Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

饮食的生物机制:减少和预防老年痴呆症的风险

卷 17, 期 5, 2020

页: [407 - 427] 页: 21

弟呕挨: 10.2174/1567205017666200624200651

价格: $65

摘要

阿尔茨海默病(AD)的发病率正在上升,由于没有疾病修饰剂可用,通过生活方式因素的预防措施正在研究中。结合预防AD的危险因素如心脏病、糖尿病,以及最近的证据,微生物功能障碍,饮食作为可改变的危险因素和预防AD的措施有着坚实的根据。最近的证据表明,AD相关的病理,如,氧化应激和炎症,可以被脂质、维生素和多酚通过营养摄入进行调节。此外,流行病学和临床前证据已经发现,食物中的某些化合物可能对预防AD有益,其中包括ω-3脂肪酸、维生素E和白藜芦醇等。然而,检测特定化合物的临床数据常常不一致,不能复制临床前数据。另一方面,地中海饮食或精神饮食等饮食模式对患者的临床效果显示出了希望,这表明简化饮食的方法不如整体饮食模式有效。在这篇综述中,我们总结了一些与AD相关的关键化合物的生物学机制,以及它们如何与饮食模式相适应,从而支撑饮食降低AD风险因素的作用。

关键词: 饮食,老年痴呆症(阿尔茨海默病),认知能力,预防,炎症,氧化应激,代谢,微生物。

Next »
[1]
Murman DL. The impact of age on cognition. Semin Hear 2015; 36(3): 111-21.
[http://dx.doi.org/10.1055/s-0035-1555115] [PMID: 27516712]
[2]
Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology 2013; 80(19): 1778-83.
[http://dx.doi.org/10.1212/WNL.0b013e31828726f5] [PMID: 23390181]
[3]
Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: Few candidates, frequent failures. Alzheimers Res Ther 2014; 6(4): 37.
[http://dx.doi.org/10.1186/alzrt269] [PMID: 25024750]
[4]
Martin Prince A, Wimo A, Guerchet M, et al. World Alzheimer Report 2015; 2015
[5]
Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential for primary prevention of Alzheimer’s disease: An analysis of population-based data. Lancet Neurol 2014; 13(8): 788-94.
[http://dx.doi.org/10.1016/S1474-4422(14)70136-X] [PMID: 25030513]
[6]
Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: A report of the american college of cardiology/american heart association task force on clinical practice guidelines 2019; 140(11): e596-e646..
[7]
Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol 2011; 7(3): 137-52.
[http://dx.doi.org/10.1038/nrneurol.2011.2] [PMID: 21304480]
[8]
Troncoso JC, Cataldo AM, Nixon RA, et al. Neuropathology of preclinical and clinical late-onset Alzheimer’s disease. Ann Neurol 1998; 43(5): 673-6.
[http://dx.doi.org/10.1002/ana.410430519] [PMID: 9585365]
[9]
Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years. J Neuropathol Exp Neurol 2011; 70(11): 960-9.
[http://dx.doi.org/10.1097/NEN.0b013e318232a379] [PMID: 22002422]
[10]
Yusufov M, Weyandt LL, Piryatinsky I. Alzheimer’s disease and diet: A systematic review. Int J Neurosci 2017; 127(2): 161-75.
[http://dx.doi.org/10.3109/00207454.2016.1155572] [PMID: 26887612]
[11]
U.S. Department of Health and Human Services and U.S. Department of Agriculture. Dietary guidelines for Americans 2015; 2020 2015
[12]
National Diet and Nutrition Survey Results from Years 5 and 6 (combined) of the Rolling Programme (2012/2013 -2013/2014) 2016.
[13]
Pan XR, Li GW, Hu YH, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 1997; 20(4): 537-44.
[http://dx.doi.org/10.2337/diacare.20.4.537] [PMID: 9096977]
[14]
Hunter DJ, Eckstein F. Exercise and osteoarthritis. J Anat 2009; 214(2): 197-207.
[http://dx.doi.org/10.1111/j.1469-7580.2008.01013.x] [PMID: 19207981]
[15]
Sarris J, O’Neil A, Coulson CE, Schweitzer I, Berk M. Lifestyle medicine for depression. BMC Psychiatry 2014; 14(107): 107.
[http://dx.doi.org/10.1186/1471-244X-14-107] [PMID: 24721040]
[16]
Riegel B, Moser DK, Buck HG, et al. American heart association council on cardiovascular and stroke nursing; council on peripheral vascular disease; and council on quality of care and outcomes research. Self-care for the prevention and management of cardiovascular disease and stroke: A scientific statement for healthcare professionals from the American heart association. J Am Heart Assoc 2017; 6(9) e006997
[http://dx.doi.org/10.1161/JAHA.117.006997] [PMID: 28860232]
[17]
Cobiac Lj, Scarborough P, Kaur A, Rayner M. The eatwell guide: Modelling the health implications of incorporating new sugar and fibre guidelines. PLoS One 2016; M11(12) Me0167859
[18]
Eckel RH, Jakicic JM, Ard JD, et al. American college of cardiology/american heart association task force on practice guidelines. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: A report of the american college of cardiology/american heart association task force on practice guidelines. Circulation 2014; 129(25)(2): S76-99..
[http://dx.doi.org/10.1161/01.cir.0000437740.48606.d1 ] [PMID: 24222015]
[19]
Halmos EP, Power VA, Shepherd SJ, Gibson PR, Muir JG. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology 2014; 146(1): 67-75.e5.
[http://dx.doi.org/10.1053/j.gastro.2013.09.046] [PMID: 24076059]
[20]
Morris MC, Tangney CC, Wang Y, et al. MIND diet slows cognitive decline with aging. Alzheimers Dement 2015; 11(9): 1015-22.
[http://dx.doi.org/10.1016/j.jalz.2015.04.011] [PMID: 26086182]
[21]
Morris MC, Wang Y, Barnes LL, Bennett DA, Dawson-Hughes B, Booth SL. Nutrients and bioactives in green leafy vegetables and cognitive decline: Prospective study. Neurology 2018; 90(3): e214-22.
[http://dx.doi.org/10.1212/WNL.0000000000004815] [PMID: 29263222]
[22]
Spencer SJ, Korosi A, Layé S, Shukitt-Hale B, Barrientos RM. Food for thought: How nutrition impacts cognition and emotion. NPJ Sci Food 2017; 1(1): 7.
[23]
Gu Y, Manly JJ, Mayeux RP, Brickman AM. An inflammation-related nutrient pattern is associated with both brain and cognitive measures in a multiethnic elderly population. Curr Alzheimer Res 2018; 15(5): 493-501.
[http://dx.doi.org/10.2174/1567205015666180101145619] [PMID: 29298649]
[24]
Rege SD, Geetha T, Broderick TL, Babu JR. Can diet and physical activity limit Alzheimer’s disease risk? Curr Alzheimer Res 2017; 14(1): 76-93.
[http://dx.doi.org/10.2174/1567205013666160314145700] [PMID: 26971938]
[25]
McEvoy CT, Guyer H, Langa KM, Yaffe K. Neuroprotective diets are associated with better cognitive function: The health and retirement study. J Am Geriatr Soc 2017; 65(8): 1857-62.
[http://dx.doi.org/10.1111/jgs.14922] [PMID: 28440854]
[26]
Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA, Aggarwal NT. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement 2015; 11(9): 1007-14.
[http://dx.doi.org/10.1016/j.jalz.2014.11.009] [PMID: 25681666]
[27]
Hill E, Goodwill AM, Gorelik A, Szoeke C. Diet and biomarkers of Alzheimer’s disease: A systematic review and meta-analysis. Neurobiol Aging 2019; 76: 45-52.
[http://dx.doi.org/10.1016/j.neurobiolaging.2018.12.008] [PMID: 30682676]
[28]
Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 2007; 3(3): 186-91.
[http://dx.doi.org/10.1016/j.jalz.2007.04.381] [PMID: 19595937]
[29]
Lehtisalo J, Levälahti E, Lindström J, et al. Dietary changes and cognition over 2 years within a multidomain intervention trial-The Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER). Alzheimers Dement 2019; 15(3): 410-7.
[http://dx.doi.org/10.1016/j.jalz.2018.10.001] [PMID: 30527596]
[30]
Grimm MOW, Michaelson DM, Hartmann T. Omega-3 fatty acids, lipids, and apoE lipidation in Alzheimer’s disease: A rationale for multi-nutrient dementia prevention. J Lipid Res 2017; 58(11): 2083-101.
[http://dx.doi.org/10.1194/jlr.R076331] [PMID: 28528321]
[31]
Di Paolo G, Kim TW. Linking lipids to Alzheimer’s disease: Cholesterol and beyond. Nat Rev Neurosci 2011; 12(5): 284-96.
[http://dx.doi.org/10.1038/nrn3012] [PMID: 21448224]
[32]
Dyall SC. Amyloid-beta peptide, oxidative stress and inflammation in Alzheimer’s disease: Potential neuroprotective effects of omega-3 polyunsaturated fatty acids. Int J Alzheimers Dis 2010; 2010 274128
[http://dx.doi.org/10.4061/2010/274128]
[33]
Lukiw WJ, Bazan NG. Docosahexaenoic acid and the aging brain. J Nutr 2008; 138(12): 2510-4.
[http://dx.doi.org/10.3945/jn.108.096016] [PMID: 19022980]
[34]
Dyall SC. Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci 2015; 7: 52.
[http://dx.doi.org/10.3389/fnagi.2015.00052] [PMID: 25954194]
[35]
Calon F, Cole G. Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases: Evidence from animal studies. Prostaglandins Leukot Essent Fatty Acids 2007; 77(5-6): 287-93.
[http://dx.doi.org/10.1016/j.plefa.2007.10.019] [PMID: 18037281]
[36]
Hooijmans CR, Pasker-de Jong PCM, de Vries RBM, Ritskes-Hoitinga M. The effects of long-term omega-3 fatty acid supplementation on cognition and Alzheimer’s pathology in animal models of Alzheimer’s disease: A systematic review and meta-analysis. J Alzheimers Dis 2012; 28(1): 191-209.
[http://dx.doi.org/10.3233/JAD-2011-111217] [PMID: 22002791]
[37]
Swanson D, Block R, Mousa SA. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv Nutr 2012; 3(1): 1-7.
[http://dx.doi.org/10.3945/an.111.000893] [PMID: 22332096]
[38]
McNamara RK. DHA deficiency and prefrontal cortex neuropathology in recurrent affective disorders. J Nutr 2010; 140(4): 864-8.
[http://dx.doi.org/10.3945/jn.109.113233] [PMID: 20147466]
[39]
Morris MC, Evans DA, Bienias JL, et al. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol 2003; 60(7): 940-6.
[http://dx.doi.org/10.1001/archneur.60.7.940] [PMID: 12873849]
[40]
Wu S, Ding Y, Wu F, Li R, Hou J, Mao P. Omega-3 fatty acids intake and risks of dementia and Alzheimer’s disease: A meta-analysis. Neurosci Biobehav Rev 2015; 48: 1-9.
[http://dx.doi.org/10.1016/j.neubiorev.2014.11.008] [PMID: 25446949]
[41]
Nurk E, Drevon CA, Refsum H, et al. Cognitive performance among the elderly and dietary fish intake: The Hordaland Health Study. Am J Clin Nutr 2007; 86(5): 1470-8.
[http://dx.doi.org/10.1093/ajcn/86.5.1470] [PMID: 17991661]
[42]
Kalmijn S, van Boxtel MPJ, Ocké M, Verschuren WMM, Kromhout D, Launer LJ. Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology 2004; 62(2): 275-80.
[http://dx.doi.org/10.1212/01.WNL.0000103860.75218.A5] [PMID: 14745067]
[43]
Mazereeuw G, Lanctôt KL, Chau SA, Swardfager W, Herrmann N. Effects of ω-3 fatty acids on cognitive performance: A meta-analysis. Neurobiol Aging 2012; 33(7) 1482.e17
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.12.014] [PMID: 22305186]
[44]
Cederholm T, Salem N Jr, Palmblad J. ω-3 fatty acids in the prevention of cognitive decline in humans. Adv Nutr 2013; 4(6): 672-6.
[http://dx.doi.org/10.3945/an.113.004556] [PMID: 24228198]
[45]
Corsi L, Dongmo BM, Avallone R. Supplementation of omega 3 fatty acids improves oxidative stress in activated BV2 microglial cell line. Int J Food Sci Nutr 2015; 66(3): 293-9.
[http://dx.doi.org/10.3109/09637486.2014.986073] [PMID: 25582176]
[46]
Ali HA, Afifi M, Abdelazim AM, Mosleh YY. Quercetin and omega 3 ameliorate oxidative stress induced by aluminium chloride in the brain. J Mol Neurosci 2014; 53(4): 654-60.
[http://dx.doi.org/10.1007/s12031-014-0232-8] [PMID: 24488531]
[47]
Avramovic N, Dragutinovic V, Krstic D, et al. The effects of omega 3 fatty acid supplementation on brain tissue oxidative status in aged wistar rats. Hippokratia 2012; 16(3): 241-5.
[PMID: 23935291]
[48]
Hiratsuka S, Ishihara K, Kitagawa T, Wada S, Yokogoshi H. Effect of dietary docosahexaenoic acid connecting phospholipids on the lipid peroxidation of the brain in mice. J Nutr Sci Vitaminol (Tokyo) 2008; 54(6): 501-6.
[http://dx.doi.org/10.3177/jnsv.54.501] [PMID: 19155590]
[49]
Wang L, Fan H, He J, Wang L, Tian Z, Wang C. Protective effects of omega-3 fatty acids against Alzheimer’s disease in rat brain endothelial cells. Brain Behav 2018; 8(11) e01037
[http://dx.doi.org/10.1002/brb3.1037] [PMID: 30298620]
[50]
Freund-Levi Y, Vedin I, Hjorth E, et al. Effects of supplementation with omega-3 fatty acids on oxidative stress and inflammation in patients with Alzheimer’s disease: The OmegAD study. J Alzheimers Dis 2014; 42(3): 823-31.
[http://dx.doi.org/10.3233/JAD-132042] [PMID: 24934544]
[51]
Kiecolt-Glaser JK, Epel ES, Belury MA, et al. Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: A randomized controlled trial. Brain Behav Immun 2013; 28: 16-24.
[http://dx.doi.org/10.1016/j.bbi.2012.09.004] [PMID: 23010452]
[52]
Heppner FL, Ransohoff RM, Becher B. Immune attack: The role of inflammation in Alzheimer disease. Nat Rev Neurosci 2015; 16(6): 358-72.
[http://dx.doi.org/10.1038/nrn3880] [PMID: 25991443]
[53]
Krstic D, Knuesel I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol 2013; 9(1): 25-34.
[http://dx.doi.org/10.1038/nrneurol.2012.236] [PMID: 23183882]
[54]
Bettcher BM, Kramer JH. Inflammation and clinical presentation in neurodegenerative disease: A volatile relationship. Neurocase 2013; 19(2): 182-200.
[http://dx.doi.org/10.1080/13554794.2011.654227] [PMID: 22515699]
[55]
Chun H, Marriott I, Lee CJ, Cho H. Elucidating the interactive roles of Glia in Alzheimer’s disease using established and newly developed experimental models. Front Neurol 2018; 9(797): 797.
[http://dx.doi.org/10.3389/fneur.2018.00797] [PMID: 30319529]
[56]
Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (N Y) 2018; 4: 575-90.
[http://dx.doi.org/10.1016/j.trci.2018.06.014] [PMID: 30406177]
[57]
Trépanier MO, Hopperton KE, Orr SK, Bazinet RP. N-3 polyunsaturated fatty acids in animal models with neuroinflammation: An update. Eur J Pharmacol 2016; 785: 187-206.
[http://dx.doi.org/10.1016/j.ejphar.2015.05.045] [PMID: 26036964]
[58]
Novak TE, Babcock TA, Jho DH, Helton WS, Espat NJ. NF-κ B inhibition by ω -3 fatty acids modulates LPS-stimulated macrophage TNF-α transcription. Am J Physiol Lung Cell Mol Physiol 2003; 284(1): L84-9.
[http://dx.doi.org/10.1152/ajplung.00077.2002] [PMID: 12388359]
[59]
De Caterina R, Cybulsky MI, Clinton SK, Gimbrone MA Jr, Libby P. The omega-3 fatty acid docosahexaenoate reduces cytokine-induced expression of proatherogenic and proinflammatory proteins in human endothelial cells. Arterioscler Thromb 1994; 14(11): 1829-36.
[http://dx.doi.org/10.1161/01.ATV.14.11.1829] [PMID: 7524649]
[60]
Inoue T, Tanaka M, Masuda S, et al. Omega-3 polyunsaturated fatty acids suppress the inflammatory responses of lipopolysaccharide-stimulated mouse microglia by activating SIRT1 pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862(5): 552-60.
[http://dx.doi.org/10.1016/j.bbalip.2017.02.010] [PMID: 28254441]
[61]
Bonda DJ, Lee HG, Camins A, et al. The sirtuin pathway in ageing and Alzheimer disease: Mechanistic and therapeutic considerations. Lancet Neurol 2011; 10(3): 275-9.
[http://dx.doi.org/10.1016/S1474-4422(11)70013-8] [PMID: 21349442]
[62]
Hopperton KE, Trépanier MO, Giuliano V, Bazinet RP. Brain omega-3 polyunsaturated fatty acids modulate microglia cell number and morphology in response to intracerebroventricular amyloid-β 1-40 in mice. J Neuroinflammation 2016; 13(1): 257.
[http://dx.doi.org/10.1186/s12974-016-0721-5] [PMID: 27688126]
[63]
Rees D, Miles EA, Banerjee T, et al. Dose-related effects of eicosapentaenoic acid on innate immune function in healthy humans: A comparison of young and older men. Am J Clin Nutr 2006; 83(2): 331-42.
[http://dx.doi.org/10.1093/ajcn/83.2.331] [PMID: 16469992]
[64]
Skulas-Ray AC. Omega-3 fatty acids and inflammation: A perspective on the challenges of evaluating efficacy in clinical research. Prostaglandins Other Lipid Mediat 2015; 116-117: 104-11.
[http://dx.doi.org/10.1016/j.prostaglandins.2015.02.001] [PMID: 25698680]
[65]
Lukiw WJ, Cui JG, Marcheselli VL, et al. A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 2005; 115(10): 2774-83.
[http://dx.doi.org/10.1172/JCI25420] [PMID: 16151530]
[66]
Lim GP, Calon F, Morihara T, et al. A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J Neurosci 2005; 25(12): 3032-40.
[http://dx.doi.org/10.1523/JNEUROSCI.4225-04.2005] [PMID: 15788759]
[67]
Green KN, Martinez-Coria H, Khashwji H, et al. Dietary docosahexaenoic acid and docosapentaenoic acid ameliorate amyloid-beta and tau pathology via a mechanism involving presenilin 1 levels. J Neurosci 2007; 27(16): 4385-95.
[http://dx.doi.org/10.1523/JNEUROSCI.0055-07.2007] [PMID: 17442823]
[68]
Jicha GA, Markesbery WR. Omega-3 fatty acids: Potential role in the management of early Alzheimer’s disease. Clin Interv Aging 2010; 5: 45-61.
[http://dx.doi.org/10.2147/CIA.S5231] [PMID: 20396634]
[69]
Pan Y, Khalil H, Nicolazzo JA. The impact of docosahexaenoic acid on Alzheimer’s disease: Is there a role of the blood-brain barrier? Curr Clin Pharmacol 2015; 10(3): 222-41.
[http://dx.doi.org/10.2174/157488471003150820151532] [PMID: 26338174]
[70]
Whittington RA, Planel E, Terrando N. Impaired resolution of inflammation in Alzheimer’s disease: A review. Front Immunol 2017; 8(1464): 1464.
[http://dx.doi.org/10.3389/fimmu.2017.01464] [PMID: 29163531]
[71]
Mostafavi ES, Nasiri Khalili MA, Khodadadi S, Riazi GH. An in vitro study of the role of docosahexaenoic acid in human tau protein aggregation. J Biomol Struct Dyn 2017; 35(14): 3176-81.
[http://dx.doi.org/10.1080/07391102.2016.1248489] [PMID: 27753295]
[72]
Mita T, Mayanagi T, Ichijo H, et al. Docosahexaenoic acid promotes axon outgrowth by translational regulation of tau and collapsin response mediator protein 2 expression. J Biol Chem 2016; 291(10): 4955-65.
[http://dx.doi.org/10.1074/jbc.M115.693499] [PMID: 26763232]
[73]
Ma Q-L, Yang F, Rosario ER, et al. Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: Suppression by omega-3 fatty acids and curcumin. J Neurosci 2009; 29(28): 9078-89.
[http://dx.doi.org/10.1523/JNEUROSCI.1071-09.2009] [PMID: 19605645]
[74]
Calon F, Lim GP, Yang F, et al. Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron 2004; 43(5): 633-45.
[http://dx.doi.org/10.1016/j.neuron.2004.08.013] [PMID: 15339646]
[75]
Chiu C-C, Su K-P, Cheng T-C, et al. The effects of omega-3 fatty acids monotherapy in Alzheimer’s disease and mild cognitive impairment: A preliminary randomized double-blind placebo-controlled study. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(6): 1538-44.
[http://dx.doi.org/10.1016/j.pnpbp.2008.05.015] [PMID: 18573585]
[76]
Lee LK, Shahar S, Chin A-V, Yusoff NAM. Docosahexaenoic acid-concentrated fish oil supplementation in subjects with mild cognitive impairment (MCI): A 12-month randomised, double-blind, placebo-controlled trial. Psychopharmacology (Berl) 2013; 225(3): 605-12.
[http://dx.doi.org/10.1007/s00213-012-2848-0] [PMID: 22932777]
[77]
Baleztena J, Ruiz-Canela M, Sayon-Orea C, et al. Association between cognitive function and supplementation with omega-3 PUFAs and other nutrients in ≥ 75 years old patients: A randomized multicenter study. PLoS One 2018; 13(3) e0193568
[http://dx.doi.org/10.1371/journal.pone.0193568] [PMID: 29579102]
[78]
Schwarz C, Wirth M, Gerischer L, et al. Effects of omega-3 fatty acids on resting cerebral perfusion in patients with mild cognitive impairment: A randomized controlled trial. J Prev Alzheimers Dis 2018; 5(1): 26-30.
[PMID: 29405229]
[79]
Danthiir V, Hosking DE, Nettelbeck T, et al. An 18-mo randomized, double-blind, placebo-controlled trial of DHA-rich fish oil to prevent age-related cognitive decline in cognitively normal older adults. Am J Clin Nutr 2018; 107(5): 754-62.
[http://dx.doi.org/10.1093/ajcn/nqx077] [PMID: 29722833]
[80]
Phillips MA, Childs CE, Calder PC, Rogers PJ. No effect of omega-3 fatty acid supplementation on cognition and mood in individuals with cognitive impairment and probable Alzheimer’s disease: A randomised controlled trial. Int J Mol Sci 2015; 16(10): 24600-13.
[http://dx.doi.org/10.3390/ijms161024600] [PMID: 26501267]
[81]
Jefferson AL, Beiser AS, Himali JJ, et al. Low cardiac index is associated with incident dementia and Alzheimer disease: The Framingham Heart Study. Circulation 2015; 131(15): 1333-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.012438] [PMID: 25700178]
[82]
Santos CY, Snyder PJ, Wu W-C, Zhang M, Echeverria A, Alber J. Pathophysiologic relationship between Alzheimer’s disease, cerebrovascular disease, and cardiovascular risk: A review and synthesis. Alzheimers Dement (Amst) 2017; 7: 69-87.
[http://dx.doi.org/10.1016/j.dadm.2017.01.005] [PMID: 28275702]
[83]
Rusanen M, Kivipelto M, Levälahti E, et al. Heart diseases and long-term risk of dementia and Alzheimer’s disease: A population-based CAIDE study. J Alzheimers Dis 2014; 42(1): 183-91.
[http://dx.doi.org/10.3233/JAD-132363] [PMID: 24825565]
[84]
Li J, Wang YJ, Zhang M, et al. Chongqing Ageing Study Group. Vascular risk factors promote conversion from mild cognitive impairment to Alzheimer disease. Neurology 2011; 76(17): 1485-91.
[http://dx.doi.org/10.1212/WNL.0b013e318217e7a4] [PMID: 21490316]
[85]
Sparks DL, Hunsaker JC III, Scheff SW, Kryscio RJ, Henson JL, Markesbery WR. Cortical senile plaques in coronary artery disease, aging and Alzheimer’s disease. Neurobiol Aging 1990; 11(6): 601-7.
[http://dx.doi.org/10.1016/0197-4580(90)90024-T] [PMID: 1704106]
[86]
Gorelick PB, Scuteri A, Black SE, et al. American heart association stroke council, council on epidemiology and prevention, council on cardiovascular nursing, council on cardiovascular radiology and intervention, and council on cardiovascular surgery and anesthesia. vascular contributions to cognitive impairment and dementia: A statement for healthcare professionals from the american heart association/american stroke association. Stroke 2011; 42(9): 2672-713.
[http://dx.doi.org/10.1161/STR.0b013e3182299496] [PMID: 21778438]
[87]
Qiu C, Winblad B, Marengoni A, Klarin I, Fastbom J, Fratiglioni L. Heart failure and risk of dementia and Alzheimer disease: A population-based cohort study. Arch Intern Med 2006; 166(9): 1003-8.
[http://dx.doi.org/10.1001/archinte.166.9.1003] [PMID: 16682574]
[88]
Cao G-Y, Li M, Han L, et al. Dietary fat intake and cognitive function among older populations: A systematic review and meta-analysis. J Prev Alzheimers Dis 2019; 6(3): 204-11.
[PMID: 31062836]
[89]
Sacks FM, Lichtenstein AH, Wu JHY, et al. American Heart Association. Dietary fats and cardiovascular disease: A presidential advisory from the American Heart Association. Circulation 2017; 136(3): e1-e23.
[http://dx.doi.org/10.1161/CIR.0000000000000510] [PMID: 28620111]
[90]
Tapsell LC, Neale EP, Satija A, Hu FB. Foods, nutrients, and dietary patterns: Interconnections and implications for dietary guidelines. Adv Nutr 2016; 7(3): 445-54.
[http://dx.doi.org/10.3945/an.115.011718] [PMID: 27184272]
[91]
Fardet A, Rock E. Toward a new philosophy of preventive nutrition: From a reductionist to a holistic paradigm to improve nutritional recommendations. Adv Nutr 2014; 5(4): 430-46.
[http://dx.doi.org/10.3945/an.114.006122] [PMID: 25022992]
[92]
Trinquart L, Johns DM, Galea S. Why do we think we know what we know? A metaknowledge analysis of the salt controversy. Int J Epidemiol 2016; 45(1): 251-60.
[http://dx.doi.org/10.1093/ije/dyv184] [PMID: 26888870]
[93]
Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev 2011; 11 CD004022
[http://dx.doi.org/10.1002/14651858.CD004022.pub3] [PMID: 22071811]
[94]
Obarzanek E, Sacks FM, Vollmer WM, et al. DASH Research Group. Effects on blood lipids of a blood pressure-lowering diet: The dietary approaches to stop hypertension (DASH) trial. Am J Clin Nutr 2001; 74(1): 80-9.
[http://dx.doi.org/10.1093/ajcn/74.1.80] [PMID: 11451721]
[95]
Nägga K, Gustavsson A-M, Stomrud E, et al. Increased midlife triglycerides predict brain β-amyloid and tau pathology 20 years later. Neurology 2018; 90(1): e73-81.
[http://dx.doi.org/10.1212/WNL.0000000000004749] [PMID: 29196581]
[96]
Raffaitin C, Gin H, Empana JP, et al. Metabolic syndrome and risk for incident Alzheimer’s disease or vascular dementia: The three-city study. Diabetes Care 2009; 32(1): 169-74.
[http://dx.doi.org/10.2337/dc08-0272] [PMID: 18945929]
[97]
Kivipelto M, Helkala E-L, Laakso MP, et al. Midlife vascular risk factors and Alzheimer’s disease in later life: Longitudinal, population based study. BMJ 2001; 322(7300): 1447-51.
[http://dx.doi.org/10.1136/bmj.322.7300.1447] [PMID: 11408299]
[98]
Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2009; 2(5): 270-8.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[99]
Letenneur L, Proust-Lima C, Le Gouge A, Dartigues JF, Barberger-Gateau P. Flavonoid intake and cognitive decline over a 10-year period. Am J Epidemiol 2007; 165(12): 1364-71.
[http://dx.doi.org/10.1093/aje/kwm036] [PMID: 17369607]
[100]
Beking K, Vieira A. Flavonoid intake and disability-adjusted life years due to Alzheimer’s and related dementias: A population-based study involving twenty-three developed countries. Public Health Nutr 2010; 13(9): 1403-9.
[http://dx.doi.org/10.1017/S1368980009992990] [PMID: 20059796]
[101]
Valls-Pedret C, Lamuela-Raventós RM, Medina-Remón A, et al. Polyphenol-rich foods in the Mediterranean diet are associated with better cognitive function in elderly subjects at high cardiovascular risk. J Alzheimers Dis 2012; 29(4): 773-82.
[http://dx.doi.org/10.3233/JAD-2012-111799] [PMID: 22349682]
[102]
Vauzour D. Dietary polyphenols as modulators of brain functions: Biological actions and molecular mechanisms underpinning their beneficial effects. Oxid Med Cell Longev 2012; 2012 914273
[http://dx.doi.org/10.1155/2012/914273] [PMID: 22701758]
[103]
Kesse-Guyot E, Fezeu L, Andreeva VA, et al. Total and specific polyphenol intakes in midlife are associated with cognitive function measured 13 years later. J Nutr 2012; 142(1): 76-83.
[http://dx.doi.org/10.3945/jn.111.144428] [PMID: 22090468]
[104]
Lefèvre-Arbogast S, Gaudout D, Bensalem J, et al. Pattern of polyphenol intake and the long-term risk of dementia in older persons. Neurology 2018; 90(22): e1979-88.
[http://dx.doi.org/10.1212/WNL.0000000000005607] [PMID: 29703769]
[105]
Kim DSHL, Park SY, Kim JK. Curcuminoids from Curcuma longa L. (Zingiberaceae) that protect PC12 rat pheochromocytoma and normal human umbilical vein endothelial cells from betaA(1-42) insult. Neurosci Lett 2001; 303(1): 57-61.
[http://dx.doi.org/10.1016/S0304-3940(01)01677-9] [PMID: 11297823]
[106]
Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 2001; 21(21): 8370-7.
[http://dx.doi.org/10.1523/JNEUROSCI.21-21-08370.2001] [PMID: 11606625]
[107]
Zhang L, Fiala M, Cashman J, et al. Curcuminoids enhance amyloid-β uptake by macrophages of Alzheimer’s disease patients. J Alzheimers Dis 2006; 10(1): 1-7.
[http://dx.doi.org/10.3233/JAD-2006-10101] [PMID: 16988474]
[108]
Baum L, Lam CWK, Cheung SK-K, et al. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol 2008; 28(1): 110-3.
[http://dx.doi.org/10.1097/jcp.0b013e318160862c] [PMID: 18204357]
[109]
Eigner D, Scholz D. Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal. J Ethnopharmacol 1999; 67(1): 1-6.
[http://dx.doi.org/10.1016/S0378-8741(98)00234-7] [PMID: 10616954]
[110]
Small GW, Siddarth P, Li Z, et al. Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: A double-blind, placebo-controlled 18-month trial. Am J Geriatr Psychiatry 2018; 26(3): 266-77.
[http://dx.doi.org/10.1016/j.jagp.2017.10.010] [PMID: 29246725]
[111]
Ide K, Matsuoka N, Yamada H, Furushima D, Kawakami K. effects of tea catechins on Alzheimer’s disease: Recent updates and perspectives. Molecules 2018; 23(9): 2357.
[http://dx.doi.org/10.3390/molecules23092357] [PMID: 30223480]
[112]
Polito CA, Cai ZY, Shi YL, et al. Association of tea consumption with risk of Alzheimer’s disease and anti-beta-amyloid effects of tea. Nutrients 2018; 10(5) E655
[http://dx.doi.org/10.3390/nu10050655] [PMID: 29789466]
[113]
Eskelinen MH, Ngandu T, Tuomilehto J, Soininen H, Kivipelto M. Midlife coffee and tea drinking and the risk of late-life dementia: A population-based CAIDE study. J Alzheimers Dis 2009; 16(1): 85-91.
[http://dx.doi.org/10.3233/JAD-2009-0920] [PMID: 19158424]
[114]
Khan N, Mukhtar H. Tea polyphenols for health promotion. Life Sci 2007; 81(7): 519-33.
[http://dx.doi.org/10.1016/j.lfs.2007.06.011] [PMID: 17655876]
[115]
Zhao BL, Li XJ, He RG, Cheng SJ, Xin WJ, Juan W. Scavenging effect of extracts of green tea and natural antioxidants on active oxygen radicals. Cell Biophys 1989; 14(2): 175-85.
[http://dx.doi.org/10.1007/BF02797132] [PMID: 2472207]
[116]
Cheng-Chung Wei J, Huang HC, Chen WJ, Huang CN, Peng CH, Lin CL. Epigallocatechin gallate attenuates amyloid β-induced inflammation and neurotoxicity in EOC 13.31 microglia. Eur J Pharmacol 2016; 770: 16-24.
[http://dx.doi.org/10.1016/j.ejphar.2015.11.048] [PMID: 26643169]
[117]
Zhang ZX, Li YB, Zhao RP. Epigallocatechin gallate attenuates β-amyloid generation and oxidative stress involvement of PPARγ in N2a/APP695 cells. Neurochem Res 2017; 42(2): 468-80.
[http://dx.doi.org/10.1007/s11064-016-2093-8] [PMID: 27889855]
[118]
Biasibetti R, Tramontina AC, Costa AP, et al. Green tea (-) epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia. Behav Brain Res 2013; 236(1): 186-93.
[http://dx.doi.org/10.1016/j.bbr.2012.08.039] [PMID: 22964138]
[119]
Shah ZA, Li RC, Ahmad AS, et al. The flavanol (-)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway. J Cereb Blood Flow Metab 2010; 30(12): 1951-61.
[http://dx.doi.org/10.1038/jcbfm.2010.53] [PMID: 20442725]
[120]
Singh R, Akhtar N, Haqqi TM. Green tea polyphenol epigallocatechin-3-gallate: Inflammation and arthritis. Life Sci 2010; 86(25-26): 907-18.
[http://dx.doi.org/10.1016/j.lfs.2010.04.013] [PMID: 20462508]
[121]
Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 2014; 69(S1): S4-9.
[http://dx.doi.org/10.1093/gerona/glu057] [PMID: 24833586]
[122]
Giunta B, Fernandez F, Nikolic WV, et al. Inflammaging as a prodrome to Alzheimer’s disease. J Neuroinflammation 2008; 5: 51.
[http://dx.doi.org/10.1186/1742-2094-5-51] [PMID: 19014446]
[123]
Choi Y-T, Jung C-H, Lee S-R, et al. The green tea polyphenol (-)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci 2001; 70(5): 603-14.
[http://dx.doi.org/10.1016/S0024-3205(01)01438-2] [PMID: 11811904]
[124]
Haque AM, Hashimoto M, Katakura M, Hara Y, Shido O. Green tea catechins prevent cognitive deficits caused by Abeta1-40 in rats. J Nutr Biochem 2008; 19(9): 619-26.
[http://dx.doi.org/10.1016/j.jnutbio.2007.08.008] [PMID: 18280729]
[125]
Ali B, Jamal QM, Shams S, et al. In silico analysis of green tea polyphenols as inhibitors of AChE and BChE enzymes in Alzheimer’s disease treatment. CNS Neurol Disord Drug Targets 2016; 15(5): 624-8.
[http://dx.doi.org/10.2174/1871527315666160321110607] [PMID: 26996169]
[126]
Wobst HJ, Sharma A, Diamond MI, Wanker EE, Bieschke J. The green tea polyphenol (-)-epigallocatechin gallate prevents the aggregation of tau protein into toxic oligomers at substoichiometric ratios. FEBS Lett 2015; 589(1): 77-83.
[http://dx.doi.org/10.1016/j.febslet.2014.11.026] [PMID: 25436420]
[127]
Rezai-Zadeh K, Arendash GW, Hou H, et al. Green tea epigallocatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res 2008; 1214: 177-87.
[http://dx.doi.org/10.1016/j.brainres.2008.02.107] [PMID: 18457818]
[128]
Arab H, Mahjoub S, Hajian-Tilaki K, Moghadasi M. The effect of green tea consumption on oxidative stress markers and cognitive function in patients with Alzheimer’s disease: A prospective intervention study. Caspian J Intern Med 2016; 7(3): 188-94.
[PMID: 27757204]
[129]
Wu Y, Wu Z, Butko P, et al. Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J Neurosci 2006; 26(50): 13102-13.
[http://dx.doi.org/10.1523/JNEUROSCI.3448-06.2006] [PMID: 17167099]
[130]
Müller WE, Heiser J, Leuner K. Effects of the standardized Ginkgo biloba extract EGb 761® on neuroplasticity. Int Psychogeriatr 2012; 24(1): S21-4.
[http://dx.doi.org/10.1017/S1041610212000592] [PMID: 22784424]
[131]
Ren C, Ji Y-Q, Liu H, et al. Effects of Ginkgo biloba extract EGb761 on neural differentiation of stem cells offer new hope for neurological disease treatment. Neural Regen Res 2019; 14(7): 1152-7.
[http://dx.doi.org/10.4103/1673-5374.251191] [PMID: 30804240]
[132]
Wan WB, Cao L, Liu LM, et al. EGb761 provides a protective effect against Aβ1-42 oligomer-induced cell damage and blood-brain barrier disruption in an in vitro bEnd.3 endothelial model. PLoS One 2014; 9(11) e113126
[http://dx.doi.org/10.1371/journal.pone.0113126] [PMID: 25426944]
[133]
Le Bars PL, Katz MM, Berman N, Itil TM, Freedman AM, Schatzberg AF. A placebo-controlled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia. North American EGb Study Group. JAMA 1997; 278(16): 1327-32.
[http://dx.doi.org/10.1001/jama.1997.03550160047037] [PMID: 9343463]
[134]
Kanowski S, Herrmann WM, Stephan K, Wierich W, Hörr R. Proof of efficacy of the Ginkgo biloba special extract EGb 761 in outpatients suffering from mild to moderate primary degenerative dementia of the Alzheimer type or multi-infarct dementia. Phytomedicine 1997; 4(1): 3-13.
[http://dx.doi.org/10.1016/S0944-7113(97)80021-9] [PMID: 23195239]
[135]
Laws KR, Sweetnam H, Kondel TK. Is Ginkgo biloba a cognitive enhancer in healthy individuals? A meta-analysis. Hum Psychopharmacol 2012; 27(6): 527-33.
[http://dx.doi.org/10.1002/hup.2259] [PMID: 23001963]
[136]
Birks J, Evans JG. Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst Rev 2009; 1
[http://dx.doi.org/10.1002/14651858.CD003120.pub3]]
[137]
Weinmann S, Roll S, Schwarzbach C, Vauth C, Willich SN. Effects of Ginkgo biloba in dementia: Systematic review and meta-analysis. BMC Geriatr 2010; 10: 14.
[http://dx.doi.org/10.1186/1471-2318-10-14] [PMID: 20236541]
[138]
Singh V, Singh SP, Chan K. Review and meta-analysis of usage of ginkgo as an adjunct therapy in chronic schizophrenia. Int J Neuropsychopharmacol 2010; 13(2): 257-71.
[http://dx.doi.org/10.1017/S1461145709990654] [PMID: 19775502]
[139]
Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 1992; 339(8808): 1523-6.
[http://dx.doi.org/10.1016/0140-6736(92)91277-F] [PMID: 1351198]
[140]
Truelsen T, Thudium D, Grønbaek M. Copenhagen city heart study. Amount and type of alcohol and risk of dementia: The Copenhagen City Heart Study. Neurology 2002; 59(9): 1313-9.
[http://dx.doi.org/10.1212/01.WNL.0000031421.50369.E7] [PMID: 12427876]
[141]
de la Lastra CA, Villegas I. Resveratrol as an anti-inflammatory and anti-aging agent: Mechanisms and clinical implications. Mol Nutr Food Res 2005; 49(5): 405-30.
[http://dx.doi.org/10.1002/mnfr.200500022] [PMID: 15832402]
[142]
Bastianetto S, Zheng W-H, Quirion R. Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide-related toxicity in cultured hippocampal neurons. Br J Pharmacol 2000; 131(4): 711-20.
[http://dx.doi.org/10.1038/sj.bjp.0703626] [PMID: 11030720]
[143]
Ansari MA, Abdul HM, Joshi G, Opii WO, Butterfield DA. Protective effect of quercetin in primary neurons against Abeta(1-42): Relevance to Alzheimer’s disease. J Nutr Biochem 2009; 20(4): 269-75.
[http://dx.doi.org/10.1016/j.jnutbio.2008.03.002] [PMID: 18602817]
[144]
Zhang ZJ, Cheang LCV, Wang MW, Lee SMY. Quercetin exerts a neuroprotective effect through inhibition of the iNOS/NO system and pro-inflammation gene expression in PC12 cells and in zebrafish. Int J Mol Med 2011; 27(2): 195-203.
[PMID: 21132259]
[145]
Karimipour M, Rahbarghazi R, Tayefi H, et al. Quercetin promotes learning and memory performance concomitantly with neural stem/progenitor cell proliferation and neurogenesis in the adult rat dentate gyrus. Int J Dev Neurosci 2019; 74: 18-26.
[http://dx.doi.org/10.1016/j.ijdevneu.2019.02.005] [PMID: 30822517]
[146]
Kim YA, Lim S-Y, Rhee S-H, et al. Resveratrol inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression in β-amyloid-treated C6 glioma cells. Int J Mol Med 2006; 17(6): 1069-75.
[http://dx.doi.org/10.3892/ijmm.17.6.1069] [PMID: 16685418]
[147]
Ren J, Fan C, Chen N, Huang J, Yang Q. Resveratrol pretreatment attenuates cerebral ischemic injury by upregulating expression of transcription factor Nrf2 and HO-1 in rats. Neurochem Res 2011; 36(12): 2352-62.
[http://dx.doi.org/10.1007/s11064-011-0561-8] [PMID: 21850487]
[148]
Capiralla H, Vingtdeux V, Zhao H, et al. Resveratrol mitigates lipopolysaccharide- and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. J Neurochem 2012; 120(3): 461-72.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07594.x] [PMID: 22118570]
[149]
Yu KC, Kwan P, Cheung SKK, Ho A, Baum L. Effects of resveratrol and morin on insoluble tau in tau transgenic mice. Transl Neurosci 2018; 9(1): 54-60.
[http://dx.doi.org/10.1515/tnsci-2018-0010] [PMID: 30479844]
[150]
Schweiger S, Matthes F, Posey K, et al. Resveratrol induces dephosphorylation of Tau by interfering with the MID1-PP2A complex. Sci Rep 2017; 7(1): 13753.
[http://dx.doi.org/10.1038/s41598-017-12974-4] [PMID: 29062069]
[151]
Shen XY, Luo T, Li S, et al. Quercetin inhibits okadaic acid-induced tau protein hyperphosphorylation through the Ca2+calpainp25CDK5 pathway in HT22 cells. Int J Mol Med 2018; 41(2): 1138-46.
[PMID: 29207020]
[152]
Sabogal-Guáqueta AM, Muñoz-Manco JI, Ramírez-Pineda JR, Lamprea-Rodriguez M, Osorio E, Cardona-Gómez GP. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 2015; 93: 134-45.
[http://dx.doi.org/10.1016/j.neuropharm.2015.01.027] [PMID: 25666032]
[153]
Moussa C, Hebron M, Huang X, et al. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflammation 2017; 14(1): 1-10.
[http://dx.doi.org/10.1186/s12974-016-0779-0] [PMID: 28086917]
[154]
Turner RS, Thomas RG, Craft S, et al. Alzheimer’s Disease Cooperative Study. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 2015; 85(16): 1383-91.
[http://dx.doi.org/10.1212/WNL.0000000000002035] [PMID: 26362286]
[155]
Zhu CW, Grossman H, Neugroschl J, et al. A randomized, double-blind, placebo-controlled trial of resveratrol with glucose and malate (RGM) to slow the progression of Alzheimer’s disease: A pilot study. Alzheimers Dement (N Y) 2018; 4: 609-16.
[http://dx.doi.org/10.1016/j.trci.2018.09.009] [PMID: 30480082]
[156]
Holland TM, Agarwal P, Wang Y, et al. Dietary flavonols and risk of Alzheimer dementia. Neurology 2020; 94(16): e1749-56.
[http://dx.doi.org/10.1212/WNL.0000000000008981] [PMID: 31996451]
[157]
Weiskirchen S, Weiskirchen R. Resveratrol: How much wine do you have to drink to stay healthy? Adv Nutr 2016; 7(4): 706-18.
[http://dx.doi.org/10.3945/an.115.011627] [PMID: 27422505]
[158]
Singh M, Arseneault M, Sanderson T, Murthy V, Ramassamy C. Challenges for research on polyphenols from foods in Alzheimer’s disease: Bioavailability, metabolism, and cellular and molecular mechanisms. J Agric Food Chem 2008; 56(13): 4855-73.
[http://dx.doi.org/10.1021/jf0735073] [PMID: 18557624]
[159]
Prior RL, Cao G, Martin A, et al. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of vaccinium species. J Agric Food Chem 1998; 46(7): 2686-93.
[http://dx.doi.org/10.1021/jf980145d]
[160]
Goyarzu P, Malin DH, Lau FC, et al. Blueberry supplemented diet: Effects on object recognition memory and nuclear factor-kappa B levels in aged rats. Nutr Neurosci 2004; 7(2): 75-83.
[http://dx.doi.org/10.1080/10284150410001710410] [PMID: 15279493]
[161]
Devore EE, Kang JH, Breteler MMB, Grodstein F. Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann Neurol 2012; 72(1): 135-43.
[http://dx.doi.org/10.1002/ana.23594] [PMID: 22535616]
[162]
Andres-Lacueva C, Shukitt-Hale B, Galli RL, Jauregui O, Lamuela-Raventos RM, Joseph JA. Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr Neurosci 2005; 8(2): 111-20.
[http://dx.doi.org/10.1080/10284150500078117] [PMID: 16053243]
[163]
Çoban J, Doğan-Ekici I, Aydın AF, Betül-Kalaz E, Doğru-Abbasoğlu S, Uysal M. Blueberry treatment decreased D-galactose-induced oxidative stress and brain damage in rats. Metab Brain Dis 2015; 30(3): 793-802.
[http://dx.doi.org/10.1007/s11011-014-9643-z] [PMID: 25511550]
[164]
Youdim KA, Shukitt-Hale B, Martin A, Wang H, Denisova N, Bickford PC, et al. Short-term dietary supplementation of blueberry polyphenolics: Beneficial effects on aging brain performance and peripheral tissue function. Nutr Neurosci 2000; 3(6): 383-97.
[http://dx.doi.org/10.1080/1028415X.2000.11747338]
[165]
Shukitt-Hale B, Cheng V, Joseph JA. Effects of blackberries on motor and cognitive function in aged rats. Nutr Neurosci 2009; 12(3): 135-40.
[http://dx.doi.org/10.1179/147683009X423292] [PMID: 19356316]
[166]
Tan L, Yang H, Pang W, et al. Investigation on the role of BDNF in the benefits of blueberry extracts for the improvement of learning and memory in Alzheimer’s disease mouse model. J Alzheimers Dis 2017; 56(2): 629-40.
[http://dx.doi.org/10.3233/JAD-151108] [PMID: 28035919]
[167]
Dal-Pan A, Dudonné S, Bourassa P, et al. Neurophenols consortium. Cognitive-enhancing effects of a polyphenols-rich extract from fruits without changes in neuropathology in an animal model of Alzheimer’s disease. J Alzheimers Dis 2017; 55(1): 115-35.
[http://dx.doi.org/10.3233/JAD-160281] [PMID: 27662290]
[168]
Vepsäläinen S, Koivisto H, Pekkarinen E, et al. Anthocyanin-enriched bilberry and blackcurrant extracts modulate amyloid precursor protein processing and alleviate behavioral abnormalities in the APP/PS1 mouse model of Alzheimer’s disease. J Nutr Biochem 2013; 24(1): 360-70.
[http://dx.doi.org/10.1016/j.jnutbio.2012.07.006] [PMID: 22995388]
[169]
Joseph JAJA, Denisova NAA, Arendash G, et al. Blueberry supplementation enhances signaling and prevents behavioral deficits in an Alzheimer disease model. Nutr Neurosci 2003; 6(3): 153-62.
[http://dx.doi.org/10.1080/1028415031000111282] [PMID: 12793519]
[170]
Bowtell JL, Aboo-Bakkar Z, Conway ME, Adlam AR, Fulford J. Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Appl Physiol Nutr Metab 2017; 42(7): 773-9.
[http://dx.doi.org/10.1139/apnm-2016-0550] [PMID: 28249119]
[171]
Miller MG, Hamilton DA, Joseph JA, Shukitt-Hale B. Dietary blueberry improves cognition among older adults in a randomized, double-blind, placebo-controlled trial. Eur J Nutr 2018; 57(3): 1169-80.
[http://dx.doi.org/10.1007/s00394-017-1400-8] [PMID: 28283823]
[172]
McNamara RK, Kalt W, Shidler MD, et al. Cognitive response to fish oil, blueberry, and combined supplementation in older adults with subjective cognitive impairment. Neurobiol Aging 2018; 64: 147-56.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.12.003] [PMID: 29458842]
[173]
Krikorian R, Shidler MD, Nash TA, et al. Blueberry supplementation improves memory in older adults. J Agric Food Chem 2010; 58(7): 3996-4000.
[http://dx.doi.org/10.1021/jf9029332] [PMID: 20047325]
[174]
Boespflug EL, Eliassen JC, Dudley JA, et al. Enhanced neural activation with blueberry supplementation in mild cognitive impairment. Nutr Neurosci 2018; 21(4): 297-305.
[http://dx.doi.org/10.1080/1028415X.2017.1287833] [PMID: 28221821]
[175]
Rinaldi P, Polidori MC, Metastasio A, et al. Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer’s disease. Neurobiol Aging 2003; 24(7): 915-9.
[http://dx.doi.org/10.1016/S0197-4580(03)00031-9] [PMID: 12928050]
[176]
Refsum H, Smith AD. Low vitamin B-12 status in confirmed Alzheimer’s disease as revealed by serum holotranscobalamin. J Neurol Neurosurg Psychiatry 2003; 74(7): 959-61.
[http://dx.doi.org/10.1136/jnnp.74.7.959] [PMID: 12810791]
[177]
Engelhart MJ, Geerlings MI, Ruitenberg A, et al. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA 2002; 287(24): 3223-9.
[http://dx.doi.org/10.1001/jama.287.24.3223] [PMID: 12076218]
[178]
Laurin D, Masaki KH, Foley DJ, White LR, Launer LJ. Midlife dietary intake of antioxidants and risk of late-life incident dementia: The Honolulu-Asia Aging Study. Am J Epidemiol 2004; 159(10): 959-67.
[http://dx.doi.org/10.1093/aje/kwh124] [PMID: 15128608]
[179]
Hajibabaei K. Antioxidant properties of vitamin E. Ann Res Antioxidants 2016; 1(2): 2-3.
[180]
Montiel T, Quiroz-Baez R, Massieu L, Arias C. Role of oxidative stress on β-amyloid neurotoxicity elicited during impairment of energy metabolism in the hippocampus: Protection by antioxidants. Exp Neurol 2006; 200(2): 496-508.
[http://dx.doi.org/10.1016/j.expneurol.2006.02.126] [PMID: 16626708]
[181]
Sung S, Yao Y, Uryu K, et al. Early vitamin E supplementation in young but not aged mice reduces Abeta levels and amyloid deposition in a transgenic model of Alzheimer’s disease. FASEB J 2004; 18(2): 323-5.
[http://dx.doi.org/10.1096/fj.03-0961fje] [PMID: 14656990]
[182]
Meydani SN, Meydani M, Verdon CP, Shapiro AA, Blumberg JB, Hayes KC. Vitamin E supplementation suppresses prostaglandin E1(2) synthesis and enhances the immune response of aged mice. Mech Ageing Dev 1986; 34(2): 191-201.
[http://dx.doi.org/10.1016/0047-6374(86)90034-5] [PMID: 3487685]
[183]
Sakai S, Moriguchi S. Long-term feeding of high vitamin E diet improves the decreased mitogen response of rat splenic lymphocytes with aging. J Nutr Sci Vitaminol (Tokyo) 1997; 43(1): 113-22.
[http://dx.doi.org/10.3177/jnsv.43.113] [PMID: 9151245]
[184]
De la Fuente M, Hernanz A, Guayerbas N, Victor VM, Arnalich F. Vitamin E ingestion improves several immune functions in elderly men and women. Free Radic Res 2008; 42(3): 272-80.
[http://dx.doi.org/10.1080/10715760801898838] [PMID: 18344122]
[185]
Sano M, Ernesto C, Thomas RG, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N Engl J Med 1997; 336(17): 1216-22.
[http://dx.doi.org/10.1056/NEJM199704243361704] [PMID: 9110909]
[186]
Petersen RC, Thomas RG, Grundman M, et al. Alzheimer’s Disease Cooperative Study Group. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med 2005; 352(23): 2379-88.
[http://dx.doi.org/10.1056/NEJMoa050151] [PMID: 15829527]
[187]
Dysken MW, Sano M, Asthana S, et al. Effect of vitamin E and memantine on functional decline in Alzheimer disease: The TEAM-AD VA cooperative randomized trial. JAMA 2014; 311(1): 33-44.
[http://dx.doi.org/10.1001/jama.2013.282834] [PMID: 24381967]
[188]
Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: Systematic review and meta-analysis. JAMA 2007; 297(8): 842-57.
[http://dx.doi.org/10.1001/jama.297.8.842] [PMID: 17327526]
[189]
Bouayed J, Bohn T. Exogenous antioxidants--Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev 2010; 3(4): 228-37.
[http://dx.doi.org/10.4161/oxim.3.4.12858] [PMID: 20972369]
[190]
Devore EE, Grodstein F, van Rooij FJA, et al. Dietary antioxidants and long-term risk of dementia. Arch Neurol 2010; 67(7): 819-25.
[http://dx.doi.org/10.1001/archneurol.2010.144] [PMID: 20625087]
[191]
Harrison FE, May JM. Vitamin C function in the brain: Vital role of the ascorbate transporter SVCT2. Free Radic Biol Med 2009; 46(6): 719-30.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.12.018] [PMID: 19162177]
[192]
Grosso G, Bei R, Mistretta A, et al. Effects of vitamin C on health: A review of evidence. Front Biosci 2013; 18: 1017-29.
[http://dx.doi.org/10.2741/4160] [PMID: 23747864]
[193]
Dixit S, Bernardo A, Walker JM, et al. Vitamin C deficiency in the brain impairs cognition, increases amyloid accumulation and deposition, and oxidative stress in APP/PSEN1 and normally aging mice. ACS Chem Neurosci 2015; 6(4): 570-81.
[http://dx.doi.org/10.1021/cn500308h] [PMID: 25642732]
[194]
Sil S, Ghosh T, Gupta P, Ghosh R, Kabir SN, Roy A. Dual role of vitamin c on the neuroinflammation mediated neurodegeneration and memory impairments in colchicine induced rat model of Alzheimer disease. J Mol Neurosci 2016; 60(4): 421-35.
[http://dx.doi.org/10.1007/s12031-016-0817-5] [PMID: 27665568]
[195]
Ahmad A, Shah SA, Badshah H, et al. Neuroprotection by vitamin C against ethanol -induced neuroinflammation associated neurodegeneration in developing rat brain. CNS Neurol Disord Drug Targets 2016; 15(3): 360-70.
[http://dx.doi.org/10.2174/1871527315666151110130139] [PMID: 26831257]
[196]
Denisova NA, Booth SL. Vitamin K and sphingolipid metabolism: Evidence to date. Nutr Rev 2005; 63(4): 111-21.
[http://dx.doi.org/10.1111/j.1753-4887.2005.tb00129.x] [PMID: 15869125]
[197]
Presse N, Shatenstein B, Kergoat MJ, Ferland G. Low vitamin K intakes in community-dwelling elders at an early stage of Alzheimer’s disease. J Am Diet Assoc 2008; 108(12): 2095-9.
[http://dx.doi.org/10.1016/j.jada.2008.09.013] [PMID: 19027415]
[198]
Allison AC. The possible role of vitamin K deficiency in the pathogenesis of Alzheimer’s disease and in augmenting brain damage associated with cardiovascular disease. Med Hypotheses 2001; 57(2): 151-5.
[http://dx.doi.org/10.1054/mehy.2001.1307] [PMID: 11461163]
[199]
Chouet J, Ferland G, Féart C, et al. Dietary vitamin K intake is associated with cognition and behaviour among geriatric patients: The CLIP study. Nutrients 2015; 7(8): 6739-50.
[http://dx.doi.org/10.3390/nu7085306] [PMID: 26274973]
[200]
Presse N, Belleville S, Gaudreau P, et al. Vitamin K status and cognitive function in healthy older adults. Neurobiol Aging 2013; 34(12): 2777-83.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.05.031] [PMID: 23850343]
[201]
Carrié I, Bélanger E, Portoukalian J, Rochford J, Ferland G. Lifelong low-phylloquinone intake is associated with cognitive impairments in old rats. J Nutr 2011; 141(8): 1495-501.
[http://dx.doi.org/10.3945/jn.110.137638] [PMID: 21653572]
[202]
Alam P, Chaturvedi SK, Siddiqi MK, et al. Vitamin k3 inhibits protein aggregation: Implication in the treatment of amyloid diseases. Sci Rep 2016; 6: 26759.
[http://dx.doi.org/10.1038/srep26759] [PMID: 27230476]
[203]
Li J, Wang H, Rosenberg PA. Vitamin K prevents oxidative cell death by inhibiting activation of 12-lipoxygenase in developing oligodendrocytes. J Neurosci Res 2009; 87(9): 1997-2005.
[http://dx.doi.org/10.1002/jnr.22029] [PMID: 19235890]
[204]
Reynolds E. Vitamin B12, folic acid, and the nervous system. Lancet Neurol 2006; 5(11): 949-60.
[http://dx.doi.org/10.1016/S1474-4422(06)70598-1] [PMID: 17052662]
[205]
Mahmood L. The metabolic processes of folic acid and Vitamin B12 deficiency. J Heal Res Rev 2014; 1: 5-9.
[http://dx.doi.org/10.4103/2394-2010.143318]
[206]
Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J 2015; 14(1): 6.
[http://dx.doi.org/10.1186/1475-2891-14-6] [PMID: 25577237]
[207]
Zhuo JM, Wang H, Praticò D. Is hyperhomocysteinemia an Alzheimer’s disease (AD) risk factor, an AD marker, or neither? Trends Pharmacol Sci 2011; 32(9): 562-71.
[http://dx.doi.org/10.1016/j.tips.2011.05.003] [PMID: 21684021]
[208]
Morris MC, Schneider JA, Tangney CC. Thoughts on B-vitamins and dementia. J Alzheimers Dis 2006; 9(4): 429-33.
[http://dx.doi.org/10.3233/JAD-2006-9409] [PMID: 16917152]
[209]
Morris MS, Jacques PF, Rosenberg IH, Selhub J. Elevated serum methylmalonic acid concentrations are common among elderly Americans. J Nutr 2002; 132(9): 2799-803.
[http://dx.doi.org/10.1093/jn/132.9.2799] [PMID: 12221248]
[210]
Osimani A, Berger A, Friedman J, Porat-Katz BS, Abarbanel JM. Neuropsychology of vitamin B12 deficiency in elderly dementia patients and control subjects. J Geriatr Psychiatry Neurol 2005; 18(1): 33-8.
[http://dx.doi.org/10.1177/0891988704272308] [PMID: 15681626]
[211]
Clarke R, Birks J, Nexo E, et al. Low vitamin B-12 status and risk of cognitive decline in older adults. Am J Clin Nutr 2007; 86(5): 1384-91.
[http://dx.doi.org/10.1093/ajcn/86.5.1384] [PMID: 17991650]
[212]
Ramos MI, Allen LH, Mungas DM, et al. Low folate status is associated with impaired cognitive function and dementia in the Sacramento Area Latino Study on Aging. Am J Clin Nutr 2005; 82(6): 1346-52.
[http://dx.doi.org/10.1093/ajcn/82.6.1346] [PMID: 16332669]
[213]
Kang JH, Cook N, Manson J, Buring JE, Albert CM, Grodstein F. A trial of B vitamins and cognitive function among women at high risk of cardiovascular disease. Am J Clin Nutr 2008; 88(6): 1602-10.
[http://dx.doi.org/10.3945/ajcn.2008.26404] [PMID: 19064521]
[214]
Hvas AM, Juul S, Lauritzen L, Nexø E, Ellegaard J. No effect of vitamin B-12 treatment on cognitive function and depression: A randomized placebo controlled study. J Affect Disord 2004; 81(3): 269-73.
[http://dx.doi.org/10.1016/S0165-0327(03)00169-1] [PMID: 15337331]
[215]
Eussen SJ, de Groot LC, Joosten LW, et al. Effect of oral vitamin B-12 with or without folic acid on cognitive function in older people with mild vitamin B-12 deficiency: A randomized, placebo-controlled trial. Am J Clin Nutr 2006; 84(2): 361-70.
[http://dx.doi.org/10.1093/ajcn/84.2.361] [PMID: 16895884]
[216]
Chan A, Shea TB. Folate deprivation increases presenilin expression, gamma-secretase activity, and Abeta levels in murine brain: Potentiation by ApoE deficiency and alleviation by dietary S-adenosyl methionine. J Neurochem 2007; 102(3): 753-60.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04589.x] [PMID: 17504266]
[217]
Zhuo JM, Praticò D. Acceleration of brain amyloidosis in an Alzheimer’s disease mouse model by a folate, vitamin B6 and B12-deficient diet. Exp Gerontol 2010; 45(3): 195-201.
[http://dx.doi.org/10.1016/j.exger.2009.12.005] [PMID: 20005283]
[218]
Li W, Liu H, Yu M, et al. Folic acid administration inhibits amyloid β-peptide accumulation in APP/PS1 transgenic mice. J Nutr Biochem 2015; 26(8): 883-91.
[http://dx.doi.org/10.1016/j.jnutbio.2015.03.009] [PMID: 25959374]
[219]
Wei W, Liu YH, Zhang CE, et al. Folate/vitamin-B12 prevents chronic hyperhomocysteinemia-induced tau hyperphosphorylation and memory deficits in aged rats. J Alzheimers Dis 2011; 27(3): 639-50.
[http://dx.doi.org/10.3233/JAD-2011-110770] [PMID: 21860088]
[220]
McKay DL, Perrone G, Rasmussen H, Dallal G, Blumberg JB. Multivitamin/mineral supplementation improves plasma B-vitamin status and homocysteine concentration in healthy older adults consuming a folate-fortified diet. J Nutr 2000; 130(12): 3090-6.
[http://dx.doi.org/10.1093/jn/130.12.3090] [PMID: 11110875]
[221]
Schulz RJ. Homocysteine as a biomarker for cognitive dysfunction in the elderly. Curr Opin Clin Nutr Metab Care 2007; 10(6): 718-23.
[http://dx.doi.org/10.1097/MCO.0b013e3282f0cfe3] [PMID: 18089953]
[222]
DeBerardinis RJ, Thompson CB. Cellular metabolism and disease: What do metabolic outliers teach us? Cell 2012; 148(6): 1132-44.
[http://dx.doi.org/10.1016/j.cell.2012.02.032] [PMID: 22424225]
[223]
Cukierman T, Gerstein HC, Williamson JD. Cognitive decline and dementia in diabetes--systematic overview of prospective observational studies. Diabetologia 2005; 48(12): 2460-9.
[http://dx.doi.org/10.1007/s00125-005-0023-4] [PMID: 16283246]
[224]
Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in diabetes mellitus: A systematic review. Lancet Neurol 2006; 5(1): 64-74.
[http://dx.doi.org/10.1016/S1474-4422(05)70284-2] [PMID: 16361024]
[225]
Ott A, Stolk RP, van Harskamp F, Pols HAP, Hofman A, Breteler MMB. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 1999; 53(9): 1937-42.
[http://dx.doi.org/10.1212/WNL.53.9.1937] [PMID: 10599761]
[226]
Xu W, Tan L, Wang H-F, et al. Meta-analysis of modifiable risk factors for Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2015; 86(12): 1299-306.
[http://dx.doi.org/10.1136/jnnp-2015-310548] [PMID: 26294005]
[227]
Steen E, Terry BM, Rivera EJ, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease--is this type 3 diabetes? J Alzheimers Dis 2005; 7(1): 63-80.
[http://dx.doi.org/10.3233/JAD-2005-7107] [PMID: 15750215]
[228]
Crane PK, Walker R, Hubbard RA, et al. Glucose levels and risk of dementia. N Engl J Med 2013; 369(6): 540-8.
[http://dx.doi.org/10.1056/NEJMoa1215740] [PMID: 23924004]
[229]
Mosconi L, De Santi S, Li J, et al. Hippocampal hypometabolism predicts cognitive decline from normal aging. Neurobiol Aging 2008; 29(5): 676-92.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.12.008] [PMID: 17222480]
[230]
Mosconi L, Mistur R, Switalski R, et al. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2009; 36(5): 811-22.
[http://dx.doi.org/10.1007/s00259-008-1039-z] [PMID: 19142633]
[231]
Kanaya AM, Barrett-Connor E, Gildengorin G, Yaffe K. Change in cognitive function by glucose tolerance status in older adults: A 4-year prospective study of the Rancho Bernardo study cohort. Arch Intern Med 2004; 164(12): 1327-33.
[http://dx.doi.org/10.1001/archinte.164.12.1327] [PMID: 15226167]
[232]
Fournet M, Bonté F, Desmoulière A. Glycation damage: A possible hub for major pathophysiological disorders and aging. Aging Dis 2018; 9(5): 880-900.
[http://dx.doi.org/10.14336/AD.2017.1121] [PMID: 30271665]
[233]
Vitek MP, Bhattacharya K, Glendening JM, et al. Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci USA 1994; 91(11): 4766-70.
[http://dx.doi.org/10.1073/pnas.91.11.4766] [PMID: 8197133]
[234]
Lafuente N, Matesanz N, Azcutia V, et al. The deleterious effect of high concentrations of D-glucose requires pro-inflammatory preconditioning. J Hypertens 2008; 26(3): 478-85.
[http://dx.doi.org/10.1097/HJH.0b013e3282f331fb] [PMID: 18300858]
[235]
Azcutia V, Abu-Taha M, Romacho T, et al. Inflammation determines the pro-adhesive properties of high extracellular d-glucose in human endothelial cells in vitro and rat microvessels in vivo. PLoS One 2010; 5(4) e10091
[http://dx.doi.org/10.1371/journal.pone.0010091]] [PMID: 20386708]
[236]
Kassaar O, Pereira Morais M, Xu S, et al. Macrophage migration inhibitory factor is subjected to glucose modification and oxidation in Alzheimer’s disease. Sci Rep 2017; 7: 42874.
[http://dx.doi.org/10.1038/srep42874] [PMID: 28230058]
[237]
Colberg SR, Sigal RJ, Yardley JE, et al. Physical activity/exercise and diabetes: A position statement of the American diabetes association. Diabetes Care 2016; 39(11): 2065-79.
[http://dx.doi.org/10.2337/dc16-1728] [PMID: 27926890]
[238]
Russell WR, Baka A, Björck I, et al. Impact of diet composition on blood glucose regulation. Crit Rev Food Sci Nutr 2016; 56(4): 541-90.
[http://dx.doi.org/10.1080/10408398.2013.792772] [PMID: 24219323]
[239]
Rizkalla SW, Taghrid L, Laromiguiere M, et al. Improved plasma glucose control, whole-body glucose utilization, and lipid profile on a low-glycemic index diet in type 2 diabetic men: A randomized controlled trial. Diabetes Care 2004; 27(8): 1866-72.
[http://dx.doi.org/10.2337/diacare.27.8.1866] [PMID: 15277409]
[240]
Thomas D, Elliot E, Baur L. Low glycemic index or low glycemic load diets for overweight and obesity. Cochrane Database Syst Rev 2007; 3 CD005105
[241]
Arnold SE, Arvanitakis Z, Macauley-Rambach SL, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: Concepts and conundrums. Nat Rev Neurol 2018; 14(3): 168-81.
[http://dx.doi.org/10.1038/nrneurol.2017.185] [PMID: 29377010]
[242]
de la Monte SM. Type 3 diabetes is sporadic Alzheimer’s disease: Mini-review. Eur Neuropsychopharmacol 2014; 24(12): 1954-60.
[http://dx.doi.org/10.1016/j.euroneuro.2014.06.008] [PMID: 25088942]
[243]
Qiu WQ, Walsh DM, Ye Z, et al. Insulin-degrading enzyme regulates extracellular levels of amyloid β-protein by degradation. J Biol Chem 1998; 273(49): 32730-8.
[http://dx.doi.org/10.1074/jbc.273.49.32730] [PMID: 9830016]
[244]
Stanley M, Macauley SL, Holtzman DM. Changes in insulin and insulin signaling in Alzheimer’s disease: Cause or consequence? J Exp Med 2016; 213(8): 1375-85.
[http://dx.doi.org/10.1084/jem.20160493] [PMID: 27432942]
[245]
Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y, Roth J. Insulin resistance and hyperinsulinemia: Is hyperinsulinemia the cart or the horse? Diabetes Care 2008; 31(2): S262-8.
[http://dx.doi.org/10.2337/dc08-s264] [PMID: 18227495]
[246]
Luchsinger JA, Tang MX, Shea S, Mayeux R. Hyperinsulinemia and risk of Alzheimer disease. Neurology 2004; 63(7): 1187-92.
[http://dx.doi.org/10.1212/01.WNL.0000140292.04932.87] [PMID: 15477536]
[247]
Chesneau V, Vekrellis K, Rosner MR, Selkoe DJ. Purified recombinant insulin-degrading enzyme degrades amyloid beta-protein but does not promote its oligomerization. Biochem J 2000; 351(Pt 2): 509-16.
[http://dx.doi.org/10.1042/bj3510509] [PMID: 11023838]
[248]
Pivovarova O, Höhn A, Grune T, Pfeiffer AFH, Rudovich N. Insulin-degrading enzyme: New therapeutic target for diabetes and Alzheimer’s disease? Ann Med 2016; 48(8): 614-24.
[http://dx.doi.org/10.1080/07853890.2016.1197416] [PMID: 27320287]
[249]
Shiiki T, Ohtsuki S, Kurihara A, et al. Brain insulin impairs amyloid-beta(1-40) clearance from the brain. J Neurosci 2004; 24(43): 9632-7.
[http://dx.doi.org/10.1523/JNEUROSCI.2236-04.2004] [PMID: 15509750]
[250]
Clamp LD, Hume DJ, Lambert EV, Kroff J. Enhanced insulin sensitivity in successful, long-term weight loss maintainers compared with matched controls with no weight loss history. Nutr Diabetes 2017; 7(6) e282
[http://dx.doi.org/10.1038/nutd.2017.31] [PMID: 28628125]
[251]
Vessby B, Uusitupa M, Hermansen K, et al. KANWU Study. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: The KANWU Study. Diabetologia 2001; 44(3): 312-9.
[http://dx.doi.org/10.1007/s001250051620] [PMID: 11317662]
[252]
Gower BA, Goss AMA. A lower-carbohydrate, higher-fat diet reduces abdominal and intermuscular fat and increases insulin sensitivity in adults at risk of type 2 diabetes. J Nutr 2015; 145(1): 177S-83S.
[http://dx.doi.org/10.3945/jn.114.195065] [PMID: 25527677]
[253]
Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer’s disease: Occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 2009; 11(2): 111-28.
[PMID: 19585947]
[254]
Ott A, Stolk RP, Hofman A, van Harskamp F, Grobbee DE, Breteler MMB. Association of diabetes mellitus and dementia: The Rotterdam Study. Diabetologia 1996; 39(11): 1392-7.
[http://dx.doi.org/10.1007/s001250050588] [PMID: 8933010]
[255]
Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: Part I. Eur Heart J 2013; 34(31): 2436-43.
[http://dx.doi.org/10.1093/eurheartj/eht149] [PMID: 23641007]
[256]
Hassing LB, Hofer SM, Nilsson SE, et al. Comorbid type 2 diabetes mellitus and hypertension exacerbates cognitive decline: Evidence from a longitudinal study. Age Ageing 2004; 33(4): 355-61.
[http://dx.doi.org/10.1093/ageing/afh100] [PMID: 15136287]
[257]
Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: Human gut microbes associated with obesity. Nature 2006; 444(7122): 1022-3.
[http://dx.doi.org/10.1038/4441022a] [PMID: 17183309]
[258]
Tang WHW, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013; 368(17): 1575-84.
[http://dx.doi.org/10.1056/NEJMoa1109400] [PMID: 23614584]
[259]
Dickerson F, Severance E, Yolken R. The microbiome, immunity, and schizophrenia and bipolar disorder. Brain Behav Immun 2017; 62: 46-52.
[http://dx.doi.org/10.1016/j.bbi.2016.12.010] [PMID: 28003152]
[260]
Keshavarzian A, Green SJ, Engen PA, et al. Colonic bacterial composition in Parkinson’s disease. Mov Disord 2015; 30(10): 1351-60.
[http://dx.doi.org/10.1002/mds.26307] [PMID: 26179554]
[261]
Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep 2017; 7(1): 13537.
[http://dx.doi.org/10.1038/s41598-017-13601-y] [PMID: 29051531]
[262]
Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol 2015; 21(29): 8787-803.
[http://dx.doi.org/10.3748/wjg.v21.i29.8787] [PMID: 26269668]
[263]
Geuking MB, Cahenzli J, Lawson MAE, et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 2011; 34(5): 794-806.
[http://dx.doi.org/10.1016/j.immuni.2011.03.021] [PMID: 21596591]
[264]
Hasegawa M, Osaka T, Tawaratsumida K, et al. Transitions in oral and intestinal microflora composition and innate immune receptor-dependent stimulation during mouse development. Infect Immun 2010; 78(2): 639-50.
[http://dx.doi.org/10.1128/IAI.01043-09] [PMID: 19933833]
[265]
Tremlett H, Bauer KC, Appel-Cresswell S, Finlay BB, Waubant E. The gut microbiome in human neurological disease: A review. Ann Neurol 2017; 81(3): 369-82.
[http://dx.doi.org/10.1002/ana.24901] [PMID: 28220542]
[266]
Galland L. The gut microbiome and the brain. J Med Food 2014; 17(12): 1261-72.
[http://dx.doi.org/10.1089/jmf.2014.7000] [PMID: 25402818]
[267]
Pistollato F, Sumalla Cano S, Elio I, Masias Vergara M, Giampieri F, Battino M. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev 2016; 74(10): 624-34.
[http://dx.doi.org/10.1093/nutrit/nuw023] [PMID: 27634977]
[268]
Friedland RP, Chapman MR. The role of microbial amyloid in neurodegeneration. PLoS Pathog 2017; 13(12) e1006654
[http://dx.doi.org/10.1371/journal.ppat.1006654] [PMID: 29267402]
[269]
Tükel C, Nishimori JH, Wilson RP, et al. Toll-like receptors 1 and 2 cooperatively mediate immune responses to curli, a common amyloid from enterobacterial biofilms. Cell Microbiol 2010; 12(10): 1495-505.
[http://dx.doi.org/10.1111/j.1462-5822.2010.01485.x] [PMID: 20497180]
[270]
Larsen N, Vogensen FK, van den Berg FWJ, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010; 5(2) e9085
[http://dx.doi.org/10.1371/journal.pone.0009085] [PMID: 20140211]
[271]
Govindarajan N, Agis-Balboa RC, Walter J, Sananbenesi F, Fischer A. Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression. J Alzheimers Dis 2011; 26(1): 187-97.
[http://dx.doi.org/10.3233/JAD-2011-110080] [PMID: 21593570]
[272]
Biagi E, Nylund L, Candela M, et al. Through ageing, and beyond: Gut microbiota and inflammatory status in seniors and centenarians. PLoS One 2010; 5(5) e10667
[http://dx.doi.org/10.1371/journal.pone.0010667] [PMID: 20498852]
[273]
Kanauchi O, Fukuda M, Matsumoto Y, et al. Eubacterium limosum ameliorates experimental colitis and metabolite of microbe attenuates colonic inflammatory action with increase of mucosal integrity. World J Gastroenterol 2006; 12(7): 1071-7.
[http://dx.doi.org/10.3748/wjg.v12.i7.1071] [PMID: 16534848]
[274]
Harach T, Marungruang N, Duthilleul N, et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep 2017; 7: 41802.
[http://dx.doi.org/10.1038/srep41802]
[275]
Minter MR, Zhang C, Leone V, et al. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci Rep 2016; 6: 30028.
[http://dx.doi.org/10.1038/srep30028] [PMID: 27443609]
[276]
Ho L, Ono K, Tsuji M, Mazzola P, Singh R, Pasinetti GM. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother 2018; 18(1): 83-90.
[http://dx.doi.org/10.1080/14737175.2018.1400909] [PMID: 29095058]
[277]
Segain JP, Raingeard de la Blétière D, Bourreille A, et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: Implications for Crohn’s disease. Gut 2000; 47(3): 397-403.
[http://dx.doi.org/10.1136/gut.47.3.397] [PMID: 10940278]
[278]
Al-Lahham SH, Peppelenbosch MP, Roelofsen H, Vonk RJ, Venema K. Biological effects of propionic acid in humans; Metabolism, potential applications and underlying mechanisms. Biochim Biophys Acta 2010; 1801(11): 1175-83.
[http://dx.doi.org/10.1016/j.bbalip.2010.07.007] [PMID: 20691280]
[279]
Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. Adv Immunol 2014; 121: 91-119.
[http://dx.doi.org/10.1016/B978-0-12-800100-4.00003-9] [PMID: 24388214]
[280]
Hill JM, Bhattacharjee S, Pogue AI, Lukiw WJ. The gastrointestinal tract microbiome and potential link to Alzheimer’s disease. Front Neurol 2014; 5: 43.
[http://dx.doi.org/10.3389/fneur.2014.00043] [PMID: 24772103]
[281]
Erny D, Hrabě de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015; 18(7): 965-77.
[http://dx.doi.org/10.1038/nn.4030] [PMID: 26030851]
[282]
Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol 2018; 217(2): 459-72.
[http://dx.doi.org/10.1083/jcb.201709069] [PMID: 29196460]
[283]
Zhao Y, Lukiw WJ. Microbiome-generated amyloid and potential impact on amyloidogenesis in Alzheimer’s disease (AD). J Nat Sci 2015; 1(7): 1-12.
[PMID: 26097896]
[284]
De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 2010; 107(33): 14691-6.
[http://dx.doi.org/10.1073/pnas.1005963107] [PMID: 20679230]
[285]
Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature 2009; 457(7228): 480-4.
[http://dx.doi.org/10.1038/nature07540] [PMID: 19043404]
[286]
Cotillard A, Kennedy SP, Kong LC, et al. ANR MicroObes consortium. Dietary intervention impact on gut microbial gene richness. Nature 2013; 500(7464): 585-8.
[http://dx.doi.org/10.1038/nature12480] [PMID: 23985875]
[287]
Tyakht AV, Kostryukova ES, Popenko AS, et al. Human gut microbiota community structures in urban and rural populations in Russia. Nat Commun 2013; 4(2469): 2469.
[http://dx.doi.org/10.1038/ncomms3469] [PMID: 24036685]
[288]
Nam YD, Jung MJ, Roh SW, Kim MS, Bae JW. Comparative analysis of Korean human gut microbiota by barcoded pyrosequencing. PLoS One 2011; 6(7) e22109
[http://dx.doi.org/10.1371/journal.pone.0022109] [PMID: 21829445]
[289]
Graf D, Di Cagno R, Fåk F, Flint HJ, Nyman M, Saarela M, et al. Contribution of diet to the composition of the human gut microbiota. Microb Ecol Heal Dis 2015; 26(10)
[http://dx.doi.org/10.3402/mehd.v26.26164:26164]
[290]
De Filippis F, Pellegrini N, Vannini L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 2016; 65(11): 1812-21.
[http://dx.doi.org/10.1136/gutjnl-2015-309957] [PMID: 26416813]
[291]
Garcia-Mantrana I, Selma-Royo M, Alcantara C, Collado MC. Shifts on gut microbiota associated to mediterranean diet adherence and specific dietary intakes on general adult population. Front Microbiol 2018; 9(890): 890.
[http://dx.doi.org/10.3389/fmicb.2018.00890] [PMID: 29867803]
[292]
Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr Res Rev 2004; 17(2): 259-75.
[http://dx.doi.org/10.1079/NRR200479] [PMID: 19079930]
[293]
Tzounis X, Vulevic J, Kuhnle GGC, et al. Flavanol monomer-induced changes to the human faecal microflora. Br J Nutr 2008; 99(4): 782-92.
[http://dx.doi.org/10.1017/S0007114507853384] [PMID: 17977475]
[294]
Duda-Chodak A, Tarko T, Satora P, Sroka P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. Eur J Nutr 2015; 54(3): 325-41.
[http://dx.doi.org/10.1007/s00394-015-0852-y] [PMID: 25672526]
[295]
Schnorr SL, Candela M, Rampelli S, et al. Gut microbiome of the Hadza hunter-gatherers. Nat Commun 2014; 5(5): 3654.
[http://dx.doi.org/10.1038/ncomms4654] [PMID: 24736369]
[296]
Rao RK, Samak G. Protection and restitution of gut barrier by probiotics: Nutritional and clinical implications. Curr Nutr Food Sci 2013; 9(2): 99-107.
[http://dx.doi.org/10.2174/1573401311309020004] [PMID: 24353483]
[297]
Leblhuber F, Steiner K, Schuetz B, Fuchs D, Gostner JM. Probiotic supplementation in patients with alzheimer’s dementia - an explorative intervention Study. Curr Alzheimer Res 2018; 15(12): 1106-13.
[http://dx.doi.org/10.2174/1389200219666180813144834] [PMID: 30101706]
[298]
Akbari E, Asemi Z, Daneshvar Kakhaki R, et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Front Aging Neurosci 2016; 8: 256.
[http://dx.doi.org/10.3389/fnagi.2016.00256] [PMID: 27891089]
[299]
Scarmeas N, Anastasiou CA, Yannakoulia M. Nutrition and prevention of cognitive impairment. Lancet Neurol 2018; 17(11): 1006-15.
[http://dx.doi.org/10.1016/S1474-4422(18)30338-7] [PMID: 30244829]
[300]
Liu RH. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 2003; 78(3): 517S-20S.
[http://dx.doi.org/10.1093/ajcn/78.3.517S] [PMID: 12936943]
[301]
Otaegui-Arrazola A, Amiano P, Elbusto A, Urdaneta E, Martínez-Lage P. Diet, cognition, and Alzheimer’s disease: Food for thought. Eur J Nutr 2014; 53(1): 1-23.
[http://dx.doi.org/10.1007/s00394-013-0561-3] [PMID: 23892520]
[302]
Kang JH, Ascherio A, Grodstein F. Fruit and vegetable consumption and cognitive decline in aging women. Ann Neurol 2005; 57(5): 713-20.
[http://dx.doi.org/10.1002/ana.20476] [PMID: 15852398]
[303]
Archer M. Protein consumption and recent trends in the UK 2019.
[304]
Savelli E, Murmura F, Liberatore L, Casolani N, Bravi L. Consumer attitude and behaviour towards food quality among the young ones: empirical evidences from a survey. Total Qual Manage Bus Excell 2019; 30(1-2): 169-83.
[http://dx.doi.org/10.1080/14783363.2017.1300055]
[305]
Nielsen WE. ARE WHAT WE EAT 2015.
[306]
Cohen SA, Greaney ML, Sabik NJ. Assessment of dietary patterns, physical activity and obesity from a national survey: Rural-urban health disparities in older adults. PLoS One 2018; 13(12) e0208268
[http://dx.doi.org/10.1371/journal.pone.0208268] [PMID: 30517166]
[307]
Mayén AL, Marques-Vidal P, Paccaud F, Bovet P, Stringhini S. Socioeconomic determinants of dietary patterns in low- and middle-income countries: A systematic review. Am J Clin Nutr 2014; 100(6): 1520-31.
[http://dx.doi.org/10.3945/ajcn.114.089029] [PMID: 25411287]
[308]
Wilcox S, Sharpe PA, Liese AD, Dunn CG, Hutto B. Socioeconomic factors associated with diet quality and meeting dietary guidelines in disadvantaged neighborhoods in the Southeast United States. Ethn Heal 2018; pp. 1-17.
[http://dx.doi.org/10.1080/13557858.2018.1493434]
[309]
Mullie P, Clarys P, Hulens M, Vansant G. Dietary patterns and socioeconomic position. Eur J Clin Nutr 2010; 64(3): 231-8.
[http://dx.doi.org/10.1038/ejcn.2009.145] [PMID: 20087378]
[310]
Darmon N, Drewnowski A. Does social class predict diet quality? Am J Clin Nutr 2008; 87(5): 1107-17.
[http://dx.doi.org/10.1093/ajcn/87.5.1107] [PMID: 18469226]
[311]
Manyanga T, Tremblay MS, Chaput J-P, et al. ISCOLE Research Group. Socioeconomic status and dietary patterns in children from around the world: Different associations by levels of country human development? BMC Public Health 2017; 17(1): 457.
[http://dx.doi.org/10.1186/s12889-017-4383-8] [PMID: 28511721]
[312]
Lang T. Food control or food democracy? Re-engaging nutrition with society and the environment. Public Health Nutr 2005; 8(6A): 730-7.
[http://dx.doi.org/10.1079/PHN2005772] [PMID: 16236208]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy