Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Research Article

Titanium Oxide Nanoparticles Improve the Chemotherapeutic Action of Erlotinib in Liver Cancer Cells

Author(s): Shaimaa E. Abdel-Ghany, Eman El-Sayed, Nour Ashraf, Nada Mokhtar, Amany Alqosaibi, Emre Cevik, Ayhan Bozkurt, Eman W. Mohamed and Hussein Sabit*

Volume 16, Issue 4, 2020

Page: [337 - 343] Pages: 7

DOI: 10.2174/1573394715666191204101739

Price: $65

Abstract

Background: Hepatocellular carcinoma is the second leading cause of cancer-related deaths among other types of cancer due to lack of effective treatments and late diagnosis. Nanocarriers represent a novel method to deliver chemotherapeutic drugs, enhancing their bioavailability and stability.

Methods: In the present study, we loaded gold nanoparticles (AuNPs) and titanium oxide nanoparticles (TiO2NPs) with ERL to investigate the efficiency of the formed composite in inducing apoptosis in HepG2 liver cancer cells. Cytotoxicity was assessed using MTT assay and cell phase distribution was assessed by flow cytometry along with apoptosis detection.

Results: Data obtained indicated the efficiency of the formed composite to significantly induce cell death and arrest cell cycle and G2/M phase. IRF4 was downregulated after treatment with loaded ERL.

Conclusion: Our data showed that loading ERL on TiO2NPs was more efficient than AuNPs. However, both nanocarriers were efficient compared with control.

Keywords: Liver cancer, AuNPs, TiO2NPs, nanocarrier, ERL, erlotinib, IRF4, nanoparticles.

Graphical Abstract

[1]
Balogh J, Victor D III, Asham EH, et al. Hepatocellular carcinoma: A review. J Hepatocell Carcinoma 2016; 3: 41-53.
[http://dx.doi.org/10.2147/JHC.S61146] [PMID: 27785449]
[2]
Rasool M, Rashid S, Arooj M, et al. New possibilities in hepatocellular carcinoma treatment. Anticancer Res 2014; 34(4): 1563-71.
[PMID: 24692683]
[3]
Schacher-Kaufmann S, Pless M. Acute fatal liver toxicity under erlotinib. Case Rep Oncol 2010; 3(2): 182-8.
[http://dx.doi.org/10.1159/000315366] [PMID: 20740194]
[4]
Zhang J, Zong Y, Xu GZ, Xing K. Erlotinib for advanced hepatocellular carcinoma. A systematic review of phase II/III clinical trials. Saudi Med J 2016; 37(11): 1184-90.
[http://dx.doi.org/10.15537/smj.2016.11.16267] [PMID: 27761555]
[5]
Rohr-Udilova N, Klinglmüller F, Seif M, et al. Oxidative stress mediates an increased formation of vascular endothelial growth factor in human hepatocarcinoma cells exposed to erlotinib. Oncotarget 2017; 8(34): 57109-20.
[http://dx.doi.org/10.18632/oncotarget.19055] [PMID: 28915658]
[6]
Frohna P, Lu J, Eppler S, et al. Evaluation of the absolute oral bioavailability and bioequivalence of erlotinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in a randomized, crossover study in healthy subjects. J Clin Pharmacol 2006; 46(3): 282-90.
[http://dx.doi.org/10.1177/0091270005284193] [PMID: 16490804]
[7]
Yang KM, Shin IC, Park JW, et al. Nanoparticulation improves bioavailability of Erlotinib. Drug Dev Ind Pharm 2017; 43(9): 1557-65.
[http://dx.doi.org/10.1080/03639045.2017.1326931] [PMID: 28554216]
[8]
Chauhan A, Zubair S, Tufail S, et al. Fungus-mediated biological synthesis of gold nanoparticles: Potential in detection of liver cancer. Int J Nanomedicine 2011; 6: 2305-19.
[PMID: 22072868]
[9]
Taghizadeh S, Alimardani V, Roudbali PL, Ghasemi Y, Kaviani E. Gold nanoparticles application in liver cancer. Photodiagn Photodyn Ther 2019; 25: 389-400.
[http://dx.doi.org/10.1016/j.pdpdt.2019.01.027] [PMID: 30684673]
[10]
Ji Y, Cao Y, Song Y. Green synthesis of gold nanoparticles using a Cordyceps militaris extract and their antiproliferative effect in liver cancer cells (HepG2). Artif Cells Nanomed Biotechnol 2019; 47(1): 2737-45.
[http://dx.doi.org/10.1080/21691401.2019.1629952] [PMID: 31304798]
[11]
Rajeshkumar S. Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J Genet Eng Biotechnol 2016; 14(1): 195-202.
[http://dx.doi.org/10.1016/j.jgeb.2016.05.007] [PMID: 30647615]
[12]
Thai SF, Wallace KA, Jones CP, et al. Differential genomic effects of six different TiO2 nanomaterials on human liver HepG2 cells. J Biochem Mol Toxicol 2016; 30(7): 331-41.
[http://dx.doi.org/10.1002/jbt.21798] [PMID: 26918567]
[13]
Su H, Li Z, Lazar L, et al. In vitro evaluation of the toxicity and underlying molecular mechanisms of Janus Fe3O4 -TiO2 nanoparticles in human liver cells. Environ Toxicol 2018; 33(10): 1078-88.
[http://dx.doi.org/10.1002/tox.22631] [PMID: 30098274]
[14]
Shrivastava R, Raza S, Yadav A, Kushwaha P, Flora SJ. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem Toxicol 2014; 37(3): 336-47.
[http://dx.doi.org/10.3109/01480545.2013.866134] [PMID: 24344737]
[15]
El-Ghor AA, Noshy MM, Galal A, Mohamed HR. Normalization of nano-sized TiO2-induced clastogenicity, genotoxicity and mutagenicity by chlorophyllin administration in mice brain, liver, and bone marrow cells. Toxicol Sci 2014; 142(1): 21-32.
[http://dx.doi.org/10.1093/toxsci/kfu157] [PMID: 25129858]
[16]
Huether A, Höpfner M, Sutter AP, Schuppan D, Scherübl H. Erlotinib induces cell cycle arrest and apoptosis in hepatocellular cancer cells and enhances chemosensitivity towards cytostatics. J Hepatol 2005; 43(4): 661-9.
[http://dx.doi.org/10.1016/j.jhep.2005.02.040] [PMID: 16023762]
[17]
Suenaga M, Yamamoto M, Tabata S, et al. Influence of gefitinib and erlotinib on apoptosis and c-MYC expression in H23 lung cancer cells. Anticancer Res 2013; 33(4): 1547-54.
[PMID: 23564796]
[18]
Shan F, Shao Z, Jiang S, Cheng Z. Erlotinib induces the human non-small-cell lung cancer cells apoptosis via activating ROS-dependent JNK pathways. Cancer Med 2016; 5(11): 3166-75.
[http://dx.doi.org/10.1002/cam4.881] [PMID: 27726288]
[19]
Wei W, Guo R-P, Li J-Q, Xu L, Shi M, Zhang YQ. Effects of cetuximab combined erlotinib on proliferation of human hepatocellular carcinoma cell lines HepG2 and Bel-7402. Chin J Cancer 2008; 27(4): 386-92.
[20]
Yu HC, Chen HJ, Chang YL, et al. Inhibition of CIP2A determines erlotinib-induced apoptosis in hepatocellular carcinoma. Biochem Pharmacol 2013; 85(3): 356-66.
[http://dx.doi.org/10.1016/j.bcp.2012.11.009] [PMID: 23178652]
[21]
Sieghart W, Pinter M, Dauser B, et al. Erlotinib and sorafenib in an orthotopic rat model of hepatocellular carcinoma. J Hepatol 2012; 57(3): 592-9.
[http://dx.doi.org/10.1016/j.jhep.2012.04.034] [PMID: 22634341]
[22]
Hass HG, Denzlinger C. Long-term treatment of advanced hepatocellular carcinoma with the tyrosine kinase inhibitor erlotinib (Tarceva)--a case report. Z Gastroenterol 2009; 47(1): 27-9.
[http://dx.doi.org/10.1055/s-2008-1027482] [PMID: 19156589]
[23]
Zhang H-H, Yuan TZ, Li J, et al. Erlotinib: An enhancer of radiation therapy in nasopharyngeal carcinoma. Exp Ther Med 2013; 6(4): 1062-6.
[http://dx.doi.org/10.3892/etm.2013.1245] [PMID: 24137317]
[24]
Kim JY, Kim HS, Yoon S. Tyrosine kinase inhibitors imatinib and erlotinib increase apoptosis of antimitotic drug-resistant KBV20C cells without inhibiting P-gp. Anticancer Res 2019; 39(7): 3785-93.
[http://dx.doi.org/10.21873/anticanres.13527] [PMID: 31262905]
[25]
Huether A, Hopfner M, Sutter AP, Baradari V, Schuppan D, Scherubl H. Signaling pathways involved in the inhibition of epidermal growth factor receptor by erlotinib in hepatocellular cancer. World J Gastroenterol 2006; 12(32): 5160-7.
[PMID: 16937526]
[26]
Adamaki M, Lambrou GI, Athanasiadou A, Tzanoudaki M, Vlahopoulos S, Moschovi M. Implication of IRF4 aberrant gene expression in the acute leukemias of childhood. PLoS One 2013; 8(8): e72326-6.
[http://dx.doi.org/10.1371/journal.pone.0072326] [PMID: 23977280]
[27]
Heimes AS, Schmidt M, Jäkel J, et al. A retrospective analysis of immunohistochemically determined IRF4 (interferon regulating factor 4) expression in a consecutive cohort of 114 ovarian cancer patients. Arch Gynecol Obstet 2019; 299(1): 239-46.
[http://dx.doi.org/10.1007/s00404-018-4941-z] [PMID: 30357498]
[28]
Qian Y, Du Z, Xing Y, Zhou T, Chen T, Shi M. Interferon regulatory factor 4 (IRF4) is overexpressed in human non small cell lung cancer (NSCLC) and activates the Notch signaling pathway. Mol Med Rep 2017; 16(5): 6034-40.
[http://dx.doi.org/10.3892/mmr.2017.7319] [PMID: 28849037]
[29]
Heimes AS, Madjar K, Edlund K, et al. Prognostic significance of interferon regulating factor 4 (IRF4) in node-negative breast cancer. J Cancer Res Clin Oncol 2017; 143(7): 1123-31.
[http://dx.doi.org/10.1007/s00432-017-2377-7] [PMID: 28251349]
[30]
Zhang H, Liu YP, Ge AQ, et al. Association between AOX1, IRF4 methylation in peripheral blood leukocyte DNA and the risks of breast cancer: a case-control study. Zhonghua Liu Xing Bing Xue Za Zhi 2018; 39(9): 1265-9.
[PMID: 30293322]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy