带皮层?)和QSMs(海马和丘脑后结节)数据组合显示了最高的准确率。在CN和AD组的分类中,使用第2 SVM分类器(AUC = 0.99)的GMVs(扁桃体、内嗅觉皮层和后扣带皮层)和QSMs(海马和丘脑后结节)数据的组合显示了最高的准确率。为了从CN预测aMCI,利用GMV和QSM数据建立的基于OCF集的指数高斯过程回归模型显示了与临床数据(RMSE = 0.319)最相似的结果(RMSE = 0.371)。 结论:本文提出的基于GMV和QSM的ML方法的OCF对aMCI阶段受试者的分类和预测具有良好的效果。因此,它可以作为个性化分析或诊断辅助程序进行诊断。

关键词: 阿尔茨海默病(AD),轻度认知功能障碍(MCI),定量易感性图谱(QSM),脑灰质体积(GMV),神经退化疾病,健忘。

[1]
Albertini V, Benussi L, Paterlini A, et al. Distinct cerebrospinal fluid amyloid-beta peptide signatures in cognitive decline associated with Alzheimer’s disease and schizophrenia. Electrophoresis 2012; 33(24): 3738-44.
[http://dx.doi.org/10.1002/elps.201200307] [PMID: 23161113]
[2]
Jahn H. Memory loss in Alzheimer’s disease. Dialogues Clin Neurosci 2013; 15(4): 445-54.
[PMID: 24459411]
[3]
Petersen RC, Doody R, Kurz A, et al. Current concepts in mild cognitive impairment. Arch Neurol 2001; 58(12): 1985-92.
[http://dx.doi.org/10.1001/archneur.58.12.1985] [PMID: 11735772]
[4]
Shah Y, Tangalos EG, Petersen RC. Mild cognitive impairment. When is it a precursor to Alzheimer’s disease? Geriatrics 2000; 55(9): 62-, 65-68.
[PMID: 10997127]
[5]
Sherwin BB. Mild cognitive impairment: Potential pharmacological treatment options. J Am Geriatr Soc 2000; 48(4): 431-41.
[http://dx.doi.org/10.1111/j.1532-5415.2000.tb04703.x] [PMID: 10798472]
[6]
Haacke EM, Cheng NY, House MJ, et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 2005; 23(1): 1-25.
[http://dx.doi.org/10.1016/j.mri.2004.10.001] [PMID: 15733784]
[7]
Carmeli C, Fornari E, Jalili M, Meuli R, Knyazeva MG. Structural covariance of superficial white matter in mild Alzheimer’s disease compared to normal aging. Brain Behav 2014; 4(5): 721-37.
[http://dx.doi.org/10.1002/brb3.252] [PMID: 25328848]
[8]
Kim HG, Park S, Rhee HY, et al. Quantitative susceptibility mapping to evaluate the early stage of Alzheimer’s disease. Neuroimage Clin 2017; 16: 429-38.
[http://dx.doi.org/10.1016/j.nicl.2017.08.019] [PMID: 28879084]
[9]
Saarlas KN, Paluku KM, Roungou JB, Bryce JW, Naimoli JF, Benzerroug H. Multiple methods for workshop evaluation, 1994-95. Int Q Community Health Educ 2006-2007; 27(3): 245-64.
[http://dx.doi.org/10.2190/IQ.27.3.e] [PMID: 18434277]
[10]
Dawson-Elli N, Lee SB, Pathak M, Mitra K, Subramanian VR. Data science approaches for electrochemical engineers: An introduction through surrogate model development for lithium-ion batteries. J Electrochem Soc 2018; 165(2): A1-A15.
[http://dx.doi.org/10.1149/2.1391714jes]
[11]
Alam S, Kwon GR. Initi AsDN. Alzheimer disease classification using KPCA, LDA, and multi-kernel learning SVM. Int J Imaging Syst Technol 2017; 27(2): 133-43.
[http://dx.doi.org/10.1002/ima.22217]
[12]
Schmitter D, Roche A, Maréchal B, et al. Alzheimer’s Disease Neuroimaging Initiative. An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer’s disease. Neuroimage Clin 2014; 7: 7-17.
[http://dx.doi.org/10.1016/j.nicl.2014.11.001] [PMID: 25429357]
[13]
Jo T, Nho K, Saykin AJ. Deep learning in Alzheimer’s disease: Diagnostic classification and prognostic prediction using neuroimaging data. Front Aging Neurosci 2019; 11: 220.
[http://dx.doi.org/10.3389/fnagi.2019.00220] [PMID: 31481890]
[14]
Han JS, Lee JJ, Anandan T, et al. Characterization of a chromosomal toxin-antitoxin, Rv1102c-Rv1103c system in Mycobacterium tuberculosis. Biochem Biophys Res Commun 2010; 400(3): 293-8.
[http://dx.doi.org/10.1016/j.bbrc.2010.08.023] [PMID: 20705052]
[15]
McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan E. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34(7): 939-44.
[16]
Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: Clinical characterization and outcome. Arch Neurol 1999; 56(3): 303-8.
[http://dx.doi.org/10.1001/archneur.56.3.303] [PMID: 10190820]
[17]
Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage 2007; 38(1): 95-113.
[http://dx.doi.org/10.1016/j.neuroimage.2007.07.007] [PMID: 17761438]
[18]
Wei Xu IC. A region-growing algorithm for InSAR phase unwrapping. IEEE Trans Geosci Remote Sens 1999; 37(1): 124-34.
[http://dx.doi.org/10.1109/36.739143]
[19]
Acosta-Cabronero J, Williams GB, Cardenas-Blanco A, Arnold RJ, Lupson V, Nestor PJ. In vivo quantitative susceptibility mapping (QSM) in Alzheimer’s disease. PLoS One 2013; 8(11) e81093
[http://dx.doi.org/10.1371/journal.pone.0081093] [PMID: 24278382]
[20]
Connor JR, Snyder BS, Beard JL, Fine RE, Mufson EJ. Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer’s disease. J Neurosci Res 1992; 31(2): 327-35.
[http://dx.doi.org/10.1002/jnr.490310214] [PMID: 1573683]
[21]
Vandenberghe R, Adamczuk K, Dupont P, Laere KV, Chételat G. Amyloid PET in clinical practice: Its place in the multidimensional space of Alzheimer’s disease. Neuroimage Clin 2013; 2: 497-511.
[http://dx.doi.org/10.1016/j.nicl.2013.03.014] [PMID: 24179802]
[22]
Conover WJ. Practical Nonparametric Statistics. 3rd ed. New York: John Wiley & Sons 1999.
[23]
Juottonen K, Lehtovirta M, Helisalmi S, Riekkinen PJ Sr, Soininen H. Major decrease in the volume of the entorhinal cortex in patients with Alzheimer’s disease carrying the apolipoprotein E epsilon4 allele. J Neurol Neurosurg Psychiat 1998; 65(3): 322-7.
[http://dx.doi.org/10.1136/jnnp.65.3.322] [PMID: 9728943]
[24]
Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 2014; 13(10): 1045-60.
[http://dx.doi.org/10.1016/S1474-4422(14)70117-6] [PMID: 25231526 ]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy