Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Nociceptin/Orphanin FQ Peptide Receptor-Related Ligands as Novel Analgesics

Author(s): Norikazu Kiguchi*, Huiping Ding, Shiroh Kishioka and Mei-Chuan Ko

Volume 20, Issue 31, 2020

Page: [2878 - 2888] Pages: 11

DOI: 10.2174/1568026620666200508082615

Price: $65

Abstract

Despite similar distribution patterns and intracellular events observed in the nociceptin/ orphanin FQ peptide (NOP) receptor and other opioid receptors, NOP receptor activation displays unique pharmacological profiles. Several researchers have identified a variety of peptide and nonpeptide ligands to determine the functional roles of NOP receptor activation and observed that NOP receptor- related ligands exhibit pain modality-dependent pain processing. Importantly, NOP receptor activation results in anti-nociception and anti-hypersensitivity at the spinal and supraspinal levels regardless of the experimental settings in non-human primates (NHPs). Given that the NOP receptor agonists synergistically enhance mu-opioid peptide (MOP) receptor agonist-induced anti-nociception, it has been hypothesized that dual NOP and MOP receptor agonists may display promising functional properties as analgesics. Accumulating evidence indicates that the mixed NOP/opioid receptor agonists demonstrate favorable functional profiles. In NHP studies, bifunctional NOP/MOP partial agonists (e.g., AT-121, BU08028, and BU10038) exerted potent anti-nociception via NOP and MOP receptor activation; however, dose-limiting adverse effects associated with the MOP receptor activation, including respiratory depression, itch sensation, physical dependence, and abuse liability, were not observed. Moreover, a mixed NOP/opioid receptor agonist, cebranopadol, presented promising outcomes in clinical trials as a novel analgesic. Collectively, the dual agonistic actions on NOP and MOP receptors, with appropriate binding affinities and efficacies, may be a viable strategy to develop innovative and safe analgesics.

Keywords: Anti-nociception, Bifunctional ligand, Non-human primate, NOP receptor, MOP receptor, Peptide ligand, Nonpeptide ligand, Spinal cord.

Graphical Abstract

[1]
Evans, C.J.; Keith, D.E., Jr; Morrison, H.; Magendzo, K.; Edwards, R.H. Cloning of a delta opioid receptor by functional expression. Science, 1992, 258(5090), 1952-1955.
[http://dx.doi.org/10.1126/science.1335167] [PMID: 1335167]
[2]
Kieffer, B.L.; Befort, K.; Gaveriaux-Ruff, C.; Hirth, C.G. The delta-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc. Natl. Acad. Sci. USA, 1992, 89(24), 12048-12052.
[http://dx.doi.org/10.1073/pnas.89.24.12048] [PMID: 1334555]
[3]
Chen, Y.; Mestek, A.; Liu, J.; Hurley, J.A.; Yu, L. Molecular cloning and functional expression of a mu-opioid receptor from rat brain. Mol. Pharmacol., 1993, 44(1), 8-12.
[PMID: 8393525]
[4]
Yasuda, K.; Raynor, K.; Kong, H.; Breder, C.D.; Takeda, J.; Reisine, T.; Bell, G.I. Cloning and functional comparison of kappa and delta opioid receptors from mouse brain. Proc. Natl. Acad. Sci. USA, 1993, 90(14), 6736-6740.
[http://dx.doi.org/10.1073/pnas.90.14.6736] [PMID: 8393575]
[5]
Bunzow, J.R.; Saez, C.; Mortrud, M.; Bouvier, C.; Williams, J.T.; Low, M.; Grandy, D.K. Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a mu, delta or kappa opioid receptor type. FEBS Lett., 1994, 347(2-3), 284-288.
[http://dx.doi.org/10.1016/0014-5793(94)00561-3] [PMID: 8034019]
[6]
Fukuda, K.; Kato, S.; Mori, K.; Nishi, M.; Takeshima, H.; Iwabe, N.; Miyata, T.; Houtani, T.; Sugimoto, T. cDNA cloning and regional distribution of a novel member of the opioid receptor family. FEBS Lett., 1994, 343(1), 42-46.
[http://dx.doi.org/10.1016/0014-5793(94)80603-9] [PMID: 8163014]
[7]
Mollereau, C.; Parmentier, M.; Mailleux, P.; Butour, J.L.; Moisand, C.; Chalon, P.; Caput, D.; Vassart, G.; Meunier, J.C. ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett., 1994, 341(1), 33-38.
[http://dx.doi.org/10.1016/0014-5793(94)80235-1] [PMID: 8137918]
[8]
Nishi, M.; Takeshima, H.; Mori, M.; Nakagawara, K.; Takeuchi, T. Structure and chromosomal mapping of genes for the mouse kappa-opioid receptor and an opioid receptor homologue (MOR-C). Biochem. Biophys. Res. Commun., 1994, 205(2), 1353-1357.
[http://dx.doi.org/10.1006/bbrc.1994.2814] [PMID: 7802669]
[9]
Wang, J.B.; Johnson, P.S.; Imai, Y.; Persico, A.M.; Ozenberger, B.A.; Eppler, C.M.; Uhl, G.R. cDNA cloning of an orphan opiate receptor gene family member and its splice variant. FEBS Lett., 1994, 348(1), 75-79.
[http://dx.doi.org/10.1016/0014-5793(94)00557-5] [PMID: 8026588]
[10]
Meunier, J.C.; Mollereau, C.; Toll, L.; Suaudeau, C.; Moisand, C.; Alvinerie, P.; Butour, J.L.; Guillemot, J.C.; Ferrara, P.; Monsarrat, B. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature, 1995, 377(6549), 532-535.
[http://dx.doi.org/10.1038/377532a0] [PMID: 7566152]
[11]
Reinscheid, R.K.; Nothacker, H.P.; Bourson, A.; Ardati, A.; Henningsen, R.A.; Bunzow, J.R.; Grandy, D.K.; Langen, H.; Monsma, F.J., Jr; Civelli, O.; Orphanin, F.Q. Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science, 1995, 270(5237), 792-794.
[http://dx.doi.org/10.1126/science.270.5237.792] [PMID: 7481766]
[12]
Mollereau, C.; Simons, M.J.; Soularue, P.; Liners, F.; Vassart, G.; Meunier, J.C.; Parmentier, M. Structure, tissue distribution, and chromosomal localization of the prepronociceptin gene. Proc. Natl. Acad. Sci. USA, 1996, 93(16), 8666-8670.
[http://dx.doi.org/10.1073/pnas.93.16.8666] [PMID: 8710928]
[13]
Kiguchi, N.; Ding, H.; Ko, M.C. Central N/OFQ-NOP Receptor System in Pain Modulation. Adv. Pharmacol., 2016, 75, 217-243.
[http://dx.doi.org/10.1016/bs.apha.2015.10.001] [PMID: 26920014]
[14]
Peluso, J.; LaForge, K.S.; Matthes, H.W.; Kreek, M.J.; Kieffer, B.L.; Gavériaux-Ruff, C. Distribution of nociceptin/orphanin FQ receptor transcript in human central nervous system and immune cells. J. Neuroimmunol., 1998, 81(1-2), 184-192.
[http://dx.doi.org/10.1016/S0165-5728(97)00178-1] [PMID: 9521621]
[15]
Neal, C.R., Jr; Mansour, A.; Reinscheid, R.; Nothacker, H.P.; Civelli, O.; Akil, H.; Watson, S.J. Jr Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: comparison of ORL1 receptor mRNA expression with (125)I-[(14)Tyr]-orphanin FQ binding. J. Comp. Neurol., 1999, 412(4), 563-605.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19991004)412:4<563:AID-CNE2>3.0.CO;2-Z] [PMID: 10464356]
[16]
Neal, C.R., Jr; Mansour, A.; Reinscheid, R.; Nothacker, H.P.; Civelli, O.; Watson, S.J. Jr Localization of orphanin FQ (nociceptin) peptide and messenger RNA in the central nervous system of the rat. J. Comp. Neurol., 1999, 406(4), 503-547.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19990419)406:4<503:AID-CNE7>3.0.CO;2-P] [PMID: 10205026]
[17]
Berthele, A.; Platzer, S.; Dworzak, D.; Schadrack, J.; Mahal, B.; Büttner, A.; Assmus, H.P.; Wurster, K.; Zieglgänsberger, W.; Conrad, B.; Tölle, T.R. [3H]-nociceptin ligand-binding and nociceptin opioid receptor mrna expression in the human brain. Neuroscience, 2003, 121(3), 629-640.
[http://dx.doi.org/10.1016/S0306-4522(03)00484-6] [PMID: 14568023]
[18]
Witta, J.; Palkovits, M.; Rosenberger, J.; Cox, B.M. Distribution of nociceptin/orphanin FQ in adult human brain. Brain Res., 2004, 997(1), 24-29.
[http://dx.doi.org/10.1016/j.brainres.2003.08.066] [PMID: 14715146]
[19]
Cox, B.M.; Christie, M.J.; Devi, L.; Toll, L.; Traynor, J.R. Challenges for opioid receptor nomenclature: IUPHAR Review 9. Br. J. Pharmacol., 2015, 172(2), 317-323.
[http://dx.doi.org/10.1111/bph.12612] [PMID: 24528283]
[20]
Granier, S.; Manglik, A.; Kruse, A.C.; Kobilka, T.S.; Thian, F.S.; Weis, W.I.; Kobilka, B.K. Structure of the δ-opioid receptor bound to naltrindole. Nature, 2012, 485(7398), 400-404.
[http://dx.doi.org/10.1038/nature11111] [PMID: 22596164]
[21]
Manglik, A.; Kruse, A.C.; Kobilka, T.S.; Thian, F.S.; Mathiesen, J.M.; Sunahara, R.K.; Pardo, L.; Weis, W.I.; Kobilka, B.K.; Granier, S. Crystal structure of the µ-opioid receptor bound to a morphinan antagonist. Nature, 2012, 485(7398), 321-326.
[http://dx.doi.org/10.1038/nature10954] [PMID: 22437502]
[22]
Thompson, A.A.; Liu, W.; Chun, E.; Katritch, V.; Wu, H.; Vardy, E.; Huang, X.P.; Trapella, C.; Guerrini, R.; Calo, G.; Roth, B.L.; Cherezov, V.; Stevens, R.C. Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature, 2012, 485(7398), 395-399.
[http://dx.doi.org/10.1038/nature11085] [PMID: 22596163]
[23]
Wu, H.; Wacker, D.; Mileni, M.; Katritch, V.; Han, G.W.; Vardy, E.; Liu, W.; Thompson, A.A.; Huang, X.P.; Carroll, F.I.; Mascarella, S.W.; Westkaemper, R.B.; Mosier, P.D.; Roth, B.L.; Cherezov, V.; Stevens, R.C. Structure of the human κ-opioid receptor in complex with JDTic. Nature, 2012, 485(7398), 327-332.
[http://dx.doi.org/10.1038/nature10939] [PMID: 22437504]
[24]
Ma, L.; Cheng, Z.J.; Fan, G.H.; Cai, Y.C.; Jiang, L.Z.; Pei, G. Functional expression, activation and desensitization of opioid receptor-like receptor ORL1 in neuroblastoma x glioma NG108-15 hybrid cells. FEBS Lett., 1997, 403(1), 91-94.
[http://dx.doi.org/10.1016/S0014-5793(97)00031-8] [PMID: 9038367]
[25]
Hawes, B.E.; Graziano, M.P.; Lambert, D.G. Cellular actions of nociceptin: transduction mechanisms. Peptides, 2000, 21(7), 961-967.
[http://dx.doi.org/10.1016/S0196-9781(00)00232-1] [PMID: 10998529]
[26]
Margas, W.; Sedeek, K.; Ruiz-Velasco, V. Coupling specificity of NOP opioid receptors to pertussis-toxin-sensitive Galpha proteins in adult rat stellate ganglion neurons using small interference RNA. J. Neurophysiol., 2008, 100(3), 1420-1432.
[http://dx.doi.org/10.1152/jn.90405.2008] [PMID: 18562551]
[27]
Connor, M.; Vaughan, C.W.; Chieng, B.; Christie, M.J. Nociceptin receptor coupling to a potassium conductance in rat locus coeruleus neurones in vitro. Br. J. Pharmacol., 1996, 119(8), 1614-1618.
[http://dx.doi.org/10.1111/j.1476-5381.1996.tb16080.x] [PMID: 8982509]
[28]
Connor, M.; Yeo, A.; Henderson, G. The effect of nociceptin on Ca2+ channel current and intracellular Ca2+ in the SH-SY5Y human neuroblastoma cell line. Br. J. Pharmacol., 1996, 118(2), 205-207.
[http://dx.doi.org/10.1111/j.1476-5381.1996.tb15387.x] [PMID: 8735615]
[29]
Knoflach, F.; Reinscheid, R.K.; Civelli, O.; Kemp, J.A. Modulation of voltage-gated calcium channels by orphanin FQ in freshly dissociated hippocampal neurons. J. Neurosci., 1996, 16(21), 6657-6664.
[http://dx.doi.org/10.1523/JNEUROSCI.16-21-06657.1996] [PMID: 8824306]
[30]
Lambert, D.G. The nociceptin/orphanin FQ receptor: a target with broad therapeutic potential. Nat. Rev. Drug Discov., 2008, 7(8), 694-710.
[http://dx.doi.org/10.1038/nrd2572] [PMID: 18670432]
[31]
Schröder, W.; Lambert, D.G.; Ko, M.C.; Koch, T. Functional plasticity of the N/OFQ-NOP receptor system determines analgesic properties of NOP receptor agonists. Br. J. Pharmacol., 2014, 171(16), 3777-3800.
[http://dx.doi.org/10.1111/bph.12744] [PMID: 24762001]
[32]
Nicol, B.; Lambert, D.G.; Rowbotham, D.J.; Smart, D.; McKnight, A.T. Nociceptin induced inhibition of K+ evoked glutamate release from rat cerebrocortical slices. Br. J. Pharmacol., 1996, 119(6), 1081-1083.
[http://dx.doi.org/10.1111/j.1476-5381.1996.tb16007.x] [PMID: 8937708]
[33]
Nicol, B.; Lambert, D.G.; Rowbotham, D.J.; Okuda-Ashitaka, E.; Ito, S.; Smart, D.; McKnight, A.T. Nocistatin reverses nociceptin inhibition of glutamate release from rat brain slices. Eur. J. Pharmacol., 1998, 356(2-3), R1-R3.
[http://dx.doi.org/10.1016/S0014-2999(98)00545-7] [PMID: 9774260]
[34]
Schlicker, E.; Morari, M. Nociceptin/orphanin FQ and neurotransmitter release in the central nervous system. Peptides, 2000, 21(7), 1023-1029.
[http://dx.doi.org/10.1016/S0196-9781(00)00233-3] [PMID: 10998536]
[35]
Anton, B.; Fein, J.; To, T.; Li, X.; Silberstein, L.; Evans, C.J. Immunohistochemical localization of ORL-1 in the central nervous system of the rat. J. Comp. Neurol., 1996, 368(2), 229-251.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19960429)368:2<229:AID-CNE5>3.0.CO;2-5] [PMID: 8725304]
[36]
Mollereau, C.; Mouledous, L. Tissue distribution of the opioid receptor-like (ORL1) receptor. Peptides, 2000, 21(7), 907-917.
[http://dx.doi.org/10.1016/S0196-9781(00)00227-8] [PMID: 10998524]
[37]
Xu, X.J.; Hao, J.X.; Wiesenfeld-Hallin, Z. Nociceptin or antinociceptin: potent spinal antinociceptive effect of orphanin FQ/nociceptin in the rat. Neuroreport, 1996, 7(13), 2092-2094.
[PMID: 8930965]
[38]
Erb, K.; Liebel, J.T.; Tegeder, I.; Zeilhofer, H.U.; Brune, K.; Geisslinger, G. Spinally delivered nociceptin/orphanin FQ reduces flinching behaviour in the rat formalin test. Neuroreport, 1997, 8(8), 1967-1970.
[http://dx.doi.org/10.1097/00001756-199705260-00034] [PMID: 9223086]
[39]
King, M.A.; Rossi, G.C.; Chang, A.H.; Williams, L.; Pasternak, G.W. Spinal analgesic activity of orphanin FQ/nociceptin and its fragments. Neurosci. Lett., 1997, 223(2), 113-116.
[http://dx.doi.org/10.1016/S0304-3940(97)13414-0] [PMID: 9089686]
[40]
Yamamoto, T.; Nozaki-Taguchi, N.; Kimura, S. Analgesic effect of intrathecally administered nociceptin, an opioid receptor-like1 receptor agonist, in the rat formalin test. Neuroscience, 1997, 81(1), 249-254.
[http://dx.doi.org/10.1016/S0306-4522(97)00166-8] [PMID: 9300417]
[41]
Inoue, M.; Shimohira, I.; Yoshida, A.; Zimmer, A.; Takeshima, H.; Sakurada, T.; Ueda, H. Dose-related opposite modulation by nociceptin/orphanin FQ of substance P nociception in the nociceptors and spinal cord. J. Pharmacol. Exp. Ther., 1999, 291(1), 308-313.
[PMID: 10490918]
[42]
Sakurada, T.; Katsuyama, S.; Sakurada, S.; Inoue, M.; Tan-No, K.; Kisara, K.; Sakurada, C.; Ueda, H.; Sasaki, J. Nociceptin-induced scratching, biting and licking in mice: involvement of spinal NK1 receptors. Br. J. Pharmacol., 1999, 127(7), 1712-1718.
[http://dx.doi.org/10.1038/sj.bjp.0702698] [PMID: 10455330]
[43]
Liebel, J.T.; Swandulla, D.; Zeilhofer, H.U. Modulation of excitatory synaptic transmission by nociceptin in superficial dorsal horn neurones of the neonatal rat spinal cord. Br. J. Pharmacol., 1997, 121(3), 425-432.
[http://dx.doi.org/10.1038/sj.bjp.0701149] [PMID: 9179383]
[44]
Ahmadi, S.; Kotalla, C.; Gühring, H.; Takeshima, H.; Pahl, A.; Zeilhofer, H.U. Modulation of synaptic transmission by nociceptin/orphanin FQ and nocistatin in the spinal cord dorsal horn of mutant mice lacking the nociceptin/orphanin FQ receptor. Mol. Pharmacol., 2001, 59(3), 612-618.
[http://dx.doi.org/10.1124/mol.59.3.612] [PMID: 11179457]
[45]
Ahmadi, S.; Liebel, J.T.; Zeilhofer, H.U. The role of the ORL1 receptor in the modulation of spinal neurotransmission by nociceptin/orphanin FQ and nocistatin. Eur. J. Pharmacol., 2001, 412(1), 39-44.
[http://dx.doi.org/10.1016/S0014-2999(00)00946-8] [PMID: 11166734]
[46]
Le Cudennec, C.; Suaudeau, C.; Costentin, J. Evidence for a localization of [(3)H]nociceptin binding sites on medullar primary afferent fibers. J. Neurosci. Res., 2002, 68(4), 496-500.
[http://dx.doi.org/10.1002/jnr.10218] [PMID: 11992477]
[47]
Heinricher, M.M.; McGaraughty, S.; Grandy, D.K. Circuitry underlying antiopioid actions of orphanin FQ in the rostral ventromedial medulla. J. Neurophysiol., 1997, 78(6), 3351-3358.
[http://dx.doi.org/10.1152/jn.1997.78.6.3351] [PMID: 9405549]
[48]
Civelli, O. The orphanin FQ/nociceptin (OFQ/N) system. Results Probl. Cell Differ., 2008, 46, 1-25.
[http://dx.doi.org/10.1007/400_2007_057] [PMID: 18193175]
[49]
Rizzi, A.; Nazzaro, C.; Marzola, G.G.; Zucchini, S.; Trapella, C.; Guerrini, R.; Zeilhofer, H.U.; Regoli, D.; Calo’, G. Endogenous nociceptin/orphanin FQ signalling produces opposite spinal antinociceptive and supraspinal pronociceptive effects in the mouse formalin test: pharmacological and genetic evidences. Pain, 2006, 124(1-2), 100-108.
[http://dx.doi.org/10.1016/j.pain.2006.03.021] [PMID: 16697109]
[50]
Yamamoto, T.; Nozaki-Taguchi, N.; Kimura, S. Effects of intrathecally administered nociceptin, an opioid receptor-like1 (ORL1) receptor agonist, on the thermal hyperalgesia induced by carageenan injection into the rat paw. Brain Res., 1997, 754(1-2), 329-332.
[http://dx.doi.org/10.1016/S0006-8993(97)00186-8] [PMID: 9134994]
[51]
Hao, J.X.; Xu, I.S.; Wiesenfeld-Hallin, Z.; Xu, X.J. Anti-hyperalgesic and anti-allodynic effects of intrathecal nociceptin/orphanin FQ in rats after spinal cord injury, peripheral nerve injury and inflammation. Pain, 1998, 76(3), 385-393.
[http://dx.doi.org/10.1016/S0304-3959(98)00071-2] [PMID: 9718257]
[52]
Chen, Y.; Sommer, C. Activation of the nociceptin opioid system in rat sensory neurons produces antinociceptive effects in inflammatory pain: involvement of inflammatory mediators. J. Neurosci. Res., 2007, 85(7), 1478-1488.
[http://dx.doi.org/10.1002/jnr.21272] [PMID: 17387690]
[53]
Jia, Y.; Linden, D.R.; Serie, J.R.; Seybold, V.S. Nociceptin/orphanin FQ binding increases in superficial laminae of the rat spinal cord during persistent peripheral inflammation. Neurosci. Lett., 1998, 250(1), 21-24.
[http://dx.doi.org/10.1016/S0304-3940(98)00430-3] [PMID: 9696056]
[54]
Rosén, A.; Lundeberg, T.; Bytner, B.; Nylander, I. Central changes in nociceptin dynorphin B and Met-enkephalin-Arg-Phe in different models of nociception. Brain Res., 2000, 857(1-2), 212-218.
[http://dx.doi.org/10.1016/S0006-8993(99)02432-4] [PMID: 10700570]
[55]
Scoto, G.M.; Aricò, G.; Iemolo, A.; Ronsisvalle, S.; Parenti, C. Involvement of the Nociceptin/Orphanin FQ-NOP receptor system in the ventrolateral periaqueductal gray following mechanical allodynia in chronic pain. Life Sci., 2009, 85(5-6), 206-210.
[http://dx.doi.org/10.1016/j.lfs.2009.05.021] [PMID: 19523963]
[56]
Yamamoto, T.; Nozaki-Taguchi, N. Effects of intrathecally administered nociceptin, an opioid receptor-like1 receptor agonist, and N-methyl-D-aspartate receptor antagonists on the thermal hyperalgesia induced by partial sciatic nerve injury in the rat. Anesthesiology, 1997, 87(5), 1145-1152.
[http://dx.doi.org/10.1097/00000542-199711000-00019] [PMID: 9366467]
[57]
Corradini, L.; Briscini, L.; Ongini, E.; Bertorelli, R. The putative OP(4) antagonist, [Nphe(1)]nociceptin(1-13)NH(2), prevents the effects of nociceptin in neuropathic rats. Brain Res., 2001, 905(1-2), 127-133.
[http://dx.doi.org/10.1016/S0006-8993(01)02520-3] [PMID: 11423087]
[58]
Courteix, C.; Coudoré-Civiale, M.A.; Privat, A.M.; Pélissier, T.; Eschalier, A.; Fialip, J. Evidence for an exclusive antinociceptive effect of nociceptin/orphanin FQ, an endogenous ligand for the ORL1 receptor, in two animal models of neuropathic pain. Pain, 2004, 110(1-2), 236-245.
[http://dx.doi.org/10.1016/j.pain.2004.03.037] [PMID: 15275773]
[59]
Ozawa, A.; Brunori, G.; Cippitelli, A.; Toll, N.; Schoch, J.; Kieffer, B.L.; Toll, L. Analysis of the distribution of spinal NOP receptors in a chronic pain model using NOP-eGFP knock-in mice. Br. J. Pharmacol., 2018, 175(13), 2662-2675.
[http://dx.doi.org/10.1111/bph.14225] [PMID: 29582417]
[60]
Kamei, J.; Ohsawa, M.; Kashiwazaki, T.; Nagase, H. Antinociceptive effects of the ORL1 receptor agonist nociceptin/orphanin FQ in diabetic mice. Eur. J. Pharmacol., 1999, 370(2), 109-116.
[http://dx.doi.org/10.1016/S0014-2999(99)00112-0] [PMID: 10323258]
[61]
Toll, L.; Ozawa, A.; Cippitelli, A. NOP-Related Mechanisms in Pain and Analgesia. Handb. Exp. Pharmacol., 2019, 254, 165-186.
[http://dx.doi.org/10.1007/164_2019_214] [PMID: 31119465]
[62]
Ma, F.; Xie, H.; Dong, Z.Q.; Wang, Y.Q.; Wu, G.C. Expression of ORL1 mRNA in some brain nuclei in neuropathic pain rats. Brain Res., 2005, 1043(1-2), 214-217.
[http://dx.doi.org/10.1016/j.brainres.2005.01.037] [PMID: 15862535]
[63]
Anand, P.; Yiangou, Y.; Anand, U.; Mukerji, G.; Sinisi, M.; Fox, M.; McQuillan, A.; Quick, T.; Korchev, Y.E.; Hein, P. Nociceptin/orphanin FQ receptor expression in clinical pain disorders and functional effects in cultured neurons. Pain, 2016, 157(9), 1960-1969.
[http://dx.doi.org/10.1097/j.pain.0000000000000597] [PMID: 27127846]
[64]
Bridge, K.E.; Wainwright, A.; Reilly, K.; Oliver, K.R. Autoradiographic localization of (125)i[Tyr(14)] nociceptin/orphanin FQ binding sites in macaque primate CNS. Neuroscience, 2003, 118(2), 513-523.
[http://dx.doi.org/10.1016/S0306-4522(02)00927-2] [PMID: 12699786]
[65]
Kimura, Y.; Fujita, M.; Hong, J.; Lohith, T.G.; Gladding, R.L.; Zoghbi, S.S.; Tauscher, J.A.; Goebl, N.; Rash, K.S.; Chen, Z.; Pedregal, C.; Barth, V.N.; Pike, V.W.; Innis, R.B. Brain and whole-body imaging in rhesus monkeys of 11C-NOP-1A, a promising PET radioligand for nociceptin/orphanin FQ peptide receptors. J. Nucl. Med., 2011, 52(10), 1638-1645.
[http://dx.doi.org/10.2967/jnumed.111.091181] [PMID: 21880575]
[66]
Kiguchi, N.; Ko, M.C. Effects of NOP-related ligands in nonhuman primates. Handb. Exp. Pharmacol., 2019, 254, 323-343.
[http://dx.doi.org/10.1007/164_2019_211] [PMID: 30879202]
[67]
Ko, M.C.; Naughton, N.N. Antinociceptive effects of nociceptin/orphanin FQ administered intrathecally in monkeys. J. Pain, 2009, 10(5), 509-516.
[http://dx.doi.org/10.1016/j.jpain.2008.11.006] [PMID: 19231294]
[68]
Lee, H.; Ko, M.C. Distinct functions of opioid-related peptides and gastrin-releasing peptide in regulating itch and pain in the spinal cord of primates. Sci. Rep., 2015, 5, 11676.
[http://dx.doi.org/10.1038/srep11676] [PMID: 26119696]
[69]
Ding, H.; Hayashida, K.; Suto, T.; Sukhtankar, D.D.; Kimura, M.; Mendenhall, V.; Ko, M.C. Supraspinal actions of nociceptin/orphanin FQ, morphine and substance P in regulating pain and itch in non-human primates. Br. J. Pharmacol., 2015, 172(13), 3302-3312.
[http://dx.doi.org/10.1111/bph.13124] [PMID: 25752320]
[70]
Nuckols, T.K.; Anderson, L.; Popescu, I.; Diamant, A.L.; Doyle, B.; Di Capua, P.; Chou, R. Opioid prescribing: a systematic review and critical appraisal of guidelines for chronic pain. Ann. Intern. Med., 2014, 160(1), 38-47.
[http://dx.doi.org/10.7326/0003-4819-160-1-201401070-00732] [PMID: 24217469]
[71]
Brady, K.T.; McCauley, J.L.; Back, S.E. Prescription Opioid Misuse, Abuse, and Treatment in the United States: An Update. Am. J. Psychiatry, 2016, 173(1), 18-26.
[http://dx.doi.org/10.1176/appi.ajp.2015.15020262] [PMID: 26337039]
[72]
Degenhardt, L.; Charlson, F.; Mathers, B.; Hall, W.D.; Flaxman, A.D.; Johns, N.; Vos, T. The global epidemiology and burden of opioid dependence: results from the global burden of disease 2010 study. Addiction, 2014, 109(8), 1320-1333.
[http://dx.doi.org/10.1111/add.12551] [PMID: 24661272]
[73]
Volkow, N.D.; McLellan, A.T. Opioid abuse in chronic pain--misconceptions and mitigation strategies. N. Engl. J. Med., 2016, 374(13), 1253-1263.
[http://dx.doi.org/10.1056/NEJMra1507771] [PMID: 27028915]
[74]
Günther, T.; Dasgupta, P.; Mann, A.; Miess, E.; Kliewer, A.; Fritzwanker, S.; Steinborn, R.; Schulz, S. Targeting multiple opioid receptors - improved analgesics with reduced side effects? Br. J. Pharmacol., 2018, 175(14), 2857-2868.
[http://dx.doi.org/10.1111/bph.13809] [PMID: 28378462]
[75]
Lin, A.P.; Ko, M.C. The therapeutic potential of nociceptin/orphanin FQ receptor agonists as analgesics without abuse liability. ACS Chem. Neurosci., 2013, 4(2), 214-224.
[http://dx.doi.org/10.1021/cn300124f] [PMID: 23421672]
[76]
Volkow, N.D.; Collins, F.S. The role of science in addressing the opioid crisis. N. Engl. J. Med., 2017, 377(4), 391-394.
[http://dx.doi.org/10.1056/NEJMsr1706626] [PMID: 28564549]
[77]
Cremeans, C.M.; Gruley, E.; Kyle, D.J.; Ko, M.C. Roles of μ-opioid receptors and nociceptin/orphanin FQ peptide receptors in buprenorphine-induced physiological responses in primates. J. Pharmacol. Exp. Ther., 2012, 343(1), 72-81.
[http://dx.doi.org/10.1124/jpet.112.194308] [PMID: 22743574]
[78]
Preti, D.; Caló, G.; Guerrini, R. NOP-Targeted Peptide Ligands. Handb. Exp. Pharmacol., 2019, 254, 17-36.
[http://dx.doi.org/10.1007/164_2018_198] [PMID: 30689091]
[79]
Mustazza, C.; Pieretti, S.; Marzoli, F. Nociceptin/orphanin FQ peptide (NOP) receptor modulators: an update in structure-activity relationships. Curr. Med. Chem., 2018, 25(20), 2353-2384.
[http://dx.doi.org/10.2174/0929867325666180111095458] [PMID: 29332567]
[80]
Okada, K.; Sujaku, T.; Chuman, Y.; Nakashima, R.; Nose, T.; Costa, T.; Yamada, Y.; Yokoyama, M.; Nagahisa, A.; Shimohigashi, Y. Highly potent nociceptin analog containing the Arg-Lys triple repeat. Biochem. Biophys. Res. Commun., 2000, 278(2), 493-498.
[http://dx.doi.org/10.1006/bbrc.2000.3822] [PMID: 11097863]
[81]
Okada, K.; Isozaki, K.; Li, J.; Matsushima, A.; Nose, T.; Costa, T.; Shimohigashi, Y. Synergistic effect of basic residues at positions 14-15 of nociceptin on binding affinity and receptor activation. Bioorg. Med. Chem., 2008, 16(20), 9261-9267.
[http://dx.doi.org/10.1016/j.bmc.2008.09.014] [PMID: 18818087]
[82]
Calò, G.; Rizzi, A.; Bogoni, G.; Neugebauer, V.; Salvadori, S.; Guerrini, R.; Bianchi, C.; Regoli, D. The mouse vas deferens: a pharmacological preparation sensitive to nociceptin. Eur. J. Pharmacol., 1996, 311(1), R3-R5.
[http://dx.doi.org/10.1016/0014-2999(96)00563-8] [PMID: 8884244]
[83]
Dooley, C.T.; Houghten, R.A.; Orphanin, F.Q. Orphanin FQ: receptor binding and analog structure activity relationships in rat brain. Life Sci., 1996, 59(1), PL23-PL29.
[http://dx.doi.org/10.1016/0024-3205(96)00261-5] [PMID: 8684262]
[84]
Guerrini, R.; Calo, G.; Rizzi, A.; Bianchi, C.; Lazarus, L.H.; Salvadori, S.; Temussi, P.A.; Regoli, D. Address and message sequences for the nociceptin receptor: a structure-activity study of nociceptin-(1-13)-peptide amide. J. Med. Chem., 1997, 40(12), 1789-1793.
[http://dx.doi.org/10.1021/jm970011b] [PMID: 9191955]
[85]
Daga, P.R.; Zaveri, N.T. Homology modeling and molecular dynamics simulations of the active state of the nociceptin receptor reveal new insights into agonist binding and activation. Proteins, 2012, 80(8), 1948-1961.
[PMID: 22489047]
[86]
Toll, L.; Bruchas, M.R.; Calo’, G.; Cox, B.M.; Zaveri, N.T. Nociceptin/orphanin FQ receptor structure, signaling, ligands, functions, and interactions with opioid systems. Pharmacol. Rev., 2016, 68(2), 419-457.
[http://dx.doi.org/10.1124/pr.114.009209] [PMID: 26956246]
[87]
Miller, R.L.; Thompson, A.A.; Trapella, C.; Guerrini, R.; Malfacini, D.; Patel, N.; Han, G.W.; Cherezov, V.; Caló, G.; Katritch, V.; Stevens, R.C. The importance of ligand-receptor conformational pairs in stabilization: spotlight on the N/OFQ G protein-coupled receptor. Structure, 2015, 23(12), 2291-2299.
[http://dx.doi.org/10.1016/j.str.2015.07.024] [PMID: 26526853]
[88]
Rizzi, A.; Spagnolo, B.; Wainford, R.D.; Fischetti, C.; Guerrini, R.; Marzola, G.; Baldisserotto, A.; Salvadori, S.; Regoli, D.; Kapusta, D.R.; Calo, G. In vitro and in vivo studies on UFP-112, a novel potent and long lasting agonist selective for the nociceptin/orphanin FQ receptor. Peptides, 2007, 28(6), 1240-1251.
[http://dx.doi.org/10.1016/j.peptides.2007.04.020] [PMID: 17532097]
[89]
Calo’, G.; Rizzi, A.; Cifani, C.; Micioni Di Bonaventura, M.V.; Regoli, D.; Massi, M.; Salvadori, S.; Lambert, D.G.; Guerrini, R. UFP-112 a potent and long-lasting agonist selective for the Nociceptin/Orphanin FQ receptor. CNS Neurosci. Ther., 2011, 17(3), 178-198.
[http://dx.doi.org/10.1111/j.1755-5949.2009.00107.x] [PMID: 20497197]
[90]
Hu, E.; Calò, G.; Guerrini, R.; Ko, M.C. Long-lasting antinociceptive spinal effects in primates of the novel nociceptin/orphanin FQ receptor agonist UFP-112. Pain, 2010, 148(1), 107-113.
[http://dx.doi.org/10.1016/j.pain.2009.10.026] [PMID: 19945794]
[91]
Calo’, G.; Rizzi, A.; Ruzza, C.; Ferrari, F.; Pacifico, S.; Gavioli, E.C.; Salvadori, S.; Guerrini, R. Peptide welding technology - A simple strategy for generating innovative ligands for G protein coupled receptors. Peptides, 2018, 99, 195-204.
[http://dx.doi.org/10.1016/j.peptides.2017.10.004] [PMID: 29031796]
[92]
Guerrini, R.; Marzola, E.; Trapella, C.; Pela’, M.; Molinari, S.; Cerlesi, M.C.; Malfacini, D.; Rizzi, A.; Salvadori, S.; Calo’, G. A novel and facile synthesis of tetra branched derivatives of nociceptin/orphanin FQ. Bioorg. Med. Chem., 2014, 22(14), 3703-3712.
[http://dx.doi.org/10.1016/j.bmc.2014.05.005] [PMID: 24878361]
[93]
Rizzi, A.; Malfacini, D.; Cerlesi, M.C.; Ruzza, C.; Marzola, E.; Bird, M.F.; Rowbotham, D.J.; Salvadori, S.; Guerrini, R.; Lambert, D.G.; Calo, G. In vitro and in vivo pharmacological characterization of nociceptin/orphanin FQ tetrabranched derivatives. Br. J. Pharmacol., 2014, 171(17), 4138-4153.
[http://dx.doi.org/10.1111/bph.12799] [PMID: 24903280]
[94]
Rizzi, A.; Sukhtankar, D.D.; Ding, H.; Hayashida, K.; Ruzza, C.; Guerrini, R.; Calò, G.; Ko, M.C. Spinal antinociceptive effects of the novel NOP receptor agonist PWT2-nociceptin/orphanin FQ in mice and monkeys. Br. J. Pharmacol., 2015, 172(14), 3661-3670.
[http://dx.doi.org/10.1111/bph.13150] [PMID: 25828800]
[95]
Molinari, S.; Camarda, V.; Rizzi, A.; Marzola, G.; Salvadori, S.; Marzola, E.; Molinari, P.; McDonald, J.; Ko, M.C.; Lambert, D.G.; Calo’, G.; Guerrini, R. [Dmt1]N/OFQ(1-13)-NH2: a potent nociceptin/orphanin FQ and opioid receptor universal agonist. Br. J. Pharmacol., 2013, 168(1), 151-162.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02115.x] [PMID: 22827708]
[96]
Cerlesi, M.C.; Ding, H.; Bird, M.F.; Kiguchi, N.; Ferrari, F.; Malfacini, D.; Rizzi, A.; Ruzza, C.; Lambert, D.G.; Ko, M.C.; Calo, G.; Guerrini, R. Pharmacological studies on the NOP and opioid receptor agonist PWT2-[Dmt1]N/OFQ(1-13). Eur. J. Pharmacol., 2017, 794, 115-126.
[http://dx.doi.org/10.1016/j.ejphar.2016.11.026] [PMID: 27871910]
[97]
Zaveri, N.T.; Meyer, M.E. NOP-Targeted Nonpeptide Ligands. Handb. Exp. Pharmacol., 2019, 254, 37-67.
[http://dx.doi.org/10.1007/164_2019_213] [PMID: 31119463]
[98]
Zaveri, N.T. Nociceptin opioid receptor (NOP) as a therapeutic target: progress in translation from preclinical research to clinical utility. J. Med. Chem., 2016, 59(15), 7011-7028.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01499] [PMID: 26878436]
[99]
Kawamoto, H.; Ozaki, S.; Itoh, Y.; Miyaji, M.; Arai, S.; Nakashima, H.; Kato, T.; Ohta, H.; Iwasawa, Y. Discovery of the first potent and selective small molecule opioid receptor-like (ORL1) antagonist: 1-[(3R,4R)-1-cyclooctylmethyl-3- hydroxymethyl-4-piperidyl]-3-ethyl-1, 3-dihydro-2H-benzimidazol-2-one (J-113397). J. Med. Chem., 1999, 42(25), 5061-5063.
[http://dx.doi.org/10.1021/jm990517p] [PMID: 10602690]
[100]
Jenck, F.; Wichmann, J.; Dautzenberg, F.M.; Moreau, J.L.; Ouagazzal, A.M.; Martin, J.R.; Lundstrom, K.; Cesura, A.M.; Poli, S.M.; Roever, S.; Kolczewski, S.; Adam, G.; Kilpatrick, G. A synthetic agonist at the orphanin FQ/nociceptin receptor ORL1: anxiolytic profile in the rat. Proc. Natl. Acad. Sci. USA, 2000, 97(9), 4938-4943.
[http://dx.doi.org/10.1073/pnas.090514397] [PMID: 10758169]
[101]
Wichmann, J.; Adam, G.; Röver, S.; Hennig, M.; Scalone, M.; Cesura, A.M.; Dautzenberg, F.M.; Jenck, F. Synthesis of (1S,3aS)-8-(2,3,3a,4,5, 6-hexahydro-1H-phenalen-1-yl)-1-phenyl-1,3,8-triaza-spiro[4. 5]decan-4-one, a potent and selective orphanin FQ (OFQ) receptor agonist with anxiolytic-like properties. Eur. J. Med. Chem., 2000, 35(9), 839-851.
[http://dx.doi.org/10.1016/S0223-5234(00)00171-9] [PMID: 11006485]
[102]
Zaveri, N.; Jiang, F.; Olsen, C.; Polgar, W.; Toll, L. Small-molecule agonists and antagonists of the opioid receptor-like receptor (ORL1, NOP): ligand-based analysis of structural factors influencing intrinsic activity at NOP. AAPS J., 2005, 7(2), E345-E352.
[http://dx.doi.org/10.1208/aapsj070234] [PMID: 16353914]
[103]
Podlesnik, C.A.; Ko, M.C.; Winger, G.; Wichmann, J.; Prinssen, E.P.; Woods, J.H. The effects of nociceptin/orphanin FQ receptor agonist Ro 64-6198 and diazepam on antinociception and remifentanil self-administration in rhesus monkeys. Psychopharmacology (Berl.), 2011, 213(1), 53-60.
[http://dx.doi.org/10.1007/s00213-010-2012-7] [PMID: 20852848]
[104]
Sukhtankar, D.D.; Lee, H.; Rice, K.C.; Ko, M.C. Differential effects of opioid-related ligands and NSAIDs in nonhuman primate models of acute and inflammatory pain. Psychopharmacology (Berl.), 2014, 231(7), 1377-1387.
[http://dx.doi.org/10.1007/s00213-013-3341-0] [PMID: 24217900]
[105]
Ko, M.C.; Woods, J.H.; Fantegrossi, W.E.; Galuska, C.M.; Wichmann, J.; Prinssen, E.P. Behavioral effects of a synthetic agonist selective for nociceptin/orphanin FQ peptide receptors in monkeys. Neuropsychopharmacology, 2009, 34(9), 2088-2096.
[http://dx.doi.org/10.1038/npp.2009.33] [PMID: 19279568]
[106]
Varty, G.B.; Lu, S.X.; Morgan, C.A.; Cohen-Williams, M.E.; Hodgson, R.A.; Smith-Torhan, A.; Zhang, H.; Fawzi, A.B.; Graziano, M.P.; Ho, G.D.; Matasi, J.; Tulshian, D.; Coffin, V.L.; Carey, G.J. The anxiolytic-like effects of the novel, orally active nociceptin opioid receptor agonist 8-[bis(2-methylphenyl)methyl]-3-phenyl-8-azabicyclo[3.2.1]octan-3-ol (SCH 221510). J. Pharmacol. Exp. Ther., 2008, 326(2), 672-682.
[http://dx.doi.org/10.1124/jpet.108.136937] [PMID: 18492950]
[107]
Kangas, B.D.; Bergman, J. Operant nociception in nonhuman primates. Pain, 2014, 155(9), 1821-1828.
[http://dx.doi.org/10.1016/j.pain.2014.06.010] [PMID: 24968803]
[108]
Ding, H.; Kiguchi, N.; Yasuda, D.; Daga, P.R.; Polgar, W.E.; Lu, J.J.; Czoty, P.W.; Kishioka, S.; Zaveri, N.T.; Ko, M.C. A bifunctional nociceptin and mu opioid receptor agonist is analgesic without opioid side effects in nonhuman primates. Sci. Transl. Med., 2018, 10(456)eaar3483
[http://dx.doi.org/10.1126/scitranslmed.aar3483] [PMID: 30158150]
[109]
Cami-Kobeci, G.; Polgar, W.E.; Khroyan, T.V.; Toll, L.; Husbands, S.M. Structural determinants of opioid and NOP receptor activity in derivatives of buprenorphine. J. Med. Chem., 2011, 54(19), 6531-6537.
[http://dx.doi.org/10.1021/jm2003238] [PMID: 21866885]
[110]
Kumar, V.; Ridzwan, I.E.; Grivas, K.; Lewis, J.W.; Clark, M.J.; Meurice, C.; Jimenez-Gomez, C.; Pogozheva, I.; Mosberg, H.; Traynor, J.R.; Husbands, S.M. Selectively promiscuous opioid ligands: discovery of high affinity/low efficacy opioid ligands with substantial nociceptin opioid peptide receptor affinity. J. Med. Chem., 2014, 57(10), 4049-4057.
[http://dx.doi.org/10.1021/jm401964y] [PMID: 24761755]
[111]
Davis, M.P. Twelve reasons for considering buprenorphine as a frontline analgesic in the management of pain. J. Support. Oncol., 2012, 10(6), 209-219.
[http://dx.doi.org/10.1016/j.suponc.2012.05.002] [PMID: 22809652]
[112]
Raffa, R.B.; Haidery, M.; Huang, H.M.; Kalladeen, K.; Lockstein, D.E.; Ono, H.; Shope, M.J.; Sowunmi, O.A.; Tran, J.K.; Pergolizzi, J.V., Jr The clinical analgesic efficacy of buprenorphine. J. Clin. Pharm. Ther., 2014, 39(6), 577-583.
[http://dx.doi.org/10.1111/jcpt.12196] [PMID: 25070601]
[113]
Khroyan, T.V.; Polgar, W.E.; Jiang, F.; Zaveri, N.T.; Toll, L. Nociceptin/orphanin FQ receptor activation attenuates antinociception induced by mixed nociceptin/orphanin FQ/mu-opioid receptor agonists. J. Pharmacol. Exp. Ther., 2009, 331(3), 946-953.
[http://dx.doi.org/10.1124/jpet.109.156711] [PMID: 19713488]
[114]
Khroyan, T.V.; Polgar, W.E.; Cami-Kobeci, G.; Husbands, S.M.; Zaveri, N.T.; Toll, L. The first universal opioid ligand, (2S)-2-[(5R,6R,7R,14S)-N-cyclopropylmethyl-4,5-epoxy-6,14-ethano-3-hydroxy-6-methoxymorphinan-7-yl]-3,3-dimethylpentan-2-ol (BU08028): characterization of the in vitro profile and in vivo behavioral effects in mouse models of acute pain and cocaine-induced reward. J. Pharmacol. Exp. Ther., 2011, 336(3), 952-961.
[http://dx.doi.org/10.1124/jpet.110.175620] [PMID: 21177476]
[115]
Ding, H.; Czoty, P.W.; Kiguchi, N.; Cami-Kobeci, G.; Sukhtankar, D.D.; Nader, M.A.; Husbands, S.M.; Ko, M.C. A novel orvinol analog, BU08028, as a safe opioid analgesic without abuse liability in primates. Proc. Natl. Acad. Sci. USA, 2016, 113(37), E5511-E5518.
[http://dx.doi.org/10.1073/pnas.1605295113] [PMID: 27573832]
[116]
Kiguchi, N.; Ding, H.; Cami-Kobeci, G.; Sukhtankar, D.D.; Czoty, P.W.; DeLoid, H.B.; Hsu, F.C.; Toll, L.; Husbands, S.M.; Ko, M.C. BU10038 as a safe opioid analgesic with fewer side-effects after systemic and intrathecal administration in primates. Br. J. Anaesth., 2019, 122(6), e146-e156.
[http://dx.doi.org/10.1016/j.bja.2018.10.065] [PMID: 30916003]
[117]
Linz, K.; Christoph, T.; Tzschentke, T.M.; Koch, T.; Schiene, K.; Gautrois, M.; Schröder, W.; Kögel, B.Y.; Beier, H.; Englberger, W.; Schunk, S.; De Vry, J.; Jahnel, U.; Frosch, S. Cebranopadol: a novel potent analgesic nociceptin/orphanin FQ peptide and opioid receptor agonist. J. Pharmacol. Exp. Ther., 2014, 349(3), 535-548.
[http://dx.doi.org/10.1124/jpet.114.213694] [PMID: 24713140]
[118]
Calo, G.; Lambert, D.G. Nociceptin/orphanin FQ receptor ligands and translational challenges: focus on cebranopadol as an innovative analgesic. Br. J. Anaesth., 2018, 121(5), 1105-1114.
[http://dx.doi.org/10.1016/j.bja.2018.06.024] [PMID: 30336855]
[119]
Tzschentke, T.M.; Linz, K.; Koch, T.; Christoph, T. Cebranopadol: A novel first-in-class potent analgesic acting via NOP and opioid receptors. Handb. Exp. Pharmacol., 2019, 254, 367-398.
[http://dx.doi.org/10.1007/164_2019_206] [PMID: 30927089]
[120]
Schunk, S.; Linz, K.; Hinze, C.; Frormann, S.; Oberbörsch, S.; Sundermann, B.; Zemolka, S.; Englberger, W.; Germann, T.; Christoph, T.; Kögel, B.Y.; Schröder, W.; Harlfinger, S.; Saunders, D.; Kless, A.; Schick, H.; Sonnenschein, H. Discovery of a potent analgesic nop and opioid receptor agonist: cebranopadol. ACS Med. Chem. Lett., 2014, 5(8), 857-862.
[http://dx.doi.org/10.1021/ml500117c] [PMID: 25147603]
[121]
Raffa, R.B.; Burdge, G.; Gambrah, J.; Kinecki, H.E.; Lin, F.; Lu, B.; Nguyen, J.T.; Phan, V.; Ruan, A.; Sesay, M.A.; Watkins, T.N. Cebranopadol: novel dual opioid/NOP receptor agonist analgesic. J. Clin. Pharm. Ther., 2017, 42(1), 8-17.
[http://dx.doi.org/10.1111/jcpt.12461] [PMID: 27778406]
[122]
Trapella, C.; Ding, H.; Kiguchi, N.; Calo, G.; Ko, M.C. In: Reinforcing and antinociceptive effects of a mixed opioid and NOP receptor agonist, cebranopadol, in non-human primates. Proceedings of the 17th world congress on pain (IASP),, 2018.
[123]
Kleideiter, E.; Piana, C.; Wang, S.; Nemeth, R.; Gautrois, M. Clinical pharmacokinetic characteristics of cebranopadol, a novel first-in-class analgesic. Clin. Pharmacokinet., 2018, 57(1), 31-50.
[http://dx.doi.org/10.1007/s40262-017-0545-1] [PMID: 28623508]
[124]
Christoph, A.; Eerdekens, M.H.; Kok, M.; Volkers, G.; Freynhagen, R. Cebranopadol, a novel first-in-class analgesic drug candidate: first experience in patients with chronic low back pain in a randomized clinical trial. Pain, 2017, 158(9), 1813-1824.
[http://dx.doi.org/10.1097/j.pain.0000000000000986] [PMID: 28644196]
[125]
Eerdekens, M.H.; Kapanadze, S.; Koch, E.D.; Kralidis, G.; Volkers, G.; Ahmedzai, S.H.; Meissner, W. Cancer-related chronic pain: Investigation of the novel analgesic drug candidate cebranopadol in a randomized, double-blind, noninferiority trial. Eur. J. Pain, 2019, 23(3), 577-588.
[http://dx.doi.org/10.1002/ejp.1331] [PMID: 30365202]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy