Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Transcriptional Factors and Protein Biomarkers as Target Therapeutics in Traumatic Spinal Cord and Brain Injury

Author(s): Suneel Kumar*, Zachary Fritz, Kunjbihari Sulakhiya, Thomas Theis and Francois Berthiaume

Volume 18, Issue 11, 2020

Page: [1092 - 1105] Pages: 14

DOI: 10.2174/1570159X18666200522203542

Price: $65

Abstract

Traumatic injury to the spinal cord (SCI) and brain (TBI) are serious health problems and affect many people every year throughout the world. These devastating injuries are affecting not only patients but also their families socially as well as financially. SCI and TBI lead to neurological dysfunction besides continuous inflammation, ischemia, and necrosis followed by progressive neurodegeneration. There are well-established changes in several other processes such as gene expression as well as protein levels that are the important key factors to control the progression of these diseases. We are not yet able to collect enough knowledge on the underlying mechanisms leading to the altered gene expression profiles and protein levels in SCI and TBI. Cell loss is hastened by the induction or imbalance of pro- or anti-inflammatory expression profiles and transcription factors for cell survival after or during trauma. There is a sequence of events of dysregulation of these factors from early to late stages of trauma that opens a therapeutic window for new interventions to prevent/ restrict the progression of these diseases. There has been increasing interest in the modulation of these factors for improving the patient’s quality of life by targeting both SCI and TBI. Here, we review some of the recent transcriptional factors and protein biomarkers that have been developed and discovered in the last decade in the context of targeted therapeutics for SCI and TBI patients.

Keywords: Transcription factors, biomarkers, biofluid, regeneration, repair, spinal cord injury, brain injury, inflammation.

Graphical Abstract

[1]
Thuret, S.; Moon, L.D.F.; Gage, F.H. Therapeutic interventions after spinal cord injury. Nat. Rev. Neurosci., 2006, 7(8), 628-643.
[http://dx.doi.org/10.1038/nrn1955] [PMID: 16858391]
[2]
Selvarajah, S.; Hammond, E.R.; Haider, A.H.; Abularrage, C.J.; Becker, D.; Dhiman, N.; Hyder, O.; Gupta, D.; Black, J.H., III; Schneider, E.B. The burden of acute traumatic spinal cord injury among adults in the united states: an update. J. Neurotrauma, 2014, 31(3), 228-238.
[http://dx.doi.org/10.1089/neu.2013.3098] [PMID: 24138672]
[3]
Oyinbo, C.A. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol. Exp. (Warsz.), 2011, 71(2), 281-299.
[PMID: 21731081]
[4]
Chamankhah, M.; Eftekharpour, E.; Karimi-Abdolrezaee, S.; Boutros, P.C.; San-Marina, S.; Fehlings, M.G. Genome-wide gene expression profiling of stress response in a spinal cord clip compression injury model. BMC Genomics, 2013, 14, 583-583.
[http://dx.doi.org/10.1186/1471-2164-14-583] [PMID: 23984903]
[5]
Ryge, J.; Winther, O.; Wienecke, J.; Sandelin, A.; Westerdahl, A-C.; Hultborn, H.; Kiehn, O. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury. BMC Genomics, 2010, 11, 365-365.
[http://dx.doi.org/10.1186/1471-2164-11-365] [PMID: 20534130]
[6]
Lipponen, A.; El-Osta, A.; Kaspi, A.; Ziemann, M.; Khurana, I.; Kn, H.; Navarro-Ferrandis, V.; Puhakka, N.; Paananen, J.; Pitkänen, A. Transcription factors Tp73, Cebpd, Pax6, and Spi1 rather than DNA methylation regulate chronic transcriptomics changes after experimental traumatic brain injury. Acta Neuropathol. Commun., 2018, 6(1), 17-17.
[http://dx.doi.org/10.1186/s40478-018-0519-z] [PMID: 29482641]
[7]
Meng, Q.; Zhuang, Y.; Ying, Z.; Agrawal, R.; Yang, X.; Gomez-Pinilla, F. Traumatic brain injury induces genome-wide transcriptomic, methylomic, and network perturbations in brain and blood predicting neurological disorders. traumatic brain injury induces genome-wide transcriptomic, methylomic, and network perturbations in brain and blood predicting neurological disorders. EBio Medi., 2017, 16, 184-194.
[http://dx.doi.org/10.1016/j.ebiom.2017.01.046] [PMID: 28174132]
[8]
Deng, Y.; Jiang, X.; Deng, X.; Chen, H.; Xu, J.; Zhang, Z.; Liu, G.; Yong, Z.; Yuan, C.; Sun, X.; Wang, C. Pioglitazone ameliorates neuronal damage after traumatic brain injury via the PPARγ/NF-κB/IL-6 signaling pathway. Genes Dis., 2019, 7(2), 253-265.
[http://dx.doi.org/10.1016/j.gendis.2019.05.002] [PMID: 32215295]
[9]
Dalkilic, T.; Fallah, N.; Noonan, V.K.; Salimi Elizei, S.; Dong, K.; Belanger, L.; Ritchie, L.; Tsang, A.; Bourassa-Moreau, E.; Heran, M.K.S.; Paquette, S.J.; Ailon, T.; Dea, N.; Street, J.; Fisher, C.G.; Dvorak, M.F.; Kwon, B.K. Predicting injury severity and neurological recovery after acute cervical spinal cord injury: a comparison of cerebrospinal fluid and magnetic resonance imaging biomarkers. J. Neurotrauma, 2018, 35(3), 435-445.
[http://dx.doi.org/10.1089/neu.2017.5357] [PMID: 29037121]
[10]
Kahlenberg, J.M.; Lundberg, K.C.; Kertesy, S.B.; Qu, Y.; Dubyak, G.R. Potentiation of caspase-1 activation by the P2X7 receptor is dependent on TLR signals and requires NF-kappaB-driven protein synthesis. J. Immunol., 2005, 175(11), 7611-7622.
[http://dx.doi.org/10.4049/jimmunol.175.11.7611] [PMID: 16301671]
[11]
Yan, J.; Greer, J.M. NF-kappa B, a potential therapeutic target for the treatment of multiple sclerosis. CNS Neurol. Disord. Drug Targets, 2008, 7(6), 536-557.
[http://dx.doi.org/10.2174/187152708787122941] [PMID: 19128210]
[12]
Li, S.; Ou, Y.; Li, C.; Wei, W.; Lei, L.; Zhang, Q. Therapeutic effect of methylprednisolone combined with high frequency electrotherapy on acute spinal cord injury in rats. Exp. Ther. Med., 2019, 18(6), 4682-4688.
[http://dx.doi.org/10.3892/etm.2019.8147] [PMID: 31807152]
[13]
Xie, X-K.; Xu, Z-K.; Xu, K.; Xiao, Y-X. DUSP19 mediates spinal cord injury-induced apoptosis and inflammation in mouse primary microglia cells via the NF-kB signaling pathway. Neurol. Res., 2020, 42(1), 31-38.
[http://dx.doi.org/10.1080/01616412.2019.1685068] [PMID: 31813339]
[14]
Liu, H.; Wu, X.; Luo, J.; Wang, X.; Guo, H.; Feng, D.; Zhao, L.; Bai, H.; Song, M.; Liu, X.; Guo, W.; Li, X.; Yue, L.; Wang, B.; Qu, Y. Pterostilbene attenuates astrocytic inflammation and neuronal oxidative injury after ischemia-reperfusion by inhibiting NF-κB phosphorylation. Front. Immunol., 2019, 10, 2408-2408.
[http://dx.doi.org/10.3389/fimmu.2019.02408] [PMID: 31681297]
[15]
Zhao, R.; Ying, M.; Gu, S.; Yin, W.; Li, Y.; Yuan, H.; Fang, S.; Li, M. Cysteinyl leukotriene receptor 2 is involved in inflammation and neuronal damage by mediating microglia M1/M2 polarization through NF-κB pathway. Neuroscience, 2019, 422, 99-118.
[http://dx.doi.org/10.1016/j.neuroscience.2019.10.048] [PMID: 31726033]
[16]
Chen, H.; Lin, W.; Lin, P.; Zheng, M.; Lai, Y.; Chen, M.; Zhang, Y.; Chen, J.; Lin, X.; Lin, L.; Lan, Q.; Yuan, Q.; Chen, R.; Jiang, X.; Xiao, Y.; Liu, N. IL-10 produces a dual effect on OGD-induced neuronal apoptosis of cultured cortical neurons via the NF-κB pathway. Aging (Albany NY), 2019, 11(23), 10796-10813.
[http://dx.doi.org/10.18632/aging.102411] [PMID: 31801113]
[17]
Wang, J.; Chen, J.; Chen, J.; Liu, X.; Yang, H.; Liu, J.; He, A.; Gao, X.; Xin, Y. KIF2 mediates the neuroprotection in cerebral ischaemia injury by affecting NF-κB pathway. Clin. Exp. Pharmacol. Physiol., 2020, 47(2), 274-280.
[http://dx.doi.org/10.1111/1440-1681.13175] [PMID: 31514228]
[18]
Blank, T.; Prinz, M. NF-κB signaling regulates myelination in the CNS. Front. Mol. Neurosci., 2014, 7, 47-47.
[http://dx.doi.org/10.3389/fnmol.2014.00047] [PMID: 24904273]
[19]
Lai, J.; He, X.; Wang, F.; Tan, J.M.; Wang, J.X.; Xing, S.M.; Shen, L.B.; Fang, L.Q.; Yang, P.; Tan, J.M. Gene expression signature analysis and protein-protein interaction network construction of spinal cord injury. Eur. Rev. Med. Pharmacol. Sci., 2013, 17(21), 2941-2948.
[PMID: 24254565]
[20]
Bethea, J.R.; Castro, M.; Keane, R.W.; Lee, T.T.; Dietrich, W.D.; Yezierski, R.P. Traumatic spinal cord injury induces nuclear factor-kappaB activation. J. Neurosci., 1998, 18(9), 3251-3260.
[http://dx.doi.org/10.1523/JNEUROSCI.18-09-03251.1998] [PMID: 9547234]
[21]
Huang, Y.; Zhu, N.; Chen, T.; Chen, W.; Kong, J.; Zheng, W.; Ruan, J. Triptolide suppressed the microglia activation to improve spinal cord injury through miR-96/IKKβ/NF-κB Pathway. Spine, 2019, 44(12), E707-E714.
[http://dx.doi.org/10.1097/BRS.0000000000002989] [PMID: 31150368]
[22]
Adli, M.; Merkhofer, E.; Cogswell, P.; Baldwin, A.S. IKKalpha and IKKbeta each function to regulate NF-kappaB activation in the TNF-induced/canonical pathway. PLoS One, 2010, 5(2), e9428-e9428.
[http://dx.doi.org/10.1371/journal.pone.0009428] [PMID: 20195534]
[23]
Wang, B.; Dai, W.; Shi, L.; Teng, H.; Li, X.; Wang, J.; Geng, W. Neuroprotection by paeoniflorin against nuclear factor kappa b-induced neuroinflammation on spinal cord injury. BioMed Res. Int., 2018, 2018,9865403.
[http://dx.doi.org/10.1155/2018/9865403] [PMID: 30627586]
[24]
Dai, W.; Wang, X.; Teng, H.; Li, C.; Wang, B.; Wang, J. Celastrol inhibits microglial pyroptosis and attenuates inflammatory reaction in acute spinal cord injury rats. Int. Immunopharmacol., 2019, 66, 215-223.
[http://dx.doi.org/10.1016/j.intimp.2018.11.029] [PMID: 30472522]
[25]
Sun, L.; Zhao, L.; Li, P.; Liu, X.; Liang, F.; Jiang, Y.; Kang, N.; Gao, C.; Yang, J. Effect of hyperbaric oxygen therapy on HMGB1/NF-κB expression and prognosis of acute spinal cord injury: A randomized clinical trial. Neurosci. Lett., 2019, 692, 47-52.
[http://dx.doi.org/10.1016/j.neulet.2018.10.059] [PMID: 30391318]
[26]
Huang, W.L.; George, K.J.; Ibba, V.; Liu, M.C.; Averill, S.; Quartu, M.; Hamlyn, P.J.; Priestley, J.V. The characteristics of neuronal injury in a static compression model of spinal cord injury in adult rats. Eur. J. Neurosci., 2007, 25(2), 362-372.
[http://dx.doi.org/10.1111/j.1460-9568.2006.05284.x] [PMID: 17284176]
[27]
Tsujino, H.; Kondo, E.; Fukuoka, T.; Dai, Y.; Tokunaga, A.; Miki, K.; Yonenobu, K.; Ochi, T.; Noguchi, K. Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: A novel neuronal marker of nerve injury. Mol. Cell. Neurosci., 2000, 15(2), 170-182.
[http://dx.doi.org/10.1006/mcne.1999.0814] [PMID: 10673325]
[28]
Lindå, H.; Sköld, M.K.; Ochsmann, T. Activating transcription factor 3, a useful marker for regenerative response after nerve root injury. Front. Neurol., 2011, 2, 30-30.
[http://dx.doi.org/10.3389/fneur.2011.00030] [PMID: 21629765]
[29]
Wang, L-F.; Huang, S-B.; Zhao, H-D.; Liu, C-J.; Yao, L.; Shen, Y-Q. Activating transcription factor 3 promotes spinal cord regeneration of adult zebrafish. Biochem. Biophys. Res. Commun., 2017, 488(3), 522-527.
[http://dx.doi.org/10.1016/j.bbrc.2017.05.079] [PMID: 28522294]
[30]
Loers, G.; Cui, Y-F.; Neumaier, I.; Schachner, M.; Skerra, A. A Fab fragment directed against the neural cell adhesion molecule L1 enhances functional recovery after injury of the adult mouse spinal cord. Biochem. J., 2014, 460(3), 437-446.
[http://dx.doi.org/10.1042/BJ20131677] [PMID: 24673421]
[31]
Loers, G.; Schachner, M. Recognition molecules and neural repair. J. Neurochem., 2007, 101(4), 865-882.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04409.x] [PMID: 17254012]
[32]
Kataria, H.; Lutz, D.; Chaudhary, H.; Schachner, M.; Loers, G. Small molecule agonists of cell adhesion molecule L1 mimic L1 functions In Vivo. Mol. Neurobiol., 2016, 53(7), 4461-4483.
[http://dx.doi.org/10.1007/s12035-015-9352-6] [PMID: 26253722]
[33]
Li, R.; Sahu, S.; Schachner, M. Phenelzine, a cell adhesion molecule L1 mimetic small organic compound, promotes functional recovery and axonal regrowth in spinal cord-injured zebrafish. Pharmacol. Biochem. Behav., 2018, 171, 30-38.
[http://dx.doi.org/10.1016/j.pbb.2018.05.013] [PMID: 29802870]
[34]
Li, R.; Sahu, S.; Schachner, M. Phenelzine, a small organic compound mimicking the functions of cell adhesion molecule L1, promotes functional recovery after mouse spinal cord injury. Restor. Neurol. Neurosci., 2018, 36(4), 469-483.
[http://dx.doi.org/10.3233/RNN-170808] [PMID: 29889084]
[35]
Song, B.; Estrada, K.D.; Lyons, K.M. Smad signaling in skeletal development and regeneration. Cytokine Growth Factor Rev., 2009, 20(5-6), 379-388.
[http://dx.doi.org/10.1016/j.cytogfr.2009.10.010] [PMID: 19926329]
[36]
Parikh, P.; Hao, Y.; Hosseinkhani, M.; Patil, S.B.; Huntley, G.W.; Tessier-Lavigne, M.; Zou, H. Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smad1 signaling pathway in adult neurons. Proc. Natl. Acad. Sci. USA, 2011, 108(19), E99-E107.
[http://dx.doi.org/10.1073/pnas.1100426108] [PMID: 21518886]
[37]
Daly, A.C.; Randall, R.A.; Hill, C.S. Transforming growth factor beta-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth. Mol. Cell. Biol., 2008, 28(22), 6889-6902.
[http://dx.doi.org/10.1128/MCB.01192-08] [PMID: 18794361]
[38]
Macías-Silva, M.; Hoodless, P.A.; Tang, S.J.; Buchwald, M.; Wrana, J.L. Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2. J. Biol. Chem., 1998, 273(40), 25628-25636.
[http://dx.doi.org/10.1074/jbc.273.40.25628] [PMID: 9748228]
[39]
Pacifici, M.; Shore, E.M. Common mutations in ALK2/ACVR1, a multi-faceted receptor, have roles in distinct pediatric musculoskeletal and neural orphan disorders. Cytokine Growth Factor Rev., 2016, 27, 93-104.
[http://dx.doi.org/10.1016/j.cytogfr.2015.12.007] [PMID: 26776312]
[40]
van Kuijk, A.A.; Geurts, A.C.H.; van Kuppevelt, H.J.M. Neurogenic heterotopic ossification in spinal cord injury. Spinal Cord, 2002, 40(7), 313-326.
[http://dx.doi.org/10.1038/sj.sc.3101309] [PMID: 12080459]
[41]
Yu, P.B.; Deng, D.Y.; Lai, C.S.; Hong, C.C.; Cuny, G.D.; Bouxsein, M.L.; Hong, D.W.; McManus, P.M.; Katagiri, T.; Sachidanandan, C.; Kamiya, N.; Fukuda, T.; Mishina, Y.; Peterson, R.T.; Bloch, K.D. BMP type I receptor inhibition reduces heterotopic [corrected] ossification. Nat. Med., 2008, 14(12), 1363-1369.
[http://dx.doi.org/10.1038/nm.1888] [PMID: 19029982]
[42]
Shimono, K.; Tung, W-E.; Macolino, C.; Chi, A.H-T.; Didizian, J.H.; Mundy, C.; Chandraratna, R.A.; Mishina, Y.; Enomoto-Iwamoto, M.; Pacifici, M.; Iwamoto, M. Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-γ agonists. Nat. Med., 2011, 17(4), 454-460.
[http://dx.doi.org/10.1038/nm.2334] [PMID: 21460849]
[43]
Cargnello, M.; Roux, P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev., 2011, 75(1), 50-83.
[http://dx.doi.org/10.1128/MMBR.00031-10] [PMID: 21372320]
[44]
Vogt, P.K. Fortuitous convergences: the beginnings of JUN. Nat. Rev. Cancer, 2002, 2(6), 465-469.
[http://dx.doi.org/10.1038/nrc818] [PMID: 12189388]
[45]
Houle, J.D.; Schramm, P.; Herdegen, T. Trophic factor modulation of c-Jun expression in supraspinal neurons after chronic spinal cord injury. Exp. Neurol., 1998, 154(2), 602-611.
[http://dx.doi.org/10.1006/exnr.1998.6954] [PMID: 9878195]
[46]
Wang, J-L.; Ren, C-H.; Feng, J.; Ou, C-H.; Liu, L. Oleanolic acid inhibits mouse spinal cord injury through suppressing inflammation and apoptosis via the blockage of p38 and JNK MAPKs. Biomed. Pharmacother., 2020, 123,109752.
[http://dx.doi.org/10.1016/j.biopha.2019.109752] [PMID: 31924596]
[47]
Zhou, Q.; Wang, S.; Anderson, D.J. Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron, 2000, 25(2), 331-343.
[http://dx.doi.org/10.1016/S0896-6273(00)80898-3] [PMID: 10719889]
[48]
Plemel, J.R.; Keough, M.B.; Duncan, G.J.; Sparling, J.S.; Yong, V.W.; Stys, P.K.; Tetzlaff, W. Remyelination after spinal cord injury: is it a target for repair? Prog. Neurobiol., 2014, 117, 54-72.
[http://dx.doi.org/10.1016/j.pneurobio.2014.02.006] [PMID: 24582777]
[49]
Dai, J.; Bercury, K.K.; Ahrendsen, J.T.; Macklin, W.B. Olig1 function is required for oligodendrocyte differentiation in the mouse brain. J. Neurosci., 2015, 35(10), 4386-4402.
[http://dx.doi.org/10.1523/JNEUROSCI.4962-14.2015] [PMID: 25762682]
[50]
Siebert, J.R.; Middelton, F.A.; Stelzner, D.J. Intrinsic response of thoracic propriospinal neurons to axotomy. BMC Neurosci., 2010, 11, 69-69.
[http://dx.doi.org/10.1186/1471-2202-11-69] [PMID: 20525361]
[51]
Othman, A.; Frim, D.M.; Polak, P.; Vujicic, S.; Arnason, B.G.W.; Boullerne, A.I. Olig1 is expressed in human oligodendrocytes during maturation and regeneration. Glia, 2011, 59(6), 914-926.
[http://dx.doi.org/10.1002/glia.21163] [PMID: 21446039]
[52]
Arnett, H.A.; Fancy, S.P.J.; Alberta, J.A.; Zhao, C.; Plant, S.R.; Kaing, S.; Raine, C.S.; Rowitch, D.H.; Franklin, R.J.M.; Stiles, C.D. bHLH transcription factor Olig1 is required to repair demyelinated lesions in the CNS. Science, 2004, 306(5704), 2111-2115.
[http://dx.doi.org/10.1126/science.1103709] [PMID: 15604411]
[53]
Kim, H.M.; Hwang, D.H.; Choi, J.Y.; Park, C.H.; Suh-Kim, H.; Kim, S.U.; Kim, B.G. Differential and cooperative actions of Olig1 and Olig2 transcription factors on immature proliferating cells after contusive spinal cord injury. Glia, 2011, 59(7), 1094-1106.
[http://dx.doi.org/10.1002/glia.21182] [PMID: 21538562]
[54]
Jin, L.; Wu, Z.; Xu, W.; Hu, X.; Zhang, J.; Xue, Z.; Cheng, L. Identifying gene expression profile of spinal cord injury in rat by bioinformatics strategy. Mol. Biol. Rep., 2014, 41(5), 3169-3177.
[http://dx.doi.org/10.1007/s11033-014-3176-8] [PMID: 24595446]
[55]
Schrank, B.R.; Aparicio, T.; Li, Y.; Chang, W.; Chait, B.T.; Gundersen, G.G.; Gottesman, M.E.; Gautier, J. Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature, 2018, 559(7712), 61-66.
[http://dx.doi.org/10.1038/s41586-018-0237-5] [PMID: 29925947]
[56]
Skinner, M. Cell cycle: ARPC1B - a regulator of regulators. Nat. Rev. Mol. Cell Biol., 2010, 11(8), 542.
[http://dx.doi.org/10.1038/nrm2946] [PMID: 20651704]
[57]
Volpi, S.; Cicalese, M.P.; Tuijnenburg, P.; Tool, A.T.J.; Cuadrado, E.; Abu-Halaweh, M.; Ahanchian, H.; Alzyoud, R.; Akdemir, Z.C.; Barzaghi, F.; Blank, A.; Boisson, B.; Bottino, C.; Brigida, I.; Caorsi, R.; Casanova, J-L.; Chiesa, S.; Chinn, I.K.; Dückers, G.; Enders, A.; Erichsen, H.C.; Forbes, L.R.; Gambin, T.; Gattorno, M.; Karimiani, E.G.; Giliani, S.; Gold, M.S.; Jacobsen, E-M.; Jansen, M.H.; King, J.R.; Laxer, R.M.; Lupski, J.R.; Mace, E.; Marcenaro, S.; Maroofian, R.; Meijer, A.B.; Niehues, T.; Notarangelo, L.D.; Orange, J.; Pannicke, U.; Pearson, C.; Picco, P.; Quinn, P.J.; Schulz, A.; Seeborg, F.; Stray-Pedersen, A.; Tawamie, H.; van Leeuwen, E.M.M.; Aiuti, A.; Yeung, R.; Schwarz, K.; Kuijpers, T.W. A combined immunodeficiency with severe infections, inflammation, and allergy caused by ARPC1B deficiency. J. Allergy Clin. Immunol., 2019, 143(6), 2296-2299.
[http://dx.doi.org/10.1016/j.jaci.2019.02.003] [PMID: 30771411]
[58]
Liu, Z.; Zhang, H.; Xia, H.; Wang, B.; Zhang, R.; Zeng, Q.; Guo, L.; Shen, K.; Wang, B.; Zhong, Y.; Li, Z.; Sun, G. CD8 T cell-derived perforin aggravates secondary spinal cord injury through destroying the blood-spinal cord barrier. Biochem. Biophys. Res. Commun., 2019, 512(2), 367-372.
[http://dx.doi.org/10.1016/j.bbrc.2019.03.002] [PMID: 30894275]
[59]
Zannetti, C.; Bonnay, F.; Takeshita, F.; Parroche, P.; Ménétrier-Caux, C.; Tommasino, M.; Hasan, U.A. C/EBPdelta and STAT-1 are required for TLR8 transcriptional activity. J. Biol. Chem., 2010, 285(45), 34773-34780.
[http://dx.doi.org/10.1074/jbc.M110.133884] [PMID: 20829351]
[60]
Cardinaux, J.R.; Allaman, I.; Magistretti, P.J. Pro-inflammatory cytokines induce the transcription factors C/EBPbeta and C/EBPdelta in astrocytes. Glia, 2000, 29(1), 91-97.
[http://dx.doi.org/10.1002/(SICI)1098-1136(20000101)29:1<91:AID-GLIA9>3.0.CO;2-I] [PMID: 10594926]
[61]
Tengku-Muhammad, T.S.; Hughes, T.R.; Ranki, H.; Cryer, A.; Ramji, D.P. Differential regulation of macrophage CCAAT-enhancer binding protein isoforms by lipopolysaccharide and cytokines. Cytokine, 2000, 12(9), 1430-1436.
[http://dx.doi.org/10.1006/cyto.2000.0711] [PMID: 10976009]
[62]
Wang, S-M.; Lin, H-Y.; Chen, Y-L.; Hsu, T-I.; Chuang, J-Y.; Kao, T-J.; Ko, C-Y. CCAAT/enhancer-binding protein delta regulates the stemness of glioma stem-like cells through activating PDGFA expression upon inflammatory stimulation. J. Neuroinflammation, 2019, 16(1), 146.
[http://dx.doi.org/10.1186/s12974-019-1535-z] [PMID: 31300060]
[63]
Ji, C.; Chang, W.; Centrella, M.; McCarthy, T.L. Activation domains of CCAAT enhancer binding protein δ: regions required for native activity and prostaglandin E2-dependent transactivation of insulin-like growth factor I gene expression in rat osteoblasts. Mol. Endocrinol., 2003, 17(9), 1834-1843.
[http://dx.doi.org/10.1210/me.2002-0235] [PMID: 12791769]
[64]
Ko, C-Y.; Wang, W-L.; Wang, S-M.; Chu, Y-Y.; Chang, W-C.; Wang, J-M. Glycogen synthase kinase-3β-mediated CCAAT/enhancer-binding protein delta phosphorylation in astrocytes promotes migration and activation of microglia/macrophages. Neurobiol. Aging, 2014, 35(1), 24-34.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.07.021] [PMID: 23993701]
[65]
Liu, Y-W.; Chen, C-C.; Tseng, H-P.; Chang, W-C. Lipopolysaccharide-induced transcriptional activation of interleukin-10 is mediated by MAPK- and NF-kappaB-induced CCAAT/enhancer-binding protein δ in mouse macrophages. Cell. Signal., 2006, 18(9), 1492-1500.
[http://dx.doi.org/10.1016/j.cellsig.2005.12.001] [PMID: 16413748]
[66]
Sanford, D.C.; DeWille, J.W. C/EBPdelta is a downstream mediator of IL-6 induced growth inhibition of prostate cancer cells. Prostate, 2005, 63(2), 143-154.
[http://dx.doi.org/10.1002/pros.20159] [PMID: 15486993]
[67]
Sekine, O.; Nishio, Y.; Egawa, K.; Nakamura, T.; Maegawa, H.; Kashiwagi, A. Insulin activates CCAAT/enhancer binding proteins and proinflammatory gene expression through the phosphatidylinositol 3-kinase pathway in vascular smooth muscle cells. J. Biol. Chem., 2002, 277(39), 36631-36639.
[http://dx.doi.org/10.1074/jbc.M206266200] [PMID: 12145301]
[68]
Wang, S-M.; Lim, S-W.; Wang, Y-H.; Lin, H-Y.; Lai, M-D.; Ko, C-Y.; Wang, J-M. Astrocytic CCAAT/Enhancer-binding protein delta contributes to reactive oxygen species formation in neuroinflammation. Redox Biol., 2018, 16, 104-112.
[http://dx.doi.org/10.1016/j.redox.2018.02.011] [PMID: 29499563]
[69]
White, T.E.; Ford, G.D.; Surles-Zeigler, M.C.; Gates, A.S.; Laplaca, M.C.; Ford, B.D. Gene expression patterns following unilateral traumatic brain injury reveals a local pro-inflammatory and remote anti-inflammatory response. BMC Genomics, 2013, 14, 282-282.
[http://dx.doi.org/10.1186/1471-2164-14-282] [PMID: 23617241]
[70]
von Gertten, C.; Flores Morales, A.; Holmin, S.; Mathiesen, T.; Nordqvist, A-C.S. Genomic responses in rat cerebral cortex after traumatic brain injury. BMC Neurosci., 2005, 6, 69-69.
[http://dx.doi.org/10.1186/1471-2202-6-69] [PMID: 16318630]
[71]
Huang, W.; Chen, Y.; Shohami, E.; Weinstock, M. Neuroprotective effect of rasagiline, a selective monoamine oxidase-B inhibitor, against closed head injury in the mouse. Eur. J. Pharmacol., 1999, 366(2-3), 127-135.
[http://dx.doi.org/10.1016/S0014-2999(98)00929-7] [PMID: 10082192]
[72]
Geng, X.; Li, F.; Yip, J.; Peng, C.; Elmadhoun, O.; Shen, J.; Ji, X.; Ding, Y. Neuroprotection by chlorpromazine and promethazine in severe transient and permanent ischemic stroke. Mol. Neurobiol., 2017, 54(10), 8140-8150.
[http://dx.doi.org/10.1007/s12035-016-0280-x] [PMID: 27896650]
[73]
Sukumari-Ramesh, S.; Alleyne, C.H., Jr; Dhandapani, K.M. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) confers acute neuroprotection after intracerebral hemorrhage in mice. Transl. Stroke Res., 2016, 7(2), 141-148.
[http://dx.doi.org/10.1007/s12975-015-0421-y] [PMID: 26338677]
[74]
Tsai, Y-T.; Wang, C-C.; Leung, P-O.; Lin, K-C.; Chio, C-C.; Hu, C-Y.; Kuo, J-R. Extracellular signal-regulated kinase 1/2 is involved in a tamoxifen neuroprotective effect in a lateral fluid percussion injury rat model. J. Surg. Res., 2014, 189(1), 106-116.
[http://dx.doi.org/10.1016/j.jss.2014.02.009] [PMID: 24636102]
[75]
Xuan, A.; Long, D.; Li, J.; Ji, W.; Hong, L.; Zhang, M.; Zhang, W. Neuroprotective effects of valproic acid following transient global ischemia in rats. Life Sci., 2012, 90(11-12), 463-468.
[http://dx.doi.org/10.1016/j.lfs.2012.01.001] [PMID: 22285595]
[76]
Osumi, N.; Shinohara, H.; Numayama-Tsuruta, K.; Maekawa, M. Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells, 2008, 26(7), 1663-1672.
[http://dx.doi.org/10.1634/stemcells.2007-0884] [PMID: 18467663]
[77]
White, R.B.; Thomas, M.G. Developmental transcription factors in age-related CNS disease: a phoenix rising from the ashes? Neural Regen. Res., 2016, 11(1), 64-65.
[http://dx.doi.org/10.4103/1673-5374.175044] [PMID: 26981081]
[78]
Nakatomi, H.; Kuriu, T.; Okabe, S.; Yamamoto, S.; Hatano, O.; Kawahara, N.; Tamura, A.; Kirino, T.; Nakafuku, M. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell, 2002, 110(4), 429-441.
[http://dx.doi.org/10.1016/S0092-8674(02)00862-0] [PMID: 12202033]
[79]
Shen, S-W.; Duan, C-L.; Chen, X-H.; Wang, Y-Q.; Sun, X.; Zhang, Q-W.; Cui, H-R.; Sun, F-Y. Neurogenic effect of VEGF is related to increase of astrocytes trans differentiation into new mature neurons in rat brains after stroke. Neuropharmacology, 2016, 108, 451-461.
[http://dx.doi.org/10.1016/j.neuropharm.2015.11.012] [PMID: 26603138]
[80]
Mo, J-L.; Liu, Q.; Kou, Z-W.; Wu, K-W.; Yang, P.; Chen, X-H.; Sun, F-Y. MicroRNA-365 modulates astrocyte conversion into neuron in adult rat brain after stroke by targeting Pax6. Glia, 2018, 66(7), 1346-1362.
[http://dx.doi.org/10.1002/glia.23308] [PMID: 29451327]
[81]
Merritt, J.E. Armstrong, W.P.; Benham, C.D.; Hallam, T.J.; Jacob, R.; Jaxa-Chamiec, A.; Leigh, B.K.; McCarthy, S.A.; Moores, K.E.; Rink, T.J. SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem. J., 1990, 271(2), 515-522.
[http://dx.doi.org/10.1042/bj2710515] [PMID: 2173565]
[82]
Shin, S.S.; Bray, E.R.; Zhang, C.Q.; Dixon, C.E. Traumatic brain injury reduces striatal tyrosine hydroxylase activity and potassium-evoked dopamine release in rats. Brain Res., 2011, 1369, 208-215.
[http://dx.doi.org/10.1016/j.brainres.2010.10.096] [PMID: 21047500]
[83]
Kato, H.; Araki, T.; Itoyama, Y.; Kogure, K. Rolipram, a cyclic AMP-selective phosphodiesterase inhibitor, reduces neuronal damage following cerebral ischemia in the gerbil. Eur. J. Pharmacol., 1995, 272(1), 107-110.
[http://dx.doi.org/10.1016/0014-2999(94)00694-3] [PMID: 7713141]
[84]
Kraft, P.; Schwarz, T.; Göb, E.; Heydenreich, N.; Brede, M.; Meuth, S.G.; Kleinschnitz, C. The phosphodiesterase-4 inhibitor rolipram protects from ischemic stroke in mice by reducing blood-brain-barrier damage, inflammation and thrombosis. Exp. Neurol., 2013, 247, 80-90.
[http://dx.doi.org/10.1016/j.expneurol.2013.03.026] [PMID: 23570902]
[85]
Sommer, N.; Löschmann, P.A.; Northoff, G.H.; Weller, M.; Steinbrecher, A.; Steinbach, J.P.; Lichtenfels, R.; Meyermann, R.; Riethmüller, A.; Fontana, A.; Dichgans, J.; Martin, R. The antidepressant rolipram suppresses cytokine production and prevents autoimmune encephalomyelitis. Nat. Med., 1995, 1(3), 244-248.
[http://dx.doi.org/10.1038/nm0395-244] [PMID: 7585041]
[86]
Rustenhoven, J.; Smith, A.M.; Smyth, L.C.; Jansson, D.; Scotter, E.L.; Swanson, M.E.V.; Aalderink, M.; Coppieters, N.; Narayan, P.; Handley, R.; Overall, C.; Park, T.I.H.; Schweder, P.; Heppner, P.; Curtis, M.A.; Faull, R.L.M.; Dragunow, M.P.U. 1 regulates Alzheimer’s disease-associated genes in primary human microglia. Mol. Neurodegener., 2018, 13(1), 44.
[http://dx.doi.org/10.1186/s13024-018-0277-1] [PMID: 30124174]
[87]
Huang, K-L.; Marcora, E.; Pimenova, A.A.; Di Narzo, A.F.; Kapoor, M.; Jin, S.C.; Harari, O.; Bertelsen, S.; Fairfax, B.P.; Czajkowski, J.; Chouraki, V.; Grenier-Boley, B.; Bellenguez, C.; Deming, Y.; McKenzie, A.; Raj, T.; Renton, A.E.; Budde, J.; Smith, A.; Fitzpatrick, A.; Bis, J.C.; DeStefano, A.; Adams, H.H.H.; Ikram, M.A.; van der Lee, S.; Del-Aguila, J.L.; Fernandez, M.V.; Ibañez, L.; Sims, R.; Escott-Price, V.; Mayeux, R.; Haines, J.L.; Farrer, L.A.; Pericak-Vance, M.A.; Lambert, J.C.; van Duijn, C.; Launer, L.; Seshadri, S.; Williams, J.; Amouyel, P.; Schellenberg, G.D.; Zhang, B.; Borecki, I.; Kauwe, J.S.K.; Cruchaga, C.; Hao, K.; Goate, A.M. International Genomics of Alzheimer’s Project; Alzheimer’s Disease Neuroimaging Initiative. A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s disease. Nat. Neurosci., 2017, 20(8), 1052-1061.
[http://dx.doi.org/10.1038/nn.4587] [PMID: 28628103]
[88]
Simon, D.W.; McGeachy, M.J.; Bayır, H.; Clark, R.S.B.; Loane, D.J.; Kochanek, P.M. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat. Rev. Neurol., 2017, 13(3), 171-191.
[http://dx.doi.org/10.1038/nrneurol.2017.13] [PMID: 28186177]
[89]
Farrokhnia, N.; Ericsson, A.; Terént, A.; Lennmyr, F. MEK-inhibitor U0126 in hyperglycaemic focal ischaemic brain injury in the rat. Eur. J. Clin. Invest., 2008, 38(9), 679-685.
[http://dx.doi.org/10.1111/j.1365-2362.2008.01990.x] [PMID: 18837745]
[90]
Lu, K.; Cho, C-L.; Liang, C-L.; Chen, S-D.; Liliang, P-C.; Wang, S-Y.; Chen, H-J. Inhibition of the MEK/ERK pathway reduces microglial activation and interleukin-1-beta expression in spinal cord ischemia/reperfusion injury in rats. J. Thorac. Cardiovasc. Surg., 2007, 133(4), 934-941.
[http://dx.doi.org/10.1016/j.jtcvs.2006.11.038] [PMID: 17382630]
[91]
Aras, A.B.; Guven, M.; Akman, T.; Alacam, H.; Kalkan, Y.; Silan, C.; Cosar, M. Genistein exerts neuroprotective effect on focal cerebral ischemia injury in rats. Inflammation, 2015, 38(3), 1311-1321.
[http://dx.doi.org/10.1007/s10753-014-0102-0] [PMID: 25567369]
[92]
Soltani, Z.; Khaksari, M.; Jafari, E.; Iranpour, M.; Shahrokhi, N. Is genistein neuroprotective in traumatic brain injury? Physiol. Behav.,, 2015, 152(Pt A), 26-31.
[http://dx.doi.org/0.1016/j.physbeh.2015.08.037] [PMID: 26367454]
[93]
Vikhreva, P.; Melino, G.; Amelio, I. p73 Alternative Splicing: Exploring a Biological Role for the C-Terminal Isoforms. J. Mol. Biol., 2018, 430(13), 1829-1838.
[http://dx.doi.org/10.1016/j.jmb.2018.04.034] [PMID: 29733853]
[94]
Paban, V.; Ogier, M.; Chambon, C.; Fernandez, N.; Davidsson, J.; Risling, M.; Alescio-Lautier, B. Molecular gene expression following blunt and rotational models of traumatic brain injury parallel injuries associated with stroke and depression. J. Transl. Sci., 2016, 2, 330-339.
[http://dx.doi.org/10.15761/JTS.1000159]
[95]
Hayden, M.S.; Ghosh, S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev., 2012, 26(3), 203-234.
[http://dx.doi.org/10.1101/gad.183434.111] [PMID: 22302935]
[96]
Mémet, S. NF-kappaB functions in the nervous system: from development to disease. Biochem. Pharmacol., 2006, 72(9), 1180-1195.
[http://dx.doi.org/10.1016/j.bcp.2006.09.003] [PMID: 16997282]
[97]
Brambilla, R.; Bracchi-Ricard, V.; Hu, W-H.; Frydel, B.; Bramwell, A.; Karmally, S.; Green, E.J.; Bethea, J.R. Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J. Exp. Med., 2005, 202(1), 145-156.
[http://dx.doi.org/10.1084/jem.20041918] [PMID: 15998793]
[98]
Kaltschmidt, B.; Kaltschmidt, C. NF-kappaB in the nervous system. Cold Spring Harb. Perspect. Biol., 2009, 1(3), a001271-a001271.
[http://dx.doi.org/10.1101/cshperspect.a001271] [PMID: 20066105]
[99]
Kaltschmidt, B.; Kaltschmidt, C. NF-KappaB in long-term memory and structural plasticity in the adult mammalian brain. Front. Mol. Neurosci., 2015, 8, 69-69.
[http://dx.doi.org/10.3389/fnmol.2015.00069] [PMID: 26635522]
[100]
Lattke, M.; Magnutzki, A.; Walther, P.; Wirth, T.; Baumann, B. Nuclear factor κB activation impairs ependymal ciliogenesis and links neuroinflammation to hydrocephalus formation. J. Neurosci., 2012, 32(34), 11511-11523.
[http://dx.doi.org/10.1523/JNEUROSCI.0182-12.2012] [PMID: 22915098]
[101]
Mattson, M.P.; Culmsee, C.; Yu, Z.; Camandola, S. Roles of nuclear factor kappaB in neuronal survival and plasticity. J. Neurochem., 2000, 74(2), 443-456.
[http://dx.doi.org/10.1046/j.1471-4159.2000.740443.x] [PMID: 10646495]
[102]
O’Neill, L.A.J.; Kaltschmidt, C. NF-kappa B: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci., 1997, 20(6), 252-258.
[http://dx.doi.org/10.1016/S0166-2236(96)01035-1] [PMID: 9185306]
[103]
Hang, C-H.; Chen, G.; Shi, J-X.; Zhang, X.; Li, J-S. Cortical expression of nuclear factor kappaB after human brain contusion. Brain Res., 2006, 1109(1), 14-21.
[http://dx.doi.org/10.1016/j.brainres.2006.06.045] [PMID: 16857176]
[104]
Yang, K.; Mu, X.S.; Hayes, R.L. Increased cortical nuclear factor-κ B (NF-κ B) DNA binding activity after traumatic brain injury in rats. Neurosci. Lett., 1995, 197(2), 101-104.
[http://dx.doi.org/10.1016/0304-3940(95)11919-N] [PMID: 8552270]
[105]
Lian, H.; Shim, D.J.; Gaddam, S.S.K.; Rodriguez-Rivera, J.; Bitner, B.R.; Pautler, R.G.; Robertson, C.S.; Zheng, H. IκBα deficiency in brain leads to elevated basal neuroinflammation and attenuated response following traumatic brain injury: implications for functional recovery. Mol. Neurodegener., 2012, 7(1), 47.
[http://dx.doi.org/10.1186/1750-1326-7-47] [PMID: 22992283]
[106]
Chen, X.; Chen, C.; Fan, S.; Wu, S.; Yang, F.; Fang, Z.; Fu, H.; Li, Y. Omega-3 polyunsaturated fatty acid attenuates the inflammatory response by modulating microglia polarization through SIRT1-mediated deacetylation of the HMGB1/NF-κB pathway following experimental traumatic brain injury. J. Neuroinflammation, 2018, 15(1), 116-116.
[http://dx.doi.org/10.1186/s12974-018-1151-3] [PMID: 29678169]
[107]
Dadas, A.; Washington, J.; Diaz-Arrastia, R.; Janigro, D. Biomarkers in traumatic brain injury (TBI): a review. Neuropsychiatr. Dis. Treat., 2018, 14, 2989-3000.
[http://dx.doi.org/10.2147/NDT.S125620] [PMID: 30510421]
[108]
Kwon, B.K.; Bloom, O.; Wanner, I-B.; Curt, A.; Schwab, J.M.; Fawcett, J.; Wang, K.K. Neurochemical biomarkers in spinal cord injury. Spinal Cord, 2019, 57(10), 819-831.
[http://dx.doi.org/10.1038/s41393-019-0319-8] [PMID: 31273298]
[109]
Agoston, D.V.; Shutes-David, A.; Peskind, E.R. Biofluid biomarkers of traumatic brain injury. Brain Inj., 2017, 31(9), 1195-1203.
[http://dx.doi.org/10.1080/02699052.2017.1357836] [PMID: 28981341]
[110]
Albayar, A.A.; Roche, A.; Swiatkowski, P.; Antar, S.; Ouda, N.; Emara, E.; Smith, D.H.; Ozturk, A.K.; Awad, B.I. Biomarkers in Spinal Cord Injury: Prognostic Insights and Future Potentials. Front. Neurol., 2019, 10, 27-27.
[http://dx.doi.org/10.3389/fneur.2019.00027] [PMID: 30761068]
[111]
Kim, H.J.; Tsao, J.W.; Stanfill, A.G. The current state of biomarkers of mild traumatic brain injury. JCI Insight, 2018, 3(1)e97105
[http://dx.doi.org/10.1172/jci.insight.97105]] [PMID: 29321373]
[112]
Gan, Z.S.; Stein, S.C.; Swanson, R.; Guan, S.; Garcia, L.; Mehta, D.; Smith, D.H. Blood biomarkers for traumatic brain injury: a quantitative assessment of diagnostic and prognostic accuracy. Front. Neurol., 2019, 10, 446-446.
[http://dx.doi.org/10.3389/fneur.2019.00446] [PMID: 31105646]
[113]
Davies, A.L.; Hayes, K.C.; Dekaban, G.A. Clinical correlates of elevated serum concentrations of cytokines and autoantibodies in patients with spinal cord injury. Arch. Phys. Med. Rehabil., 2007, 88(11), 1384-1393.
[http://dx.doi.org/10.1016/j.apmr.2007.08.004] [PMID: 17964877]
[114]
Kumar, R.G.; Diamond, M.L.; Boles, J.A.; Berger, R.P.; Tisherman, S.A.; Kochanek, P.M.; Wagner, A.K. Acute CSF interleukin-6 trajectories after TBI: associations with neuroinflammation, polytrauma, and outcome. Brain Behav. Immun., 2015, 45, 253-262.
[http://dx.doi.org/10.1016/j.bbi.2014.12.021] [PMID: 25555531]
[115]
Lindsay, A.; Costello, J.T. Realising the potential of urine and saliva as diagnostic tools in sport and exercise medicine. Sports Med., 2017, 47(1), 11-31.
[http://dx.doi.org/10.1007/s40279-016-0558-1] [PMID: 27294353]
[116]
Ved, R.; Zaben, M. Biomarkers for traumatic brain injury. J. Neurol., 2018, 265(5), 1241-1243.
[http://dx.doi.org/10.1007/s00415-018-8855-2] [PMID: 29637274]
[117]
Pouw, M.H.; Kwon, B.K.; Verbeek, M.M.; Vos, P.E.; van Kampen, A.; Fisher, C.G.; Street, J.; Paquette, S.J.; Dvorak, M.F.; Boyd, M.C.; Hosman, A.J.F.; van de Meent, H. Structural biomarkers in the cerebrospinal fluid within 24 h after a traumatic spinal cord injury: a descriptive analysis of 16 subjects. Spinal Cord, 2014, 52(6), 428-433.
[http://dx.doi.org/10.1038/sc.2014.26] [PMID: 24710150]
[118]
Ahadi, R.; Khodagholi, F.; Daneshi, A.; Vafaei, A.; Mafi, A.A.; Jorjani, M. Diagnostic value of serum levels of gfap, pnf-h, and nse compared with clinical findings in severity assessment of human traumatic spinal cord injury. Spine, 2015, 40(14), E823-E830.
[http://dx.doi.org/10.1097/BRS.0000000000000654] [PMID: 25341992]
[119]
Ko, C-Y.; Chang, W-C.; Wang, J-M. Biological roles of CCAAT/Enhancer-binding protein delta during inflammation. J. Biomed. Sci., 2015, 22(1), 6-6.
[http://dx.doi.org/10.1186/s12929-014-0110-2] [PMID: 25591788]
[120]
Kline, A.E.; Yan, H.Q.; Bao, J.; Marion, D.W.; Dixon, C.E. Chronic methylphenidate treatment enhances water maze performance following traumatic brain injury in rats. Neurosci. Lett., 2000, 280(3), 163-166.
[http://dx.doi.org/10.1016/S0304-3940(00)00797-7] [PMID: 10675786]
[121]
Lipponen, A.; Natunen, T.; Hujo, M.; Ciszek, R. Hämäläinen, E.; Tohka, J.; Hiltunen, M.; Paananen, J.; Poulsen, D.; Kansanen, E. In Vitro and In Vivo pipeline for validation of disease-modifying effects of systems biology-derived network treatments for traumatic brain injury. Lessons Learned. Int. J. Mol. Sci. 2019, 20(21), 5395.
[http://dx.doi.org/10.3390/ijms20215395] [PMID: 31671916]
[122]
Schreck, R.; Meier, B.; Männel, D.N.; Dröge, W.; Baeuerle, P.A. Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. J. Exp. Med., 1992, 175(5), 1181-1194.
[http://dx.doi.org/10.1084/jem.175.5.1181] [PMID: 1314883]
[123]
Zhang, M.; Cui, Z.; Cui, H.; Wang, Y.; Zhong, C. Astaxanthin protects astrocytes against trauma-induced apoptosis through inhibition of NKCC1 expression via the NF-κB signaling pathway. BMC Neurosci., 2017, 18(1), 42.
[http://dx.doi.org/10.1186/s12868-017-0358-z] [PMID: 28490320]
[124]
Tao, L.; Li, D.; Liu, H.; Jiang, F.; Xu, Y.; Cao, Y.; Gao, R.; Chen, G. Neuroprotective effects of metformin on traumatic brain injury in rats associated with NF-κB and MAPK signaling pathway. Brain Res. Bull., 2018, 140, 154-161.
[http://dx.doi.org/10.1016/j.brainresbull.2018.04.008] [PMID: 29698747]
[125]
Feng, Y.; Cui, Y.; Gao, J-L.; Li, M-H.; Li, R.; Jiang, X-H.; Tian, Y-X.; Wang, K-J.; Cui, C-M.; Cui, J-Z. Resveratrol attenuates neuronal autophagy and inflammatory injury by inhibiting the TLR4/NF-κB signaling pathway in experimental traumatic brain injury. Int. J. Mol. Med., 2016, 37(4), 921-930.
[http://dx.doi.org/10.3892/ijmm.2016.2495] [PMID: 26936125]
[126]
Wang, D.; Xu, X.; Wu, Y-G.; Lyu, L.; Zhou, Z-W.; Zhang, J-N. Dexmedetomidine attenuates traumatic brain injury: action pathway and mechanisms. Neural Regen. Res., 2018, 13(5), 819-826.
[http://dx.doi.org/10.4103/1673-5374.232529] [PMID: 29863012]
[127]
Cartagena, C.M.; Phillips, K.L.; Williams, G.L.; Konopko, M.; Tortella, F.C.; Dave, J.R.; Schmid, K.E. Mechanism of action for NNZ-2566 anti-inflammatory effects following PBBI involves upregulation of immunomodulator ATF3. Neuromol. Med., 2013, 15(3), 504-514.
[http://dx.doi.org/10.1007/s12017-013-8236-z] [PMID: 23765588]
[128]
Katsumoto, A.; Miranda, A.S.; Butovsky, O.; Teixeira, A.L.; Ransohoff, R.M.; Lamb, B.T. Laquinimod attenuates inflammation by modulating macrophage functions in traumatic brain injury mouse model. J. Neuroinflammation, 2018, 15(1), 26.
[http://dx.doi.org/10.1186/s12974-018-1075-y] [PMID: 29382353]
[129]
Hong, Y.; Yan, W.; Chen, S.; Sun, C.R.; Zhang, J.M. The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice. Acta Pharmacol. Sin., 2010, 31(11), 1421-1430.
[http://dx.doi.org/10.1038/aps.2010.101] [PMID: 20953205]
[130]
Lu, X-Y.; Wang, H.D.; Xu, J-G.; Ding, K.; Li, T. Pretreatment with tert-butylhydroquinone attenuates cerebral oxidative stress in mice after traumatic brain injury. J. Surg. Res., 2014, 188(1), 206-212.
[http://dx.doi.org/10.1016/j.jss.2013.11.1106] [PMID: 24387843]
[131]
Fang, J.; Wang, H.; Zhou, J.; Dai, W.; Zhu, Y.; Zhou, Y.; Wang, X.; Zhou, M. Baicalin provides neuroprotection in traumatic brain injury mice model through Akt/Nrf2 pathway. Drug Des. Devel. Ther., 2018, 12, 2497-2508.
[http://dx.doi.org/10.2147/DDDT.S163951] [PMID: 30127597]
[132]
Zhou, Y.; Wang, H-D.; Zhou, X-M.; Fang, J.; Zhu, L.; Ding, K. N-acetylcysteine amide provides neuroprotection via Nrf2-ARE pathway in a mouse model of traumatic brain injury. Drug Des. Devel. Ther., 2018, 12, 4117-4127.
[http://dx.doi.org/10.2147/DDDT.S179227] [PMID: 30584276]
[133]
Chen, X.; Wang, H.; Zhou, M.; Li, X.; Fang, Z.; Gao, H.; Li, Y.; Hu, W. Valproic acid attenuates traumatic brain injury-induced inflammation in Vivo: Involvement of autophagy and the Nrf2/ARE signaling pathway. Front. Mol. Neurosci., 2018, 11, 117-117.
[http://dx.doi.org/10.3389/fnmol.2018.00117] [PMID: 29719500]
[134]
Han, F.; Yan, N.; Huo, J.; Chen, X.; Fei, Z.; Li, X. Asiatic acid attenuates traumatic brain injury via upregulating Nrf2 and HO-1 expression. Int. J. Clin. Exp. Med., 2018, 11(1), 360-366.
[135]
Berger, R.P.; Pierce, M.C.; Wisniewski, S.R.; Adelson, P.D.; Clark, R.S.B.; Ruppel, R.A.; Kochanek, P.M. Neuron-specific enolase and S100B in cerebrospinal fluid after severe traumatic brain injury in infants and children. Pediatrics, 2002, 109(2),E31.
[http://dx.doi.org/10.1542/peds.109.2.e31]] [PMID: 11826241]
[136]
Böhmer, A.E.; Oses, J.P.; Schmidt, A.P.; Perón, C.S.; Krebs, C.L.; Oppitz, P.P.; D’Avila, T.T.; Souza, D.O.; Portela, L.V.; Stefani, M.A. Neuron-specific enolase, S100B, and glial fibrillary acidic protein levels as outcome predictors in patients with severe traumatic brain injury. Neurosurgery, 2011, 68(6), 1624-1630.
[http://dx.doi.org/10.1227/NEU.0b013e318214a81f] [PMID: 21368691]
[137]
Vos, P.E.; Jacobs, B.; Andriessen, T.M.J.C.; Lamers, K.J.B.; Borm, G.F.; Beems, T.; Edwards, M.; Rosmalen, C.F.; Vissers, J.L.M. GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study. Neurology, 2010, 75(20), 1786-1793.
[http://dx.doi.org/10.1212/WNL.0b013e3181fd62d2] [PMID: 21079180]
[138]
Kwon, B.K.; Streijger, F.; Fallah, N.; Noonan, V.K.; Bélanger, L.M.; Ritchie, L.; Paquette, S.J.; Ailon, T.; Boyd, M.C.; Street, J.; Fisher, C.G.; Dvorak, M.F. Cerebrospinal fluid biomarkers to stratify injury severity and predict outcome in human traumatic spinal cord injury. J. Neurotrauma, 2017, 34(3), 567-580.
[http://dx.doi.org/10.1089/neu.2016.4435] [PMID: 27349274]
[139]
Thelin, E.; Al Nimer, F.; Frostell, A.; Zetterberg, H.; Blennow, K.; Nyström, H.; Svensson, M.; Bellander, B-M.; Piehl, F.; Nelson, D.W. A serum protein biomarker panel improves outcome prediction in human traumatic brain injury. J. Neurotrauma, 2019, 36(20), 2850-2862.
[http://dx.doi.org/10.1089/neu.2019.6375] [PMID: 31072225]
[140]
Rubenstein, R.; Chang, B.; Yue, J.K.; Chiu, A.; Winkler, E.A.; Puccio, A.M.; Diaz-Arrastia, R.; Yuh, E.L.; Mukherjee, P.; Valadka, A.B.; Gordon, W.A.; Okonkwo, D.O.; Davies, P.; Agarwal, S.; Lin, F.; Sarkis, G.; Yadikar, H.; Yang, Z.; Manley, G.T.; Wang, K.K.W.; Cooper, S.R.; Dams-O’Connor, K.; Borrasso, A.J.; Inoue, T.; Maas, A.I.R.; Menon, D.K.; Schnyer, D.M.; Vassar, M.J. The TRACK-TBI Investigators Comparing Plasma Phospho Tau, Total Tau, and Phospho Tau-Total Tau ratio as acute and chronic traumatic brain injury biomarkers. JAMA Neurol., 2017, 74(9), 1063-1072.
[http://dx.doi.org/10.1001/jamaneurol.2017.0655] [PMID: 28738126]
[141]
Woodcock, T.; Morganti-Kossmann, M.C. The role of markers of inflammation in traumatic brain injury. Front. Neurol., 2013, 4, 18-18.
[http://dx.doi.org/10.3389/fneur.2013.00018] [PMID: 23459929]
[142]
Kuhle, J.; Gaiottino, J.; Leppert, D.; Petzold, A.; Bestwick, J.P.; Malaspina, A.; Lu, C-H.; Dobson, R.; Disanto, G.; Norgren, N.; Nissim, A.; Kappos, L.; Hurlbert, J.; Yong, V.W.; Giovannoni, G.; Casha, S. Serum neurofilament light chain is a biomarker of human spinal cord injury severity and outcome. J. Neurol. Neurosurg. Psychiatry, 2015, 86(3), 273-279.
[http://dx.doi.org/10.1136/jnnp-2013-307454] [PMID: 24935984]
[143]
Hayakawa, K.; Okazaki, R.; Ishii, K.; Ueno, T.; Izawa, N.; Tanaka, Y.; Toyooka, S.; Matsuoka, N.; Morioka, K.; Ohori, Y.; Nakamura, K.; Akai, M.; Tobimatsu, Y.; Hamabe, Y.; Ogata, T. Phosphorylated neurofilament subunit NF-H as a biomarker for evaluating the severity of spinal cord injury patients, a pilot study. Spinal Cord, 2012, 50(7), 493-496.
[http://dx.doi.org/10.1038/sc.2011.184] [PMID: 22270191]
[144]
Guéz, M.; Hildingsson, C.; Rosengren, L.; Karlsson, K.; Toolanen, G. Nervous tissue damage markers in cerebrospinal fluid after cervical spine injuries and whiplash trauma. J. Neurotrauma, 2003, 20(9), 853-858.
[http://dx.doi.org/10.1089/089771503322385782] [PMID: 14577863]
[145]
Žurek, J.; Fedora, M. The usefulness of S100B, NSE, GFAP, NF-H, secretagogin and Hsp70 as a predictive biomarker of outcome in children with traumatic brain injury. Acta Neurochir. (Wien), 2012, 154(1), 93-103.
[http://dx.doi.org/10.1007/s00701-011-1175-2] [PMID: 21976236]
[146]
Gatson, J. W.; Barillas, J.; Hynan, L. S.; Diaz-Arrastia, R.; Wolf, S. E.; Minei, J. P. Detection of neurofilament-H in serum as a diagnostic tool to predict injury severity in patients who have suffered mild traumatic brain injury, 2014, 121(5), 1232.
[http://dx.doi.org/10.3171/2014.7.JNS132474]
[147]
Arevalo-Martin, A.; Grassner, L.; Garcia-Ovejero, D.; Paniagua-Torija, B.; Barroso-Garcia, G.; Arandilla, A.G.; Mach, O.; Turrero, A.; Vargas, E.; Alcobendas, M.; Rosell, C.; Alcaraz, M.A.; Ceruelo, S.; Casado, R.; Talavera, F.; Palazón, R.; Sanchez-Blanco, N.; Maier, D.; Esclarin, A.; Molina-Holgado, E. Elevated autoantibodies in subacute human spinal cord injury are naturally occurring antibodies. Front. Immunol., 2018, 9, 2365-2365.
[http://dx.doi.org/10.3389/fimmu.2018.02365] [PMID: 30364218]
[148]
Yokobori, S.; Zhang, Z.; Moghieb, A.; Mondello, S.; Gajavelli, S.; Dietrich, W.D.; Bramlett, H.; Hayes, R.L.; Wang, M.; Wang, K.K.W.; Bullock, M.R. Acute diagnostic biomarkers for spinal cord injury: review of the literature and preliminary research report. World Neurosurg., 2015, 83(5), 867-878.
[http://dx.doi.org/10.1016/j.wneu.2013.03.012] [PMID: 23524031]
[149]
Bazarian, J.J.; Biberthaler, P.; Welch, R.D.; Lewis, L.M.; Barzo, P.; Bogner-Flatz, V.; Gunnar Brolinson, P.; Büki, A.; Chen, J.Y.; Christenson, R.H.; Hack, D.; Huff, J.S.; Johar, S.; Jordan, J.D.; Leidel, B.A.; Lindner, T.; Ludington, E.; Okonkwo, D.O.; Ornato, J.; Peacock, W.F.; Schmidt, K.; Tyndall, J.A.; Vossough, A.; Jagoda, A.S. Serum GFAP and UCH-L1 for prediction of absence of intracranial injuries on head CT (ALERT-TBI): a multicentre observational study. Lancet Neurol., 2018, 17(9), 782-789.
[http://dx.doi.org/10.1016/S1474-4422(18)30231-X] [PMID: 30054151]
[150]
Diaz-Arrastia, R.; Wang, K.K.W.; Papa, L.; Sorani, M.D.; Yue, J.K.; Puccio, A.M.; McMahon, P.J.; Inoue, T.; Yuh, E.L.; Lingsma, H.F.; Maas, A.I.R.; Valadka, A.B.; Okonkwo, D.O.; Manley, G.T. TRACK-TBI Investigators Acute biomarkers of traumatic brain injury: relationship between plasma levels of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein. J. Neurotrauma, 2014, 31(1), 19-25.
[http://dx.doi.org/10.1089/neu.2013.3040] [PMID: 23865516]
[151]
Berger, R.P.; Beers, S.R.; Richichi, R.; Wiesman, D.; Adelson, P.D. Serum biomarker concentrations and outcome after pediatric traumatic brain injury. J. Neurotrauma, 2007, 24(12), 1793-1801.
[http://dx.doi.org/10.1089/neu.2007.0316] [PMID: 18159990]
[152]
Yamazaki, Y.; Yada, K.; Morii, S.; Kitahara, T.; Ohwada, T. Diagnostic significance of serum neuron-specific enolase and myelin basic protein assay in patients with acute head injury. Surg. Neurol., 1995, 43(3), 267-270.
[http://dx.doi.org/10.1016/0090-3019(95)80012-6] [PMID: 7540773]
[153]
Takala, R.S.K.; Posti, J.P.; Runtti, H.; Newcombe, V.F.; Outtrim, J.; Katila, A.J.; Frantzén, J.; Ala-Seppälä, H.; Kyllönen, A.; Maanpää, H-R.; Tallus, J.; Hossain, M.I.; Coles, J.P.; Hutchinson, P.; van Gils, M.; Menon, D.K.; Tenovuo, O. Glial fibrillary acidic protein and ubiquitin c-terminal hydrolase-l1 as outcome predictors in traumatic brain injury. World Neurosurg., 2016, 87, 8-20.
[http://dx.doi.org/10.1016/j.wneu.2015.10.066] [PMID: 26547005]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy