Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Updates on Receptors Targeted by Heterocyclic Scaffolds: New Horizon in Anticancer Drug Development

Author(s): Rajeev Kharb*

Volume 21, Issue 11, 2021

Published on: 19 June, 2020

Page: [1338 - 1349] Pages: 12

DOI: 10.2174/1871520620666200619181102

Price: $65

Abstract

Anticancer is a high priority research area for scientists as cancer is one of the leading causes of death globally. It is pertinent to mention here that conventional anticancer drugs such as methotrexate, vincristine, cyclophosphamide, etoposide, doxorubicin, cisplatin, etc. are not much efficient for the treatment of different types of cancer; also these suffer from serious side effects leading to therapy failure. A large variety of cancerrelated receptors such as carbonic anhydrase, tyrosine kinase, topoisomerase, protein kinase, histone deacetylase, etc. have been identified which can be targeted by anticancer drugs. Heterocycles like oxadiazole, thiazole, thiadiazole, indole, pyridine, pyrimidine, benzimidazole, etc. play a pivotal role in modern medicinal chemistry because they have a broad spectrum of pharmacological activities including prominent anticancer activity. Therefore, it was considered significant to explore heterocyclic compounds reported in recent most literature which can bind effectively with the cancer-related receptors. This will not only provide a targeted approach to deal with cancer but also the safety profile of the drugs can be further improved. The information provided in this manuscript may be found useful for the design and development of anticancer drugs.

Keywords: Anticancer, receptors, heterocycles, drug design, tubulin inhibitors, therapy failure.

Graphical Abstract

[1]
Mareel, M.; Leroy, A. Clinical, cellular, and molecular aspects of cancer invasion. Physiol. Rev., 2003, 83(2), 337-376.
[http://dx.doi.org/10.1152/physrev.00024.2002] [PMID: 12663862]
[2]
Wesche, J.; Haglund, K.; Haugsten, E.M. Fibroblast growth factors and their receptors in cancer. Biochem. J., 2011, 437(2), 199-213.
[http://dx.doi.org/10.1042/BJ20101603] [PMID: 21711248]
[3]
Nakagawa, T.; Tohyama, O.; Yamaguchi, A.; Matsushima, T.; Takahashi, K.; Funasaka, S.; Shirotori, S.; Asada, M.; Obaishi, H. E7050: A dual c-Met and VEGFR-2 tyrosine kinase inhibitor promotes tumor regression and prolongs survival in mouse xenograft models. Canc. Sci., 2010, 101, 210-215.
[4]
Qiang, H.; Gu, W.; Huang, D.; Shi, W.; Qiu, Q.; Dai, Y.; Huang, W.; Qian, H. Design, synthesis and biological evaluation of 4-aminopyrimidine-5-cabaldehyde oximes as dual inhibitors of c-Met and VEGFR-2. Bioorg. Med. Chem., 2016, 24(16), 3353-3358.
[http://dx.doi.org/10.1016/j.bmc.2016.03.061] [PMID: 27068889]
[5]
Amin, K.M.; Barsoum, F.F.; Awadallah, F.M.; Mohamed, N.E. Identification of new potent phthalazine derivatives with VEGFR-2 and EGFR kinase inhibitory activity. Eur. J. Med. Chem., 2016, 123, 191-201.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.049] [PMID: 27484508]
[6]
Cancer Facts and Figures; American Cancer Society, 2016.
[7]
Belpomme, D.; Irigaray, P.; Sasco, A.J.; Newby, J.A.V.; Howard, V.; Clapp, R.; Hardell, L. The growing incidence of cancer: role of lifestyle and screening detection (Review). Int. J. Oncol., 2007, 30(5), 1037-1049.
[http://dx.doi.org/10.3892/ijo.30.5.1037] [PMID: 17390005]
[8]
Chabner, B.A.; Roberts, T.G., Jr. Timeline: Chemotherapy and the war on cancer. Nat. Rev. Cancer, 2005, 5(1), 65-72.
[http://dx.doi.org/10.1038/nrc1529] [PMID: 15630416]
[9]
Coolbrandt, A.; Van den Heede, K.; Vanhove, E.; De Bom, A.; Milisen, K.; Wildiers, H. Immediate versus delayed self-reporting of symptoms and side effects during chemotherapy: Does timing matter? Eur. J. Oncol. Nurs., 2011, 15(2), 130-136.
[http://dx.doi.org/10.1016/j.ejon.2010.06.010] [PMID: 20685164]
[10]
Grant, S.K. Therapeutic protein kinase inhibitors. Cell. Mol. Life Sci., 2009, 66(7), 1163-1177.
[http://dx.doi.org/10.1007/s00018-008-8539-7] [PMID: 19011754]
[11]
Solyanik, G.I. Multifactorial nature of tumor drug resistance. Exp. Oncol., 2010, 32(3), 181-185.
[PMID: 21403614]
[12]
Wu, J.; Wu, S.; Shi, L.; Zhang, S.; Ren, J.; Yao, S.; Yun, D.; Huang, L.; Wang, J.; Li, W.; Wu, X.; Qiu, P.; Liang, G. Design, synthesis, and evaluation of asymmetric EF24 analogues as potential anti-cancer agents for lung cancer. Eur. J. Med. Chem., 2017, 125, 1321-1331.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.027] [PMID: 27886548]
[13]
Lin, R.; Johnson, S.G.; Connolly, P.J.; Wetter, S.K.; Binnun, E.; Hughes, T.V.; Murray, W.V.; Pandey, N.B.; Moreno-Mazza, S.J.; Adams, M.; Fuentes-Pesquera, A.R.; Middleton, S.A. Synthesis and evaluation of 2,7-diamino-thiazolo[4,5-d] pyrimidine analogues as anti-tumor Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(8), 2333-2337.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.067] [PMID: 19286381]
[14]
Zheng, Y.; Zhu, L.; Fan, L.; Zhao, W.; Wang, J.; Hao, X.; Zhu, Y.; Hu, X.; Yuan, Y.; Shao, J.; Wang, W. Synthesis, SAR and pharmacological characterization of novel anthraquinone cation compounds as potential anticancer agents. Eur. J. Med. Chem., 2017, 125, 902-913.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.012] [PMID: 27769031]
[15]
Syam, S.; Abdelwahab, S.I.; Al-Mamary, M.A.; Mohan, S. Synthesis of chalcones with anticancer activities. Molecules, 2012, 17(6), 6179-6195.
[http://dx.doi.org/10.3390/molecules17066179] [PMID: 22634834]
[16]
Nitulescu, G.M.; Margina, D.; Juzenas, P.; Peng, Q.; Olaru, O.T.; Saloustros, E.; Fenga, C.; Spandidos, D.A.; Libra, M.; Tsatsakis, A.M. Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review). Int. J. Oncol., 2016, 48(3), 869-885.
[http://dx.doi.org/10.3892/ijo.2015.3306] [PMID: 26698230]
[17]
Nussbaumer, S.; Bonnabry, P.; Veuthey, J.L.; Fleury-Souverain, S. Analysis of anticancer drugs: A review. Talanta, 2011, 85(5), 2265-2289.
[http://dx.doi.org/10.1016/j.talanta.2011.08.034] [PMID: 21962644]
[18]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[19]
Foo, J.; Michor, F. Evolution of acquired resistance to anti-cancer therapy. J. Theor. Biol., 2014, 355, 10-20.
[http://dx.doi.org/10.1016/j.jtbi.2014.02.025] [PMID: 24681298]
[20]
Miller, K.D.; Siegel, R.L.; Lin, C.C.; Mariotto, A.B.; Kramer, J.L.; Rowland, J.H.; Stein, K.D.; Alteri, R.; Jemal, A. Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin., 2016, 66(4), 271-289.
[http://dx.doi.org/10.3322/caac.21349] [PMID: 27253694]
[21]
De Luca, A.; Frezzetti, D.; Gallo, M.; Normanno, N. FGFR-targeted therapeutics for the treatment of breast cancer. Expert Opin. Investig. Drugs, 2017, 26(3), 303-311.
[http://dx.doi.org/10.1080/13543784.2017.1287173] [PMID: 28121208]
[22]
Xue, W.J.; Li, M.T.; Chen, L.; Sun, L.P.; Li, Y.Y. Recent developments and advances of FGFR as a potential target in cancer. Future Med. Chem., 2018, 10(17), 2109-2126.
[http://dx.doi.org/10.4155/fmc-2018-0103] [PMID: 30066580]
[23]
Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med. Chem., 2011, 26(1), 1-21.
[http://dx.doi.org/10.3109/14756360903524304] [PMID: 20583859]
[24]
Kharb, R.; Yar, M.S.; Sharma, P.C. New insights into chemistry and anti-infective potential of triazole scaffold. Curr. Med. Chem., 2011, 18(21), 3265-3297.
[http://dx.doi.org/10.2174/092986711796391615] [PMID: 21671862]
[25]
Kharb, R.; Shahar Yar, M.; Sharma, P.C. Recent advances and future perspectives of triazole analogs as promising antiviral agents. Mini Rev. Med. Chem., 2011, 11(1), 84-96.
[http://dx.doi.org/10.2174/138955711793564051] [PMID: 21034403]
[26]
Koff, J.L.; Ramachandiran, S.; Bernal-Mizrachi, L. A time to kill: Targeting apoptosis in cancer. Int. J. Mol. Sci., 2015, 16(2), 2942-2955.
[http://dx.doi.org/10.3390/ijms16022942] [PMID: 25636036]
[27]
Supuran, C.T. Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov., 2008, 7(2), 168-181.
[http://dx.doi.org/10.1038/nrd2467] [PMID: 18167490]
[28]
Alterio, V.; Di Fiore, A.; D’Ambrosio, K.; Supuran, C.T.; De Simone, G. Multiple binding modes of inhibitors to carbonic anhydrases: How to design specific drugs targeting 15 different isoforms? Chem. Rev., 2012, 112(8), 4421-4468.
[http://dx.doi.org/10.1021/cr200176r] [PMID: 22607219]
[29]
Del Prete, S.; Vullo, D.; Fisher, G.M.; Andrews, K.T.; Poulsen, S.A.; Capasso, C.; Supuran, C.T. Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum--the η-carbonic anhydrases. Bioorg. Med. Chem. Lett., 2014, 24(18), 4389-4396.
[http://dx.doi.org/10.1016/j.bmcl.2014.08.015] [PMID: 25168745]
[30]
Kikutani, S.; Nakajima, K.; Nagasato, C.; Tsuji, Y.; Miyatake, A.; Matsuda, Y. Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Proc. Natl. Acad. Sci. USA, 2016, 113(35), 9828-9833.
[http://dx.doi.org/10.1073/pnas.1603112113] [PMID: 27531955]
[31]
Neri, D.; Supuran, C.T. Interfering with pH regulation in tumours as a therapeutic strategy. Nat. Rev. Drug Discov., 2011, 10(10), 767-777.
[http://dx.doi.org/10.1038/nrd3554] [PMID: 21921921]
[32]
Supuran, C.T. Carbonic anhydrase inhibition and the management of hypoxic tumors. Metabolites, 2017, 7(3), E48.
[http://dx.doi.org/10.3390/metabo7030048] [PMID: 28926956]
[33]
De Simone, G.; Supuran, C.T. Carbonic anhydrase IX: Biochemical and crystallographic characterization of a novel antitumor target. Biochim. Biophys. Acta, 2010, 1804(2), 404-409.
[http://dx.doi.org/10.1016/j.bbapap.2009.07.027] [PMID: 19679200]
[34]
Pastorek, J.; Pastorekova, S. Hypoxia-induced carbonic anhydrase IX as a target for cancer therapy: From biology to clinical use. Semin. Cancer Biol., 2015, 31, 52-64.
[http://dx.doi.org/10.1016/j.semcancer.2014.08.002] [PMID: 25117006]
[35]
Monti, S.M.; Supuran, C.T.; De Simone, G. Anticancer carbonic anhydrase inhibitors: A patent review (2008 - 2013). Expert Opin. Ther. Pat., 2013, 23(6), 737-749.
[http://dx.doi.org/10.1517/13543776.2013.798648] [PMID: 23672415]
[36]
Bozdag, M.; Ferraroni, M.; Nuti, E.; Vullo, D.; Rossello, A.; Carta, F.; Scozzafava, A.; Supuran, C.T. Combining the tail and the ring approaches for obtaining potent and isoform-selective carbonic anhydrase inhibitors: Solution and X-ray crystallographic studies. Bioorg. Med. Chem., 2014, 22(1), 334-340.
[http://dx.doi.org/10.1016/j.bmc.2013.11.016] [PMID: 24300919]
[37]
Nocentini, A.; Ferraroni, M.; Carta, F.; Ceruso, M.; Gratteri, P.; Lanzi, C.; Masini, E.; Supuran, C.T. Benzenesulfonamides incorporating flexible Triazole moieties are highly effective carbonic anhydrase inhibitors: Synthesis and kinetic, crystallographic, computational, and intraocular pressure lowering investigations. J. Med. Chem., 2016, 59(23), 10692-10704.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01389] [PMID: 27933963]
[38]
Scozzafava, A.; Menabuoni, L.; Mincione, F.; Briganti, F.; Mincione, G.; Supuran, C.T. Carbonic anhydrase inhibitors. Synthesis of water-soluble, topically effective, intraocular pressure-lowering aromatic/heterocyclic sulfonamides containing cationic or anionic moieties: is the tail more important than the ring? J. Med. Chem., 1999, 42(14), 2641-2650.
[http://dx.doi.org/10.1021/jm9900523] [PMID: 10411484]
[39]
Abdel-Aziz, A.A.M.; El-Azab, A.S.; Abu El-Enin, M.A.; Almehizia, A.A.; Supuran, C.T.; Nocentini, A. Synthesis of novel isoindoline-1,3-dione-based oximes and benzenesulfonamide hydrazones as selective inhibitors of the tumor-associated carbonic anhydrase IX. Bioorg. Chem., 2018, 80, 706-713.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.027] [PMID: 30064081]
[40]
Eldehna, W.M.; Abo-Ashour, M.F.; Nocentini, A.; Gratteri, P.; Eissa, I.H.; Fares, M.; Ismael, O.E.; Ghabbour, H.A.; Elaasser, M.M.; Abdel-Aziz, H.A.; Supuran, C.T. Novel 4/3-((4-oxo-5-(2-oxoindolin-3-ylidene)thiazolidin-2-ylidene)amino) benzenesulfonamides: Synthesis, carbonic anhydrase inhibitory activity, anticancer activity and molecular modelling studies. Eur. J. Med. Chem., 2017, 139, 250-262.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.073] [PMID: 28802125]
[41]
Karalı, N.; Akdemir, A.; Göktaş, F.; Eraslan Elma, P.; Angeli, A.; Kızılırmak, M.; Supuran, C.T. Novel sulfonamide-containing 2-indolinones that selectively inhibit tumor-associated alpha carbonic anhydrases. Bioorg. Med. Chem., 2017, 25(14), 3714-3718.
[http://dx.doi.org/10.1016/j.bmc.2017.05.029] [PMID: 28545816]
[42]
Peerzada, M.N.; Khan, P.; Ahmad, K.; Hassan, M.I.; Azam, A. Synthesis, characterization and biological evaluation of tertiary sulfonamide derivatives of pyridyl-indole based heteroaryl chalcone as potential carbonic anhydrase IX inhibitors and anticancer agents. Eur. J. Med. Chem., 2018, 155, 13-23.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.034] [PMID: 29852328]
[43]
Krasavin, M.; Shetnev, A.; Baykov, S.; Kalinin, S.; Nocentini, A.; Sharoyko, V.; Poli, G.; Tuccinardi, T.; Korsakov, M.; Tennikova, T.B.; Supuran, C.T. Pyridazinone-substituted benzenesulfonamides display potent inhibition of membrane-bound human carbonic anhydrase IX and promising antiproliferative activity against cancer cell lines. Eur. J. Med. Chem., 2019, 168, 301-314.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.044] [PMID: 30826507]
[44]
Cadoni, R.; Pala, N.; Lomelino, C.; Mahon, B.P.; McKenna, R.; Dallocchio, R.; Dessì, A.; Carcelli, M.; Rogolino, D.; Sanna, V.; Rassu, M.; Iaccarino, C.; Vullo, D.; Supuran, C.T.; Sechi, M. Exploring heteroaryl-pyrazole carboxylic acids as human carbonic anhydrase XII inhibitors. ACS Med. Chem. Lett., 2017, 8(9), 941-946.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00229] [PMID: 28947941]
[45]
Samadder, P.; Aithal, R.; Belan, O.; Krejci, L. Cancer TARGETases: DSB repair as a pharmacological target. Pharmacol. Ther., 2016, 161, 111-131.
[http://dx.doi.org/10.1016/j.pharmthera.2016.02.007] [PMID: 26899499]
[46]
Bandyopadhyay, K.; Gjerset, R.A. Protein kinase CK2 is a central regulator of topoisomerase I hyperphosphorylation and camptothecin sensitivity in cancer cell lines. Biochemistry, 2011, 50(5), 704-714.
[http://dx.doi.org/10.1021/bi101110e] [PMID: 21182307]
[47]
Sander, M.; Slaga, T.J.; Trump, B.F.; Harris, C.C. The twenty-second aspen cancer conference: Mechanisms of toxicity, carcinogenesis, cancer prevention, and cancer therapy. Mol. Carcinog., 2008, 47(7), 554-571.
[http://dx.doi.org/10.1002/mc.20408] [PMID: 18092321]
[48]
Bandyopadhyay, K.; Lee, C.; Haghighi, A.; Banères, J.L.; Parello, J.; Gjerset, R.A. Serine phosphorylation-dependent coregulation of topoisomerase I by the p14ARF tumor suppressor. Biochemistry, 2007, 46(49), 14325-14334.
[http://dx.doi.org/10.1021/bi7013618] [PMID: 18004878]
[49]
Bender, R.P.; Osheroff, N. 3 DNA topoisomerases, checkpoint responses. Cancer Ther., 2008, 57.
[50]
Bermejo, R.; Doksani, Y.; Capra, T.; Katou, Y.M.; Tanaka, H.; Shirahige, K.; Foiani, M. Top1- and Top2-mediated topological transitions at replication forks ensure fork progression and stability and prevent DNA damage checkpoint activation. Genes Dev., 2007, 21(15), 1921-1936.
[http://dx.doi.org/10.1101/gad.432107] [PMID: 17671091]
[51]
Pommier, Y.; Sun, Y.; Huang, S.N.; Nitiss, J.L. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell Biol., 2016, 17(11), 703-721.
[http://dx.doi.org/10.1038/nrm.2016.111] [PMID: 27649880]
[52]
Cheng, K.; Rahier, N.J.; Eisenhauer, B.M.; Gao, R.; Thomas, S.J.; Hecht, S.M. 14-azacamptothecin: A potent water-soluble topoisomerase I poison. J. Am. Chem. Soc., 2005, 127(3), 838-839.
[http://dx.doi.org/10.1021/ja0442769] [PMID: 15656613]
[53]
Staker, B.L.; Feese, M.D.; Cushman, M.; Pommier, Y.; Zembower, D.; Stewart, L.; Burgin, A.B. Structures of three classes of anticancer agents bound to the human topoisomerase I-DNA covalent complex. J. Med. Chem., 2005, 48(7), 2336-2345.
[http://dx.doi.org/10.1021/jm049146p] [PMID: 15801827]
[54]
Marco, E.; Laine, W.; Tardy, C.; Lansiaux, A.; Iwao, M.; Ishibashi, F.; Bailly, C.; Gago, F. Molecular determinants of topoisomerase I poisoning by lamellarins: Comparison with camptothecin and structure-activity relationships. J. Med. Chem., 2005, 48(11), 3796-3807.
[http://dx.doi.org/10.1021/jm049060w] [PMID: 15916431]
[55]
Cushman, M.; Jayaraman, M.; Vroman, J.A.; Fukunaga, A.K.; Fox, B.M.; Kohlhagen, G.; Strumberg, D.; Pommier, Y. Synthesis of new indeno[1,2-c]isoquinolines: cytotoxic non-camptothecin topoisomerase I inhibitors. J. Med. Chem., 2000, 43(20), 3688-3698.
[http://dx.doi.org/10.1021/jm000029d] [PMID: 11020283]
[56]
Xu, Y.; Wu, L.; Rashid, H.U.; Jing, D.; Liang, X.; Wang, H.; Liu, X.; Jiang, J.; Wang, L.; Xie, P. Novel indolo-sophoridinic scaffold as Topo I inhibitors: Design, synthesis and biological evaluation as anticancer agents. Eur. J. Med. Chem., 2018, 156, 479-492.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.028] [PMID: 30025344]
[57]
Haider, M.R.; Ahmad, K.; Siddiqui, N.; Ali, Z.; Akhtar, M.J.; Fuloria, N.; Fuloria, S.; Ravichandran, M.; Yar, M.S. Novel 9-(2-(1-arylethylidene)hydrazinyl)acridine derivatives: Target Topoisomerase 1 and growth inhibition of HeLa cancer cells. Bioorg. Chem., 2019, 88, 102962.
[http://dx.doi.org/10.1016/j.bioorg.2019.102962] [PMID: 31085373]
[58]
Kaur, G.; Cholia, R.P.; Joshi, G.; Amrutkar, S.M.; Kalra, S.; Mantha, A.K.; Banerjee, U.C.; Kumar, R. Anticancer activity of dihydropyrazolo[1,5-c]quinazolines against rat C6 glioma cells via inhibition of topoisomerase II. Arch. Pharm. Chem. Life Sci., 2018., 1800023.
[59]
Li, D.; Yuan, Z.; Chen, S.; Zhang, C.; Song, L.; Gao, C.; Chen, Y.; Tan, C.; Jiang, Y. Synthesis and biological research of novel azaacridine derivatives as potent DNA-binding ligands and topoisomerase II inhibitors. Bioorg. Med. Chem., 2017, 25(13), 3437-3446.
[http://dx.doi.org/10.1016/j.bmc.2017.04.030] [PMID: 28511910]
[60]
Thapa, P.; Kadayat, T.M.; Park, S.; Shin, S.; Thapa Magar, T.B.; Bist, G.; Shrestha, A.; Na, Y.; Kwon, Y.; Lee, E.S. Synthesis and biological evaluation of 2-phenol-4-chlorophenyl-6-aryl pyridines as topoisomerase II inhibitors and cytotoxic agents. Bioorg. Chem., 2016, 66, 145-159.
[http://dx.doi.org/10.1016/j.bioorg.2016.04.007] [PMID: 27174797]
[61]
Minniti, E.; Byl, J.A.W.; Riccardi, L.; Sissi, C.; Rosini, M.; De Vivo, M.; Minarini, A.; Osheroff, N. Novel xanthone-polyamine conjugates as catalytic inhibitors of human topoisomerase IIα. Bioorg. Med. Chem. Lett., 2017, 27(20), 4687-4693.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.011] [PMID: 28919339]
[62]
Murugavel, S.; Ravikumar, C.; Jaabil, G.; Alagusundaram, P. Synthesis, computational quantum chemical study, in silico ADMET and molecular docking analysis, in vitro biological evaluation of a novel sulfur heterocyclic thiophene derivative containing 1,2,3-triazole and pyridine moieties as a potential human topoisomerase IIα inhibiting anticancer agent. Comput. Biol. Chem., 2019, 79, 73-82.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.01.013] [PMID: 30731361]
[63]
Hassanin, H.M.; Serya, R.A.T.; Abd Elmoneam, W.R.; Mostafa, M.A. Synthesis and molecular docking studies of some novel Schiff bases incorporating 6-butylquinolinedione moiety as potential topoisomerase IIβ inhibitors. R. Soc. Open Sci., 2018, 5(6), 172407.
[http://dx.doi.org/10.1098/rsos.172407] [PMID: 30110445]
[64]
de Oliveira, J.F.; Lima, T.S.; Vendramini-Costa, D.B.; de Lacerda Pedrosa, S.C.B.; Lafayette, E.A.; da Silva, R.M.F.; de Almeida, S.M.V.; de Moura, R.O.; Ruiz, A.L.T.G.; de Carvalho, J.E.; de Lima, M.D.C.A. Thiosemicarbazones and 4-thiazolidinones indole-based derivatives: Synthesis, evaluation of antiproliferative activity, cell death mechanisms and topoisomerase inhibition assay. Eur. J. Med. Chem., 2017, 136, 305-314.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.023] [PMID: 28505535]
[65]
Shrestha, A.; Park, S.; Jang, H.J.; Katila, P.; Shrestha, R.; Kwon, Y.; Lee, E.S. A new phenolic series of indenopyridinone as topoisomerase inhibitors: Design, synthesis, and structure-activity relationships. Bioorg. Med. Chem., 2018, 26(18), 5212-5223.
[http://dx.doi.org/10.1016/j.bmc.2018.09.021] [PMID: 30262132]
[66]
Sathish, M.; Chetan Dushantrao, S.; Nekkanti, S.; Tokala, R.; Thatikonda, S.; Tangella, Y.; Srinivas, G.; Cherukommu, S.; Hari Krishna, N.; Shankaraiah, N.; Nagesh, N.; Kamal, A. Synthesis of DNA interactive C3-trans-cinnamide linked β-carboline conjugates as potential cytotoxic and DNA topoisomerase I inhibitors. Bioorg. Med. Chem., 2018, 26(17), 4916-4929.
[http://dx.doi.org/10.1016/j.bmc.2018.08.031] [PMID: 30172625]
[67]
Krokidis, M.G.; Molphy, Z.; Efthimiadou, E.K.; Kokoli, M.; Argyri, S.M.; Dousi, I.; Masi, A.; Papadopoulos, K.; Kellett, A.; Chatgilialoglu, C. Assessment of DNA topoisomerase I unwinding activity, radical scavenging capacity, and inhibition of breast cancer cell viability of N-alkyl-acridones and N,N′-dialkyl-9,9′-biacridylidenes. Biomolecules, 2019, 9(5), 177.
[http://dx.doi.org/10.3390/biom9050177] [PMID: 31072044]
[68]
Ibrahim, M.K.; Taghour, M.S.; Metwaly, A.M.; Belal, A.; Mehany, A.B.M.; Elhendawy, M.A.; Radwan, M.M.; Yassin, A.M.; El-Deeb, N.M.; Hafez, E.E.; ElSohly, M.A.; Eissa, I.H. Design, synthesis, molecular modeling and anti-proliferative evaluation of novel quinoxaline derivatives as potential DNA intercalators and topoisomerase II inhibitors. Eur. J. Med. Chem., 2018, 155, 117-134.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.004] [PMID: 29885574]
[69]
Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265.
[http://dx.doi.org/10.1038/nrc1317] [PMID: 15057285]
[70]
Stanton, R.A.; Gernert, K.M.; Nettles, J.H.; Aneja, R. Drugs that target dynamic microtubules: a new molecular perspective. Med. Res. Rev., 2011, 31(3), 443-481.
[http://dx.doi.org/10.1002/med.20242] [PMID: 21381049]
[71]
Chen, J.; Liu, T.; Wu, R.; Lou, J.; Dong, X.; He, Q.; Yang, B.; Hu, Y. Design, synthesis, and biological evaluation of novel γ-carboline ketones as anticancer agents. Eur. J. Med. Chem., 2011, 46(4), 1343-1347.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.057] [PMID: 21342735]
[72]
Downing, K.H. Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annu. Rev. Cell Dev. Biol., 2000, 16, 89-111.
[http://dx.doi.org/10.1146/annurev.cellbio.16.1.89] [PMID: 11031231]
[73]
Lu, Y.; Chen, J.; Xiao, M.; Li, W.; Miller, D.D. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm. Res., 2012, 29(11), 2943-2971.
[http://dx.doi.org/10.1007/s11095-012-0828-z] [PMID: 22814904]
[74]
Carlson, R.O. New tubulin targeting agents currently in clinical development. Expert Opin. Investig. Drugs, 2008, 17(5), 707-722.
[http://dx.doi.org/10.1517/13543784.17.5.707] [PMID: 18447597]
[75]
Boyer, F.D.; Dubois, J.; Thoret, S.; Dau, M.E.; Hanna, I. Synthesis and tubulin-binding properties of new allocolchicinoids. Bioorg. Chem., 2010, 38(4), 149-158.
[http://dx.doi.org/10.1016/j.bioorg.2010.03.003] [PMID: 20359734]
[76]
Beswick, R.W.; Ambrose, H.E.; Wagner, S.D. Nocodazole, a microtubule de-polymerising agent, induces apoptosis of chronic lymphocytic leukaemia cells associated with changes in Bcl-2 phosphorylation and expression. Leuk. Res., 2006, 30(4), 427-436.
[http://dx.doi.org/10.1016/j.leukres.2005.08.009] [PMID: 16162358]
[77]
Majcher, U.; Klejborowska, G.; Kaik, M.; Maj, E.; Wietrzyk, J.; Moshari, M.; Preto, J.; Tuszynski, J.A.; Huczyński, A. Synthesis and biological evaluation of novel triple-modified colchicine derivatives as potent tubulin-targeting anticancer agents. Cells, 2018, 7(11), 216.
[http://dx.doi.org/10.3390/cells7110216] [PMID: 30463236]
[78]
Vishnuvardhan, M.V.P.S.; Reddy, S.V.; Chandrasekhar, K.; Lakshma Nayak, V.; Sayeed, I.B.; Alarifi, A.; Kamal, A. Click chemistry-assisted synthesis of triazolo linked podophyllotoxin conjugates as tubulin polymerization inhibitors. MedChemComm, 2017, 8(9), 1817-1823.
[http://dx.doi.org/10.1039/C7MD00273D] [PMID: 30108892]
[79]
Sun, W.X.; Ji, Y.J.; Wan, Y.; Han, H.W.; Lin, H.Y.; Lu, G.H.; Qi, J.L.; Wang, X.M.; Yang, Y.H. Design and synthesis of piperazine acetate podophyllotoxin ester derivatives targeting tubulin depolymerization as new anticancer agents. Bioorg. Med. Chem. Lett., 2017, 27(17), 4066-4074.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.047] [PMID: 28757065]
[80]
Sayeed, I.B.; Vishnuvardhan, M.V.P.S.; Nagarajan, A.; Kantevari, S.; Kamal, A. Imidazopyridine linked triazoles as tubulin inhibitors, effectively triggering apoptosis in lung cancer cell line. Bioorg. Chem., 2018, 80, 714-720.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.026] [PMID: 30075408]
[81]
Tantak, M.P.; Klingler, L.; Arun, V.; Kumar, A.; Sadana, R.; Kumar, D. Design and synthesis of bis(indolyl)ketohydrazide-hydrazones: Identification of potent and selective novel tubulin inhibitors. Eur. J. Med. Chem., 2017, 136, 184-194.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.078] [PMID: 28494255]
[82]
Govindaiah, P.; Dumala, N.; Grover, P.; Jaya Prakash, M. Synthesis and biological evaluation of novel 4,7-dihydroxycoumarin derivatives as anticancer agents. Bioorg. Med. Chem. Lett., 2019, 29(14), 1819-1824.
[http://dx.doi.org/10.1016/j.bmcl.2019.05.008] [PMID: 31104996]
[83]
Luo, Y.; Zhou, Y.; Song, Y.; Chen, G.; Wang, Y.X.; Tian, Y.; Fan, W.W.; Yang, Y.S.; Cheng, T.; Zhu, H.L. Optimization of substituted cinnamic acyl sulfonamide derivatives as tubulin polymerization inhibitors with anticancer activity. Bioorg. Med. Chem. Lett., 2018, 28(23-24), 3634-3638.
[http://dx.doi.org/10.1016/j.bmcl.2018.10.037] [PMID: 30389289]
[84]
Wang, G.; Peng, Z.; Peng, S.; Qiu, J.; Li, Y.; Lan, Y. (E)-N-Aryl-2-oxo-2-(3,4,5-trimethoxyphenyl)acetohydrazonoyl cyanides as tubulin polymerization inhibitors: Structure-based bioisosterism design, synthesis, biological evaluation, molecular docking and in silico ADME prediction. Bioorg. Med. Chem. Lett., 2018, 28(20), 3350-3355.
[http://dx.doi.org/10.1016/j.bmcl.2018.09.004] [PMID: 30197030]
[85]
Alswah, M.; Bayoumi, A.H.; Elgamal, K.; Elmorsy, A.; Ihmaid, S.; Ahmed, H.E.A. Design, synthesis and cytotoxic evaluation of novel chalcone derivatives bearing triazolo[4,3-a]-quinoxaline moieties as potent anticancer agents with dual EGFR kinase and tubulin polymerization inhibitory effects. Molecules, 2017, 23(1), 48.
[http://dx.doi.org/10.3390/molecules23010048] [PMID: 29280968]
[86]
Briguglio, I.; Laurini, E.; Pirisi, M.A.; Piras, S.; Corona, P.; Fermeglia, M.; Pricl, S.; Carta, A. Triazolopyridinyl-acrylonitrile derivatives as antimicrotubule agents: Synthesis, in vitro and in silico characterization of antiproliferative activity, inhibition of tubulin polymerization and binding thermodynamics. Eur. J. Med. Chem., 2017, 141, 460-472.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.065] [PMID: 29055869]
[87]
Shankaraiah, N.; Nekkanti, S.; Brahma, U.R.; Praveen Kumar, N.; Deshpande, N.; Prasanna, D.; Senwar, K.R.; Jaya Lakshmi, U. Synthesis of different heterocycles-linked chalcone conjugates as cytotoxic agents and tubulin polymerization inhibitors. Bioorg. Med. Chem., 2017, 25(17), 4805-4816.
[http://dx.doi.org/10.1016/j.bmc.2017.07.031] [PMID: 28774575]
[88]
Estévez-Sarmiento, F.; Said, M.; Brouard, I.; León, F.; García, C.; Quintana, J.; Estévez, F. 3′-Hydroxy-3,4′-dimethoxyflavone blocks tubulin polymerization and is a potent apoptotic inducer in human SK-MEL-1 melanoma cells. Bioorg. Med. Chem., 2017, 25(21), 6060-6070.
[http://dx.doi.org/10.1016/j.bmc.2017.09.043] [PMID: 29032930]
[89]
Guggilapu, S.D.; Guntuku, L.; Reddy, T.S.; Nagarsenkar, A.; Sigalapalli, D.K.; Naidu, V.G.M.; Bhargava, S.K.; Bathini, N.B. Synthesis of thiazole linked indolyl-3-glyoxylamide derivatives as tubulin polymerization inhibitors. Eur. J. Med. Chem., 2017, 138, 83-95.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.025] [PMID: 28648953]
[90]
Kazan, F.; Yagci, Z.B.; Bai, R.; Ozkirimli, E.; Hamel, E.; Ozkirimli, S. Synthesis and biological evaluation of indole-2-carbohydrazides and thiazolidinyl-indole-2-carboxamides as potent tubulin polymerization inhibitors. Comput. Biol. Chem., 2019, 80, 512-523.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.05.002] [PMID: 31185422]
[91]
Elmeligie, S.; Khalil, N.A.; Ahmed, E.M.; Emam, S.H.; Zaitone, S.A.B. Synthesis of new N1-substituted-5-aryl-3-(3,4,5-trimethoxyphenyl)-2-pyrazoline derivatives as antitumor agents targeting the colchicine site on tubulin. Biol. Pharm. Bull., 2016, 39(10), 1611-1622.
[http://dx.doi.org/10.1248/bpb.b16-00277] [PMID: 27725438]
[92]
Zuber, G.; Quada, J.C., Jr; Hecht, S.M. Sequence selective cleavage of a DNA octanucleotide by chlorinated bithiazoles and bleomycins. J. Am. Chem. Soc., 1998, 120, 9368-9369.
[http://dx.doi.org/10.1021/ja981937r]
[93]
Shankaraiah, N.; Jadala, C.; Nekkanti, S.; Senwar, K.R.; Nagesh, N.; Shrivastava, S.N.; Sathish, V.G.M.; Kamal, A. Design and synthesis of C3-tethered 1,2,3-triazolo-b-carboline derivatives: Anticancer activity, DNA-binding ability, viscosity and molecular modeling studies. Bioorg. Chem., 2016, 64, 42-50.
[http://dx.doi.org/10.1016/j.bioorg.2015.11.005] [PMID: 26657602]
[94]
Esteghamat-Panah, R.; Hadadzadeh, H.; Farrokhpour, H.; Simpson, J.; Abdolmaleki, A.; Abyar, F. Synthesis, structure, DNA/protein binding, and cytotoxic activity of a rhodium(III) complex with 2,6-bis(2-benzimidazolyl)pyridine. Eur. J. Med. Chem., 2017, 127, 958-971.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.005] [PMID: 27836194]
[95]
Ramana, M.M.V.; Betkar, R.; Nimkar, A.; Ranade, P.; Mundhe, B.; Pardeshi, S. Synthesis of a novel 4H-pyran analog as minor groove binder to DNA using ethidium bromide as fluorescence probe. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 152, 165-171.
[http://dx.doi.org/10.1016/j.saa.2015.07.037] [PMID: 26208271]
[96]
Hecht, S.M. Bleomycin: New perspectives on the mechanism of action. J. Nat. Prod., 2000, 63(1), 158-168.
[http://dx.doi.org/10.1021/np990549f] [PMID: 10650103]
[97]
Braña, M.F.; Cacho, M.; Gradillas, A.; de Pascual-Teresa, B.; Ramos, A. Intercalators as anticancer drugs. Curr. Pharm. Des., 2001, 7(17), 1745-1780.
[http://dx.doi.org/10.2174/1381612013397113] [PMID: 11562309]
[98]
Agudelo, D.; Bourassa, P.; Bérubé, G.; Tajmir-Riahi, H.A. Intercalation of antitumor drug doxorubicin and its analogue by DNA duplex: Structural features and biological implications. Int. J. Biol. Macromol., 2014, 66, 144-150.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.02.028] [PMID: 24560949]
[99]
Hajihassan, Z.; Rabbani-Chadegani, A. Studies on the binding affinity of anticancer drug mitoxantrone to chromatin, DNA and histone proteins. J. Biomed. Sci., 2009, 16(31), 31.
[http://dx.doi.org/10.1186/1423-0127-16-31] [PMID: 19284573]
[100]
Sung, W.J.; Kim, D.H.; Sohn, S.K.; Kim, J.G.; Baek, J.H.; Jeon, S.B.; Moon, J.H.; Ahn, B.M.; Lee, K.B. Phase II trial of amsacrine plus Intermediate-Dose Ara-C (IDAC) with or without etoposide as salvage therapy for refractory or relapsed acute leukemia. Jpn. J. Clin. Oncol., 2005, 35(10), 612-616.
[http://dx.doi.org/10.1093/jjco/hyi149] [PMID: 16172175]
[101]
Hassan, G.S.; El-Messery, S.M.; Abbas, A. Synthesis and anticancer activity of new thiazolo[3,2-a]pyrimidines: DNA binding and molecular modeling study. Bioorg. Chem., 2017, 74, 41-52.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.008] [PMID: 28750204]
[102]
Joksimović, N.; Petronijević, J.; Janković, N.; Baskić, D.; Popović, S.; Todorović, D.; Matić, S.; Bogdanović, G.A.; Vraneš, M.; Tot, A.; Bugarčić, Z. Synthesis, characterization, anticancer evaluation and mechanisms of cytotoxic activity of novel 3-hydroxy-3-pyrrolin-2-ones bearing thenoyl fragment: DNA, BSA interactions and molecular docking study. Bioorg. Chem., 2019, 88, 102954.
[http://dx.doi.org/10.1016/j.bioorg.2019.102954] [PMID: 31054428]
[103]
El-Gohary, N.S.; Gabr, M.T.; Shaaban, M.I. Synthesis, molecular modeling and biological evaluation of new pyrazolo[3,4-b]pyridine analogs as potential antimicrobial, antiquorum-sensing and anticancer agents. Bioorg. Chem., 2019, 89, 102976.
[http://dx.doi.org/10.1016/j.bioorg.2019.102976] [PMID: 31103494]
[104]
Khomenko, T.; Zakharenko, A.; Odarchenko, T.; Arabshahi, H.J.; Sannikova, V.; Zakharova, O.; Korchagina, D.; Reynisson, J.; Volcho, K.; Salakhutdinov, N.; Lavrik, O. New inhibitors of tyrosyl-DNA phosphodiesterase I (Tdp 1) combining 7-hydroxycoumarin and monoterpenoid moieties. Bioorg. Med. Chem., 2016, 24(21), 5573-5581.
[http://dx.doi.org/10.1016/j.bmc.2016.09.016] [PMID: 27658793]
[105]
Xie, R.; Li, Y.; Tang, P.; Yuan, Q. Rational design, synthesis and preliminary antitumor activity evaluation of a chlorambucil derivative with potent DNA/HDAC dual-targeting inhibitory activity. Bioorg. Med. Chem. Lett., 2017, 27(18), 4415-4420.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.011] [PMID: 28818449]
[106]
Sankarganesh, M.; Dhaveethu Raja, J.; Sakthikumar, K.; Solomon, R.V.; Rajesh, J.; Athimoolam, S.; Vijayakumar, V. New bio-sensitive and biologically active single crystal of pyrimidine scaffold ligand and its gold and platinum complexes: DFT, antimicrobial, antioxidant, DNA interaction, molecular docking with DNA/BSA and anticancer studies. Bioorg. Chem., 2018, 81, 144-156.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.006] [PMID: 30121002]
[107]
Park, J.; Thomas, S.; Munster, P.N. Epigenetic modulation with histone deacetylase inhibitors in combination with immunotherapy. Epigenomics, 2015, 7(4), 641-652.
[http://dx.doi.org/10.2217/epi.15.16] [PMID: 26111034]
[108]
New, M.; Olzscha, H.; La Thangue, N.B. HDAC inhibitor-based therapies: Can we interpret the code? Mol. Oncol., 2012, 6(6), 637-656.
[http://dx.doi.org/10.1016/j.molonc.2012.09.003] [PMID: 23141799]
[109]
Ropero, S.; Esteller, M. The role of Histone Deacetylases (HDACs) in human cancer. Mol. Oncol., 2007, 1(1), 19-25.
[http://dx.doi.org/10.1016/j.molonc.2007.01.001] [PMID: 19383284]
[110]
Mottet, D.; Castronovo, V. Histone deacetylases: Target enzymes for cancer therapy. Clin. Exp. Metastasis, 2008, 25(2), 183-189.
[http://dx.doi.org/10.1007/s10585-007-9131-5] [PMID: 18058245]
[111]
Wang, H.; Dymock, B.W. New patented histone deacetylase inhibitors. Expert Opin. Ther. Pat., 2009, 19(12), 1727-1757.
[http://dx.doi.org/10.1517/13543770903393789] [PMID: 19939190]
[112]
Bouchain, G.; Delorme, D. Novel hydroxamate and anilide derivatives as potent histone deacetylase inhibitors: Synthesis and antiproliferative evaluation. Curr. Med. Chem., 2003, 10(22), 2359-2372.
[http://dx.doi.org/10.2174/0929867033456585] [PMID: 14529479]
[113]
Kavanaugh, S.M.; White, L.A.; Kolesar, J.M. Vorinostat: A novel therapy for the treatment of cutaneous T-cell lymphoma. Am. J. Health Syst. Pharm., 2010, 67(10), 793-797.
[http://dx.doi.org/10.2146/ajhp090247] [PMID: 20479100]
[114]
Bose, P.; Dai, Y.; Grant, S. Histone Deacetylase Inhibitor (HDACI) mechanisms of action: Emerging insights. Pharmacol. Ther., 2014, 143(3), 323-336.
[http://dx.doi.org/10.1016/j.pharmthera.2014.04.004] [PMID: 24769080]
[115]
Trivedi, P.; Adhikari, N.; Amin, S.A.; Jha, T.; Ghosh, B. Design, synthesis and biological screening of 2-aminobenzamides as selective HDAC3 inhibitors with promising anticancer effects. Eur. J. Pharm. Sci., 2018, 124, 165-181.
[http://dx.doi.org/10.1016/j.ejps.2018.08.030] [PMID: 30171982]
[116]
Pidugu, V.R.; Yarla, N.S.; Pedada, S.R.; Kalle, A.M.; Satya, A.K. Design and synthesis of novel HDAC8 inhibitory 2,5-disubstituted-1,3,4-oxadiazoles containing glycine and alanine hybrids with anti cancer activity. Bioorg. Med. Chem., 2016, 24(21), 5611-5617.
[http://dx.doi.org/10.1016/j.bmc.2016.09.022] [PMID: 27665180]
[117]
Zhang, Q.; Lu, B.; Li, J. Design, synthesis and biological evaluation of 4-piperazinyl-containing Chidamide derivatives as HDACs inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(14), 3162-3166.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.026] [PMID: 28532668]
[118]
Tan, S.; He, F.; Kong, T.; Wu, J.; Liu, Z. Design, synthesis and tumor cell growth inhibitory activity of 3-nitro-2H-cheromene derivatives as histone deacetylaes inhibitors. Bioorg. Med. Chem., 2017, 25(15), 4123-4132.
[http://dx.doi.org/10.1016/j.bmc.2017.05.062] [PMID: 28629630]
[119]
Gao, S.; Zang, J.; Gao, Q.; Liang, X.; Ding, Q.; Li, X.; Xu, W.; Chou, C.J.; Zhang, Y. Design, synthesis and anti-tumor activity study of novel histone deacetylase inhibitors containing isatin-based caps and o-phenylenediamine-based zinc binding groups. Bioorg. Med. Chem., 2017, 25(12), 2981-2994.
[http://dx.doi.org/10.1016/j.bmc.2017.03.036] [PMID: 28511906]
[120]
Duan, Y.C.; Ma, Y.C.; Qin, W.P.; Ding, L.N.; Zheng, Y.C.; Zhu, Y.L.; Zhai, X.Y.; Yang, J.; Ma, C.Y.; Guan, Y.Y. Design and synthesis of tranylcypromine derivatives as novel LSD1/HDACs dual inhibitors for cancer treatment. Eur. J. Med. Chem., 2017, 140, 392-402.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.038] [PMID: 28987602]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy