Review Article

基于Ghrelin的代谢性疾病治疗

卷 28, 期 13, 2021

发表于: 15 June, 2020

页: [2565 - 2576] 页: 12

弟呕挨: 10.2174/0929867327666200615152804

价格: $65

摘要

背景:Ghrelin是胃X / A样细胞分泌的独特的28个氨基酸的肽激素,是生长激素促分泌素受体(GHSR)的内源性配体。已经发现Ghrelin-GHSR信号传导发挥各种生理功能,包括刺激食欲,调节体重,脂质和葡萄糖代谢以及增加肠蠕动和分泌。因此,该系统对于能量稳态至关重要。 目的:本综述的目的是强调基于生长素释放肽-GHSR的肥胖症及其相关代谢性疾病的治疗策略。 结果:针对ghrelin-GHSR途径的代谢紊乱的治疗策略包括抗体和RNA spiegelmers对ghrelin循环中和,ghrelin受体的拮抗剂和反向激动剂的拮抗作用,ghrelin O-酰基转移酶(GOAT)的抑制作用以及潜在的药理作用减少生长素释放肽合成和分泌的方法。 结论:多种针对ghrelin-GHSR系统的化合物在动物和体外干预肥胖和相关代谢紊乱方面显示出有希望的疗效。迫切需要进一步的临床试验,以验证其在人类中的功效。

关键词: Ghrelin,生长激素促分泌素受体(GHSR),治疗策略,肥胖症,体重,食物摄入量。

[1]
Berrington de Gonzalez, A.; Hartge, P.; Cerhan, J.R.; Flint, A.J.; Hannan, L.; MacInnis, R.J.; Moore, S.C.; Tobias, G.S.; Anton-Culver, H.; Freeman, L.B.; Beeson, W.L.; Clipp, S.L.; English, D.R.; Folsom, A.R.; Freedman, D.M.; Giles, G.; Hakansson, N.; Henderson, K.D.; Hoffman-Bolton, J.; Hoppin, J.A.; Koenig, K.L.; Lee, I.M.; Linet, M.S.; Park, Y.; Pocobelli, G.; Schatzkin, A.; Sesso, H.D.; Weiderpass, E.; Willcox, B.J.; Wolk, A.; Zeleniuch-Jacquotte, A.; Willett, W.C.; Thun, M.J. Body-mass index and mortality among 1.46 million white adults. N. Engl. J. Med., 2010, 363(23), 2211-2219.
[http://dx.doi.org/10.1056/NEJMoa1000367] [PMID: 21121834]
[2]
Whitlock, G.; Lewington, S.; Sherliker, P.; Clarke, R.; Emberson, J.; Halsey, J.; Qizilbash, N.; Collins, R.; Peto, R. Prospective Studies Collaboration. Body-mass index and cause-specific mortality in 900,000 adults: collaborative analyses of 57 prospective studies. Lancet, 2009, 373(9669), 1083-1096.
[http://dx.doi.org/10.1016/S0140-6736(09)60318-4] [PMID: 19299006]
[3]
Fontaine, K.R.; Redden, D.T.; Wang, C.; Westfall, A.O.; Allison, D.B. Years of life lost due to obesity. JAMA, 2003, 289(2), 187-193.
[http://dx.doi.org/10.1001/jama.289.2.187] [PMID: 12517229]
[4]
Blüher, M. Obesity: global epidemiology and pathogenesis. Nat. Rev. Endocrinol., 2019, 15(5), 288-298.
[http://dx.doi.org/10.1038/s41574-019-0176-8] [PMID: 30814686]
[5]
Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, 1999, 402(6762), 656-660.
[http://dx.doi.org/10.1038/45230] [PMID: 10604470]
[6]
Davenport, A.P.; Bonner, T.I.; Foord, S.M.; Harmar, A.J.; Neubig, R.R.; Pin, J.P.; Spedding, M.; Kojima, M.; Kangawa, K. International Union of Pharmacology. LVI. Ghrelin receptor nomenclature, distribution, and function. Pharmacol. Rev., 2005, 57(4), 541-546.
[http://dx.doi.org/10.1124/pr.57.4.1] [PMID: 16382107]
[7]
Guan, X.M.; Yu, H.; Palyha, O.C.; McKee, K.K.; Feighner, S.D.; Sirinathsinghji, D.J.; Smith, R.G.; Van der Ploeg, L.H.; Howard, A.D. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res. Mol. Brain Res., 1997, 48(1), 23-29.
[http://dx.doi.org/10.1016/S0169-328X(97)00071-5] [PMID: 9379845]
[8]
Papotti, M.; Ghè, C.; Cassoni, P.; Catapano, F.; Deghenghi, R.; Ghigo, E.; Muccioli, G. Growth hormone secretagogue binding sites in peripheral human tissues. J. Clin. Endocrinol. Metab., 2000, 85(10), 3803-3807.
[http://dx.doi.org/10.1210/jc.85.10.3803] [PMID: 11061542]
[9]
Gnanapavan, S.; Kola, B.; Bustin, S.A.; Morris, D.G.; McGee, P.; Fairclough, P.; Bhattacharya, S.; Carpenter, R.; Grossman, A.B.; Korbonits, M. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J. Clin. Endocrinol. Metab., 2002, 87(6), 2988.
[http://dx.doi.org/10.1210/jcem.87.6.8739] [PMID: 12050285]
[10]
Volante, M.; Allìa, E.; Gugliotta, P.; Funaro, A.; Broglio, F.; Deghenghi, R.; Muccioli, G.; Ghigo, E.; Papotti, M. Expression of ghrelin and of the GH secretagogue receptor by pancreatic islet cells and related endocrine tumors. J. Clin. Endocrinol. Metab., 2002, 87(3), 1300-1308.
[http://dx.doi.org/10.1210/jcem.87.3.8279] [PMID: 11889202]
[11]
Prado, C.L.; Pugh-Bernard, A.E.; Elghazi, L.; Sosa-Pineda, B.; Sussel, L. Ghrelin cells replace insulin-producing beta cells in two mouse models of pancreas development. Proc. Natl. Acad. Sci. USA, 2004, 101(9), 2924-2929.
[http://dx.doi.org/10.1073/pnas.0308604100] [PMID: 14970313]
[12]
Volante, M.; Allia, E.; Fulcheri, E.; Cassoni, P.; Ghigo, E.; Muccioli, G.; Papotti, M. Ghrelin in fetal thyroid and follicular tumors and cell lines: expression and effects on tumor growth. Am. J. Pathol., 2003, 162(2), 645-654.
[http://dx.doi.org/10.1016/S0002-9440(10)63858-8] [PMID: 12547722]
[13]
Ariyasu, H.; Takaya, K.; Tagami, T.; Ogawa, Y.; Hosoda, K.; Akamizu, T.; Suda, M.; Koh, T.; Natsui, K.; Toyooka, S.; Shirakami, G.; Usui, T.; Shimatsu, A.; Doi, K.; Hosoda, H.; Kojima, M.; Kangawa, K.; Nakao, K. Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J. Clin. Endocrinol. Metab., 2001, 86(10), 4753-4758.
[http://dx.doi.org/10.1210/jcem.86.10.7885] [PMID: 11600536]
[14]
Date, Y.; Nakazato, M.; Hashiguchi, S.; Dezaki, K.; Mondal, M.S.; Hosoda, H.; Kojima, M.; Kangawa, K.; Arima, T.; Matsuo, H.; Yada, T.; Matsukura, S. Ghrelin is present in pancreatic alpha-cells of humans and rats and stimulates insulin secretion. Diabetes, 2002, 51(1), 124-129.
[http://dx.doi.org/10.2337/diabetes.51.1.124] [PMID: 11756331]
[15]
Korbonits, M.; Kojima, M.; Kangawa, K.; Grossman, A.B. Presence of ghrelin in normal and adenomatous human pituitary. Endocrine, 2001, 14(1), 101-104.
[http://dx.doi.org/10.1385/ENDO:14:1:101] [PMID: 11322490]
[16]
Korbonits, M.; Bustin, S.A.; Kojima, M.; Jordan, S.; Adams, E.F.; Lowe, D.G.; Kangawa, K.; Grossman, A.B. The expression of the growth hormone secretagogue receptor ligand ghrelin in normal and abnormal human pituitary and other neuroendocrine tumors. J. Clin. Endocrinol. Metab., 2001, 86(2), 881-887.
[http://dx.doi.org/10.1210/jc.86.2.881] [PMID: 11158061]
[17]
Cowley, M.A.; Smith, R.G.; Diano, S.; Tschöp, M.; Pronchuk, N.; Grove, K.L.; Strasburger, C.J.; Bidlingmaier, M.; Esterman, M.; Heiman, M.L.; Garcia-Segura, L.M.; Nillni, E.A.; Mendez, P.; Low, M.J.; Sotonyi, P.; Friedman, J.M.; Liu, H.; Pinto, S.; Colmers, W.F.; Cone, R.D.; Horvath, T.L. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron, 2003, 37(4), 649-661.
[http://dx.doi.org/10.1016/S0896-6273(03)00063-1] [PMID: 12597862]
[18]
Hou, Z.; Miao, Y.; Gao, L.; Pan, H.; Zhu, S. Ghrelin-containing neuron in cerebral cortex and hypothalamus linked with the DVC of brainstem in rat. Regul. Pept., 2006, 134(2-3), 126-131.
[http://dx.doi.org/10.1016/j.regpep.2006.02.005] [PMID: 16600402]
[19]
Mori, K.; Yoshimoto, A.; Takaya, K.; Hosoda, K.; Ariyasu, H.; Yahata, K.; Mukoyama, M.; Sugawara, A.; Hosoda, H.; Kojima, M.; Kangawa, K.; Nakao, K. Kidney produces a novel acylated peptide, ghrelin. FEBS Lett., 2000, 486(3), 213-216.
[http://dx.doi.org/10.1016/S0014-5793(00)02308-5] [PMID: 11119706]
[20]
Beiras-Fernandez, A.; Kreth, S.; Weis, F.; Ledderose, C.; Pöttinger, T.; Dieguez, C.; Beiras, A.; Reichart, B. Altered myocardial expression of ghrelin and its receptor (GHSR-1a) in patients with severe heart failure. Peptides, 2010, 31(12), 2222-2228.
[http://dx.doi.org/10.1016/j.peptides.2010.08.019] [PMID: 20804798]
[21]
Volante, M.; Fulcheri, E.; Allìa, E.; Cerrato, M.; Pucci, A.; Papotti, M. Ghrelin expression in fetal, infant, and adult human lung. J. Histochem. Cytochem., 2002, 50(8), 1013-1021.
[http://dx.doi.org/10.1177/002215540205000803] [PMID: 12133904]
[22]
Barreiro, M.L.; Gaytán, F.; Caminos, J.E.; Pinilla, L.; Casanueva, F.F.; Aguilar, E.; Diéguez, C.; Tena-Sempere, M. Cellular location and hormonal regulation of ghrelin expression in rat testis. Biol. Reprod., 2002, 67(6), 1768-1776.
[http://dx.doi.org/10.1095/biolreprod.102.006965] [PMID: 12444052]
[23]
Hosoda, H.; Kojima, M.; Matsuo, H.; Kangawa, K. Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue. Biochem. Biophys. Res. Commun., 2000, 279(3), 909-913.
[http://dx.doi.org/10.1006/bbrc.2000.4039] [PMID: 11162448]
[24]
Ueberberg, B.; Unger, N.; Saeger, W.; Mann, K.; Petersenn, S. Expression of ghrelin and its receptor in human tissues. Horm. Metab. Res., 2009, 41(11), 814-821.
[http://dx.doi.org/10.1055/s-0029-1233462] [PMID: 19670151]
[25]
Bang, A.S.; Soule, S.G.; Yandle, T.G.; Richards, A.M.; Pemberton, C.J. Characterisation of proghrelin peptides in mammalian tissue and plasma. J. Endocrinol., 2007, 192(2), 313-323.
[http://dx.doi.org/10.1677/JOE-06-0021] [PMID: 17283231]
[26]
Yang, J.; Brown, M.S.; Liang, G.; Grishin, N.V.; Goldstein, J.L. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell, 2008, 132(3), 387-396.
[http://dx.doi.org/10.1016/j.cell.2008.01.017] [PMID: 18267071]
[27]
Gutierrez, J.A.; Solenberg, P.J.; Perkins, D.R.; Willency, J.A.; Knierman, M.D.; Jin, Z.; Witcher, D.R.; Luo, S.; Onyia, J.E.; Hale, J.E. Ghrelin octanoylation mediated by an orphan lipid transferase. Proc. Natl. Acad. Sci. USA, 2008, 105(17), 6320-6325.
[http://dx.doi.org/10.1073/pnas.0800708105] [PMID: 18443287]
[28]
Zhao, T.J.; Liang, G.; Li, R.L.; Xie, X.; Sleeman, M.W.; Murphy, A.J.; Valenzuela, D.M.; Yancopoulos, G.D.; Goldstein, J.L.; Brown, M.S. Ghrelin O-acyltransferase (GOAT) is essential for growth hormone-mediated survival of calorie-restricted mice. Proc. Natl. Acad. Sci. USA, 2010, 107(16), 7467-7472.
[http://dx.doi.org/10.1073/pnas.1002271107] [PMID: 20231469]
[29]
Yang, J.; Zhao, T.J.; Goldstein, J.L.; Brown, M.S. Inhibition of ghrelin O-acyltransferase (GOAT) by octanoylated pentapeptides. Proc. Natl. Acad. Sci. USA, 2008, 105(31), 10750-10755.
[http://dx.doi.org/10.1073/pnas.0805353105] [PMID: 18669668]
[30]
Solomou, S.; Korbonits, M. The role of ghrelin in weight-regulation disorders: implications in clinical practice. Hormones (Athens), 2014, 13(4), 458-475.
[http://dx.doi.org/10.14310/horm.2002.1551] [PMID: 25555181]
[31]
Schalla, M.A.; Stengel, A. Pharmacological modulation of ghrelin to induce weight loss: successes and challenges. Curr. Diab. Rep., 2019, 19(10), 102.
[http://dx.doi.org/10.1007/s11892-019-1211-9] [PMID: 31506846]
[32]
Weibert, E.; Stengel, A. The X/A-like cell revisited - spotlight on the peripheral effects of NUCB2/nesfatin-1 and ghrelin. J. Physiol. Pharmacol., 2017, 68(4), 497-520.
[PMID: 29151067]
[33]
Tang-Christensen, M.; Vrang, N.; Ortmann, S.; Bidlingmaier, M.; Horvath, T.L.; Tschöp, M. Central administration of ghrelin and agouti-related protein (83-132) increases food intake and decreases spontaneous locomotor activity in rats. Endocrinology, 2004, 145(10), 4645-4652.
[http://dx.doi.org/10.1210/en.2004-0529] [PMID: 15231700]
[34]
Wren, A.M.; Small, C.J.; Ward, H.L.; Murphy, K.G.; Dakin, C.L.; Taheri, S.; Kennedy, A.R.; Roberts, G.H.; Morgan, D.G.; Ghatei, M.A.; Bloom, S.R. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology, 2000, 141(11), 4325-4328.
[http://dx.doi.org/10.1210/endo.141.11.7873] [PMID: 11089570]
[35]
Druce, M.R.; Wren, A.M.; Park, A.J.; Milton, J.E.; Patterson, M.; Frost, G.; Ghatei, M.A.; Small, C.; Bloom, S.R. Ghrelin increases food intake in obese as well as lean subjects. Int. J. Obes., 2005, 29(9), 1130-1136.
[http://dx.doi.org/10.1038/sj.ijo.0803001] [PMID: 15917842]
[36]
Tschöp, M.; Smiley, D.L.; Heiman, M.L. Ghrelin induces adiposity in rodents. Nature, 2000, 407(6806), 908-913.
[http://dx.doi.org/10.1038/35038090] [PMID: 11057670]
[37]
Theander-Carrillo, C.; Wiedmer, P.; Cettour-Rose, P.; Nogueiras, R.; Perez-Tilve, D.; Pfluger, P.; Castaneda, T.R.; Muzzin, P.; Schürmann, A.; Szanto, I.; Tschöp, M.H.; Rohner-Jeanrenaud, F. Ghrelin action in the brain controls adipocyte metabolism. J. Clin. Invest., 2006, 116(7), 1983-1993.
[http://dx.doi.org/10.1172/JCI25811] [PMID: 16767221]
[38]
Davies, J.S.; Kotokorpi, P.; Eccles, S.R.; Barnes, S.K.; Tokarczuk, P.F.; Allen, S.K.; Whitworth, H.S.; Guschina, I.A.; Evans, B.A.; Mode, A.; Zigman, J.M.; Wells, T. Ghrelin induces abdominal obesity via GHS-R-dependent lipid retention. Mol. Endocrinol., 2009, 23(6), 914-924.
[http://dx.doi.org/10.1210/me.2008-0432] [PMID: 19299444]
[39]
Rodríguez, A.; Gómez-Ambrosi, J.; Catalán, V.; Gil, M.J.; Becerril, S.; Sáinz, N.; Silva, C.; Salvador, J.; Colina, I.; Frühbeck, G. Acylated and desacyl ghrelin stimulate lipid accumulation in human visceral adipocytes. Int. J. Obes., 2009, 33(5), 541-552.
[http://dx.doi.org/10.1038/ijo.2009.40] [PMID: 19238155]
[40]
Willesen, M.G.; Kristensen, P.; Rømer, J. Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology, 1999, 70(5), 306-316.
[http://dx.doi.org/10.1159/000054491] [PMID: 10567856]
[41]
Culmsee, C.; Monnig, J.; Kemp, B.E.; Mattson, M.P. AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation. J. Mol. Neurosci., 2001, 17(1), 45-58.
[http://dx.doi.org/10.1385/JMN:17:1:45] [PMID: 11665862]
[42]
Li, Z.; Yu, R.; Yin, W.; Qin, Y.; Ma, L.; Mulholland, M.; Zhang, W. Mtor signaling in x/a-like cells contributes to lipid homeostasis in mice. Hepatology, 2019, 69(2), 860-875.
[http://dx.doi.org/10.1002/hep.30229] [PMID: 30141265]
[43]
Li, Z.; Xu, G.; Qin, Y.; Zhang, C.; Tang, H.; Yin, Y.; Xiang, X.; Li, Y.; Zhao, J.; Mulholland, M.; Zhang, W. Ghrelin promotes hepatic lipogenesis by activation of mTOR-PPARγ signaling pathway. Proc. Natl. Acad. Sci. USA, 2014, 111(36), 13163-13168.
[http://dx.doi.org/10.1073/pnas.1411571111] [PMID: 25157160]
[44]
Zhang, W.; Chai, B.; Li, J.Y.; Wang, H.; Mulholland, M.W. Effect of des-acyl ghrelin on adiposity and glucose metabolism. Endocrinology, 2008, 149(9), 4710-4716.
[http://dx.doi.org/10.1210/en.2008-0263] [PMID: 18535105]
[45]
Zhang, W.; Zhao, L.; Lin, T.R.; Chai, B.; Fan, Y.; Gantz, I.; Mulholland, M.W. Inhibition of adipogenesis by ghrelin. Mol. Biol. Cell, 2004, 15(5), 2484-2491.
[http://dx.doi.org/10.1091/mbc.e03-09-0657] [PMID: 15034137]
[46]
Zorrilla, E.P.; Iwasaki, S.; Moss, J.A.; Chang, J.; Otsuji, J.; Inoue, K.; Meijler, M.M.; Janda, K.D. Vaccination against weight gain. Proc. Natl. Acad. Sci. USA, 2006, 103(35), 13226-13231.
[http://dx.doi.org/10.1073/pnas.0605376103] [PMID: 16891413]
[47]
Vizcarra, J.A.; Kirby, J.D.; Kim, S.K.; Galyean, M.L. Active immunization against ghrelin decreases weight gain and alters plasma concentrations of growth hormone in growing pigs. Domest. Anim. Endocrinol., 2007, 33(2), 176-189.
[http://dx.doi.org/10.1016/j.domaniend.2006.05.005] [PMID: 16793235]
[48]
Azegami, T.; Yuki, Y.; Sawada, S.; Mejima, M.; Ishige, K.; Akiyoshi, K.; Itoh, H.; Kiyono, H. Nanogel-based nasal ghrelin vaccine prevents obesity. Mucosal Immunol., 2017, 10(5), 1351-1360.
[http://dx.doi.org/10.1038/mi.2016.137] [PMID: 28120848]
[49]
Biotechnology Cytos. Phase I/IIa clinical trial with obese individuals shows no effect of cyt009-ghrqb on weight loss, Press Release, 2006 (Accessed: July 1, 2011)..
[50]
Altabas, V.; Zjačić-Rotkvić, V. Anti-ghrelin antibodies in appetite suppression: recent advances in obesity pharmacotherapy. ImmunoTargets Ther., 2015, 4, 123-130.
[http://dx.doi.org/10.2147/itt.s60398]] [PMID: 27471718]
[51]
Helmling, S.; Maasch, C.; Eulberg, D.; Buchner, K.; Schröder, W.; Lange, C.; Vonhoff, S.; Wlotzka, B.; Tschöp, M.H.; Rosewicz, S.; Klussmann, S. Inhibition of ghrelin action in vitro and in vivo by an RNA-Spiegelmer. Proc. Natl. Acad. Sci. USA, 2004, 101(36), 13174-13179.
[http://dx.doi.org/10.1073/pnas.0404175101] [PMID: 15329412]
[52]
Klussmann, S.; Nolte, A.; Bald, R.; Erdmann, V.A.; Fürste, J.P. Mirror-image RNA that binds D-adenosine. Nat. Biotechnol., 1996, 14(9), 1112-1115.
[http://dx.doi.org/10.1038/nbt0996-1112] [PMID: 9631061]
[53]
Depoortere, I. Targeting the ghrelin receptor to regulate food intake. Regul. Pept., 2009, 156(1-3), 13-23.
[http://dx.doi.org/10.1016/j.regpep.2009.04.002] [PMID: 19362579]
[54]
Becskei, C.; Bilik, K.U.; Klussmann, S.; Jarosch, F.; Lutz, T.A.; Riediger, T. The anti-ghrelin Spiegelmer NOX-B11-3 blocks ghrelin- but not fasting-induced neuronal activation in the hypothalamic arcuate nucleus. J. Neuroendocrinol., 2008, 20(1), 85-92.
[http://dx.doi.org/10.1111/j.1365-2826.2007.01619.x]] [PMID: 18081556]
[55]
Shearman, L.P.; Wang, S.P.; Helmling, S.; Stribling, D.S.; Mazur, P.; Ge, L.; Wang, L.; Klussmann, S.; Macintyre, D.E.; Howard, A.D.; Strack, A.M. Ghrelin neutralization by a ribonucleic acid-SPM ameliorates obesity in diet-induced obese mice. Endocrinology, 2006, 147(3), 1517-1526.
[http://dx.doi.org/10.1210/en.2005-0993] [PMID: 16339202]
[56]
Gagnon, J.; Zhu, L.; Anini, Y.; Wang, Q. Neutralizing circulating ghrelin by expressing a growth hormone secretagogue receptor-based protein protects against high-fat diet-induced obesity in mice. Gene Ther., 2015, 22(9), 750-757.
[http://dx.doi.org/10.1038/gt.2015.38] [PMID: 25965396]
[57]
Sun, Y.; Wang, P.; Zheng, H.; Smith, R.G. Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc. Natl. Acad. Sci. USA, 2004, 101(13), 4679-4684.
[http://dx.doi.org/10.1073/pnas.0305930101] [PMID: 15070777]
[58]
Zigman, J.M.; Nakano, Y.; Coppari, R.; Balthasar, N.; Marcus, J.N.; Lee, C.E.; Jones, J.E.; Deysher, A.E.; Waxman, A.R.; White, R.D.; Williams, T.D.; Lachey, J.L.; Seeley, R.J.; Lowell, B.B.; Elmquist, J.K. Mice lacking ghrelin receptors resist the development of diet-induced obesity. J. Clin. Invest., 2005, 115(12), 3564-3572.
[http://dx.doi.org/10.1172/JCI26002] [PMID: 16322794]
[59]
Lin, L.; Saha, P.K.; Ma, X.; Henshaw, I.O.; Shao, L.; Chang, B.H.; Buras, E.D.; Tong, Q.; Chan, L.; McGuinness, O.P.; Sun, Y. Ablation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues. Aging Cell, 2011, 10(6), 996-1010.
[http://dx.doi.org/10.1111/j.1474-9726.2011.00740.x] [PMID: 21895961]
[60]
Veeraragavan, K.; Sethumadhavan, K.; Bowers, C.Y. Growth hormone-releasing peptide (GHRP) binding to porcine anterior pituitary and hypothalamic membranes. Life Sci., 1992, 50(16), 1149-1155.
[http://dx.doi.org/10.1016/0024-3205(92)90457-Z] [PMID: 1552831]
[61]
Ramirez, V.T.; van Oeffelen, W.E.P.A.; Torres-Fuentes, C.; Chruścicka, B.; Druelle, C.; Golubeva, A.V.; van de Wouw, M.; Dinan, T.G.; Cryan, J.F.; Schellekens, H. Differential functional selectivity and downstream signaling bias of ghrelin receptor antagonists and inverse agonists. FASEB J., 2019, 33(1), 518-531.
[http://dx.doi.org/10.1096/fj.201800655R] [PMID: 30020830]
[62]
Mosa, R.; Huang, L.; Li, H.; Grist, M.; LeRoith, D.; Chen, C. Long-term treatment with the ghrelin receptor antagonist [d-Lys3]-GHRP-6 does not improve glucose homeostasis in nonobese diabetic MKR mice. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2018, 314(1), R71-R83.
[http://dx.doi.org/10.1152/ajpregu.00157.2017] [PMID: 28903914]
[63]
Asakawa, A.; Inui, A.; Kaga, T.; Katsuura, G.; Fujimiya, M.; Fujino, M.A.; Kasuga, M. Antagonism of ghrelin receptor reduces food intake and body weight gain in mice. Gut, 2003, 52(7), 947-952.
[http://dx.doi.org/10.1136/gut.52.7.947] [PMID: 12801949]
[64]
Beck, B.; Richy, S.; Stricker-Krongrad, A. Feeding response to ghrelin agonist and antagonist in lean and obese Zucker rats. Life Sci., 2004, 76(4), 473-478.
[http://dx.doi.org/10.1016/j.lfs.2004.09.001] [PMID: 15530508]
[65]
Rasineni, K.; Kubik, J.L.; Casey, C.A.; Kharbanda, K.K. Inhibition of ghrelin activity by receptor antagonist [d-lys-3] ghrp-6 attenuates alcohol-induced hepatic steatosis by regulating hepatic lipid metabolism. Biomolecules, 2019, 9(10)E517
[http://dx.doi.org/10.3390/biom9100517] [PMID: 31546643]
[66]
Demange, L.; Boeglin, D.; Moulin, A.; Mousseaux, D.; Ryan, J.; Bergé, G.; Gagne, D.; Heitz, A.; Perrissoud, D.; Locatelli, V.; Torsello, A.; Galleyrand, J.C.; Fehrentz, J.A.; Martinez, J. Synthesis and pharmacological in vitro and in vivo evaluations of novel triazole derivatives as ligands of the ghrelin receptor. 1. J. Med. Chem., 2007, 50(8), 1939-1957.
[http://dx.doi.org/10.1021/jm070024h] [PMID: 17375904]
[67]
Moulin, A.; Demange, L.; Bergé, G.; Gagne, D.; Ryan, J.; Mousseaux, D.; Heitz, A.; Perrissoud, D.; Locatelli, V.; Torsello, A.; Galleyrand, J.C.; Fehrentz, J.A.; Martinez, J. Toward potent ghrelin receptor ligands based on trisubstituted 1,2,4-triazole structure. 2. Synthesis and pharmacological in vitro and in vivo evaluations. J. Med. Chem., 2007, 50(23), 5790-5806.
[http://dx.doi.org/10.1021/jm0704550] [PMID: 17927165]
[68]
Gomez, J.L.; Ryabinin, A.E. The effects of ghrelin antagonists [D-Lys(3)]-GHRP-6 or JMV2959 on ethanol, water and food intake in C57BL/6J mice. Alcohol. Clin. Exp. Res., 2014, 38(9), 2436-2444.
[http://dx.doi.org/10.1111/acer.12499] [PMID: 25257292]
[69]
Salomé, N.; Haage, D.; Perrissoud, D.; Moulin, A.; Demange, L.; Egecioglu, E.; Fehrentz, J.A.; Martinez, J.; Dickson, S.L. Anorexigenic and electrophysiological actions of novel ghrelin receptor (GHS-R1A) antagonists in rats. Eur. J. Pharmacol., 2009, 612(1-3), 167-173.
[http://dx.doi.org/10.1016/j.ejphar.2009.03.066] [PMID: 19356720]
[70]
Halem, H.A.; Taylor, J.E.; Dong, J.Z.; Shen, Y.; Datta, R.; Abizaid, A.; Diano, S.; Horvath, T.L.; Culler, M.D. A novel growth hormone secretagogue-1a receptor antagonist that blocks ghrelin-induced growth hormone secretion but induces increased body weight gain. Neuroendocrinology, 2005, 81(5), 339-349.
[http://dx.doi.org/10.1159/000088796] [PMID: 16210868]
[71]
Rudolph, J.; Esler, W.P.; O’connor, S.; Coish, P.D.; Wickens, P.L.; Brands, M.; Bierer, D.E.; Bloomquist, B.T.; Bondar, G.; Chen, L.; Chuang, C.Y.; Claus, T.H.; Fathi, Z.; Fu, W.; Khire, U.R.; Kristie, J.A.; Liu, X.G.; Lowe, D.B.; McClure, A.C.; Michels, M.; Ortiz, A.A.; Ramsden, P.D.; Schoenleber, R.W.; Shelekhin, T.E.; Vakalopoulos, A.; Tang, W.; Wang, L.; Yi, L.; Gardell, S.J.; Livingston, J.N.; Sweet, L.J.; Bullock, W.H. Quinazolinone derivatives as orally available ghrelin receptor antagonists for the treatment of diabetes and obesity. J. Med. Chem., 2007, 50(21), 5202-5216.
[http://dx.doi.org/10.1021/jm070071+] [PMID: 17887659]
[72]
Esler, W.P.; Rudolph, J.; Claus, T.H.; Tang, W.; Barucci, N.; Brown, S.E.; Bullock, W.; Daly, M.; Decarr, L.; Li, Y.; Milardo, L.; Molstad, D.; Zhu, J.; Gardell, S.J.; Livingston, J.N.; Sweet, L.J. Small-molecule ghrelin receptor antagonists improve glucose tolerance, suppress appetite, and promote weight loss. Endocrinology, 2007, 148(11), 5175-5185.
[http://dx.doi.org/10.1210/en.2007-0239] [PMID: 17656463]
[73]
Longo, K.A.; Govek, E.K.; Nolan, A.; McDonagh, T.; Charoenthongtrakul, S.; Giuliana, D.J.; Morgan, K.; Hixon, J.; Zhou, C.; Kelder, B.; Kopchick, J.J.; Saunders, J.O.; Navia, M.A.; Curtis, R.; DiStefano, P.S.; Geddes, B.J. Pharmacologic inhibition of ghrelin receptor signaling is insulin sparing and promotes insulin sensitivity. J. Pharmacol. Exp. Ther., 2011, 339(1), 115-124.
[http://dx.doi.org/10.1124/jpet.111.183764] [PMID: 21775475]
[74]
Sabbatini, F.M.; Di Fabio, R.; Corsi, M.; Cavanni, P.; Bromidge, S.M.; St-Denis, Y.; D’Adamo, L.; Contini, S.; Rinaldi, M.; Guery, S.; Savoia, C.; Mundi, C.; Perini, B.; Carpenter, A.J.; Dal Forno, G.; Faggioni, F.; Tessari, M.; Pavone, F.; Di Francesco, C.; Buson, A.; Mattioli, M.; Perdona’, E.; Melotto, S. Discovery process and characterization of novel carbohydrazide derivatives as potent and selective GHSR1a antagonists. ChemMedChem, 2010, 5(9), 1450-1455.
[http://dx.doi.org/10.1002/cmdc.201000185] [PMID: 20593439]
[75]
Costantini, V.J.; Vicentini, E.; Sabbatini, F.M.; Valerio, E.; Lepore, S.; Tessari, M.; Sartori, M.; Michielin, F.; Melotto, S.; Bifone, A.; Pich, E.M.; Corsi, M. GSK1614343, a novel ghrelin receptor antagonist, produces an unexpected increase of food intake and body weight in rodents and dogs. Neuroendocrinology, 2011, 94(2), 158-168.
[http://dx.doi.org/10.1159/000328968] [PMID: 21778696]
[76]
Holst, B.; Cygankiewicz, A.; Jensen, T.H.; Ankersen, M.; Schwartz, T.W. High constitutive signaling of the ghrelin receptor-identification of a potent inverse agonist. Mol. Endocrinol., 2003, 17(11), 2201-2210.
[http://dx.doi.org/10.1210/me.2003-0069] [PMID: 12907757]
[77]
Holliday, N.D.; Holst, B.; Rodionova, E.A.; Schwartz, T.W.; Cox, H.M. Importance of constitutive activity and arrestin-independent mechanisms for intracellular trafficking of the ghrelin receptor. Mol. Endocrinol., 2007, 21(12), 3100-3112.
[http://dx.doi.org/10.1210/me.2007-0254] [PMID: 17717076]
[78]
Els, S.; Beck-Sickinger, A.G.; Chollet, C. Ghrelin receptor: high constitutive activity and methods for developing inverse agonists. Methods Enzymol., 2010, 485, 103-121.
[http://dx.doi.org/10.1016/B978-0-12-381296-4.00006-3] [PMID: 21050913]
[79]
Holst, B.; Schwartz, T.W. Constitutive ghrelin receptor activity as a signaling set-point in appetite regulation. Trends Pharmacol. Sci., 2004, 25(3), 113-117.
[http://dx.doi.org/10.1016/j.tips.2004.01.010] [PMID: 15058279]
[80]
Ge, X.; Yang, H.; Bednarek, M.A.; Galon-Tilleman, H.; Chen, P.; Chen, M.; Lichtman, J.S.; Wang, Y.; Dalmas, O.; Yin, Y.; Tian, H.; Jermutus, L.; Grimsby, J.; Rondinone, C.M.; Konkar, A.; Kaplan, D.D. Leap2 is an endogenous antagonist of the ghrelin receptor. Cell Metab., 2018, 27(2), 461-469.e6.
[http://dx.doi.org/10.1016/j.cmet.2017.10.016] [PMID: 29233536]
[81]
M’Kadmi, C.; Cabral, A.; Barrile, F.; Giribaldi, J.; Cantel, S.; Damian, M.; Mary, S.; Denoyelle, S.; Dutertre, S.; Péraldi-Roux, S.; Neasta, J.; Oiry, C.; Banères, J.L.; Marie, J.; Perello, M.; Fehrentz, J.A. N-terminal liver-expressed antimicrobial peptide 2 (leap2) region exhibits inverse agonist activity toward the ghrelin receptor. J. Med. Chem., 2019, 62(2), 965-973.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01644] [PMID: 30543423]
[82]
Mani, B.K.; Puzziferri, N.; He, Z.; Rodriguez, J.A.; Osborne-Lawrence, S.; Metzger, N.P.; Chhina, N.; Gaylinn, B.; Thorner, M.O.; Thomas, E.L.; Bell, J.D.; Williams, K.W.; Goldstone, A.P.; Zigman, J.M. LEAP2 changes with body mass and food intake in humans and mice. J. Clin. Invest., 2019, 129(9), 3909-3923.
[http://dx.doi.org/10.1172/JCI125332] [PMID: 31424424]
[83]
Takahashi, B.; Funami, H.; Iwaki, T.; Maruoka, H.; Shibata, M.; Koyama, M.; Nagahira, A.; Kamiide, Y.; Kanki, S.; Igawa, Y.; Muto, T. Orally active ghrelin receptor inverse agonists and their actions on a rat obesity model. Bioorg. Med. Chem., 2015, 23(15), 4792-4803.
[http://dx.doi.org/10.1016/j.bmc.2015.05.047] [PMID: 26100441]
[84]
Takahashi, B.; Funami, H.; Iwaki, T.; Maruoka, H.; Nagahira, A.; Koyama, M.; Kamiide, Y.; Matsuo, T.; Muto, T.; Annoura, H. 2-Aminoalkyl nicotinamide derivatives as pure inverse agonists of the ghrelin receptor. Bioorg. Med. Chem. Lett., 2015, 25(13), 2707-2712.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.040] [PMID: 25981690]
[85]
McCoull, W.; Barton, P.; Brown, A.J.; Bowker, S.S.; Cameron, J.; Clarke, D.S.; Davies, R.D.; Dossetter, A.G.; Ertan, A.; Fenwick, M.; Green, C.; Holmes, J.L.; Martin, N.; Masters, D.; Moore, J.E.; Newcombe, N.J.; Newton, C.; Pointon, H.; Robb, G.R.; Sheldon, C.; Stokes, S.; Morgan, D. Identification, optimization, and pharmacology of acylurea GHS-R1a inverse agonists. J. Med. Chem., 2014, 57(14), 6128-6140.
[http://dx.doi.org/10.1021/jm500610n] [PMID: 24967667]
[86]
Abegg, K.; Bernasconi, L.; Hutter, M.; Whiting, L.; Pietra, C.; Giuliano, C.; Lutz, T.A.; Riediger, T. Ghrelin receptor inverse agonists as a novel therapeutic approach against obesity-related metabolic disease. Diabetes Obes. Metab., 2017, 19(12), 1740-1750.
[http://dx.doi.org/10.1111/dom.13020] [PMID: 28544245]
[87]
Bhattacharya, S.K.; Andrews, K.; Beveridge, R.; Cameron, K.O.; Chen, C.; Dunn, M.; Fernando, D.; Gao, H.; Hepworth, D.; Jackson, V.M.; Khot, V.; Kong, J.; Kosa, R.E.; Lapham, K.; Loria, P.M.; Londregan, A.T.; McClure, K.F.; Orr, S.T.; Patel, J.; Rose, C.; Saenz, J.; Stock, I.A.; Storer, G.; VanVolkenburg, M.; Vrieze, D.; Wang, G.; Xiao, J.; Zhang, Y. Discovery of pf-5190457, a potent, selective Activation of mTORC1 signaling in gastric X/A-like cells induces spontaneous pancreatic fibrosis and derangement of glucose metabolism by reducing ghrelin production and orally bioavailable ghrelin receptor inverse agonist clinical candidate. ACS Med. Chem. Lett., 2014, 5(5), 474-479.
[http://dx.doi.org/10.1021/ml400473x] [PMID: 24900864]
[88]
Denney, W.S.; Sonnenberg, G.E.; Carvajal-Gonzalez, S.; Tuthill, T.; Jackson, V.M. Pharmacokinetics and pharmacodynamics of PF-05190457: The first oral ghrelin receptor inverse agonist to be profiled in healthy subjects. Br. J. Clin. Pharmacol., 2017, 83(2), 326-338.
[http://dx.doi.org/10.1111/bcp.13127] [PMID: 27621150]
[89]
Lee, M.R.; Tapocik, J.D.; Ghareeb, M.; Schwandt, M.L.; Dias, A.A.; Le, A.N.; Cobbina, E.; Farinelli, L.A.; Bouhlal, S.; Farokhnia, M.; Heilig, M.; Akhlaghi, F.; Leggio, L. The novel ghrelin receptor inverse agonist PF-5190457 administered with alcohol: preclinical safety experiments and a phase 1b human laboratory study. Mol. Psychiatry, 2020, 25(2), 461-475.
[http://dx.doi.org/10.1038/s41380-018-0064-y] [PMID: 29728704]
[90]
Barnett, B.P.; Hwang, Y.; Taylor, M.S.; Kirchner, H.; Pfluger, P.T.; Bernard, V.; Lin, Y.Y.; Bowers, E.M.; Mukherjee, C.; Song, W.J.; Longo, P.A.; Leahy, D.J.; Hussain, M.A.; Tschöp, M.H.; Boeke, J.D.; Cole, P.A. Glucose and weight control in mice with a designed ghrelin O-acyltransferase inhibitor. Science, 2010, 330(6011), 1689-1692.
[http://dx.doi.org/10.1126/science.1196154] [PMID: 21097901]
[91]
Teubner, B.J.; Bartness, T.J. Anti-ghrelin Spiegelmer inhibits exogenous ghrelin-induced increases in food intake, hoarding, and neural activation, but not food deprivation-induced increases. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2013, 305(4), R323-R333.
[http://dx.doi.org/10.1152/ajpregu.00097.2013] [PMID: 23804279]
[92]
Zhang, S.; Mao, Y.; Fan, X. Inhibition of ghrelin o-acyltransferase attenuated lipotoxicity by inducing autophagy via AMPK-mTOR pathway. Drug Des. Devel. Ther., 2018, 12, 873-885.
[http://dx.doi.org/10.2147/DDDT.S158985] [PMID: 29713145]
[93]
Yoneyama-Hirozane, M.; Deguchi, K.; Hirakawa, T.; Ishii, T.; Odani, T.; Matsui, J.; Nakano, Y.; Imahashi, K.; Takakura, N.; Chisaki, I.; Takekawa, S.; Sakamoto, J. Identification and characterization of a new series of ghrelin o-acyl transferase inhibitors. SLAS Discov., 2018, 23(2), 154-163.
[http://dx.doi.org/10.1177/2472555217727097] [PMID: 28846466]
[94]
Xu, G.; Wang, Z.; Li, Y.; Li, Z.; Tang, H.; Zhao, J.; Xiang, X.; Ding, L.; Ma, L.; Yuan, F.; Fei, J.; Wang, W.; Wang, N.; Guan, Y.; Tang, C.; Mulholland, M.; Zhang, W. Ghrelin contributes to derangements of glucose metabolism induced by rapamycin in mice. Diabetologia, 2012, 55(6), 1813-1823.
[http://dx.doi.org/10.1007/s00125-012-2509-1] [PMID: 22391948]
[95]
Xu, G.; Li, Y.; An, W.; Li, S.; Guan, Y.; Wang, N.; Tang, C.; Wang, X.; Zhu, Y.; Li, X.; Mulholland, M.W.; Zhang, W. Gastric mammalian target of rapamycin signaling regulates ghrelin production and food intake. Endocrinology, 2009, 150(8), 3637-3644.
[http://dx.doi.org/10.1210/en.2009-0372] [PMID: 19406939]
[96]
Yu, R.; Li, Z.; Liu, S.; Huwatibieke, B.; Li, Y.; Yin, Y.; Zhang, W. Activation of mTORC1 signaling in gastric X/A-like cells induces spontaneous pancreatic fibrosis and derangement of glucose metabolism by reducing ghrelin production. EBiomedicine, 2018, 36, 304-315.
[http://dx.doi.org/10.1016/j.ebiom.2018.09.027] [PMID: 30266297]
[97]
Janssen, S.; Laermans, J.; Verhulst, P.J.; Thijs, T.; Tack, J.; Depoortere, I. Bitter taste receptors and α-gustducin regulate the secretion of ghrelin with functional effects on food intake and gastric emptying. Proc. Natl. Acad. Sci. USA, 2011, 108(5), 2094-2099.
[http://dx.doi.org/10.1073/pnas.1011508108] [PMID: 21245306]
[98]
Wang, Q.; Liszt, K.I.; Deloose, E.; Canovai, E.; Thijs, T.; Farré, R.; Ceulemans, L.J.; Lannoo, M.; Tack, J.; Depoortere, I. Obesity alters adrenergic and chemosensory signaling pathways that regulate ghrelin secretion in the human gut. FASEB J., 2019, 33(4), 4907-4920.
[http://dx.doi.org/10.1096/fj.201801661RR] [PMID: 30629462]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy