Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Efficient Production of Biodiesel Catalyzed by Acidic Nanoporous Carbon Materials: A Review

Author(s): Anping Wang, Heng Zhang, Hu Li* and Song Yang *

Volume 17, Issue 1, 2021

Published on: 19 March, 2020

Page: [41 - 57] Pages: 17

DOI: 10.2174/1573413716666200319131508

Price: $65

Abstract

Background: With the gradual decrease in fossil energy, the development of alternatives to fossil energy has attracted more and more attention. Biodiesel is considered to be the most potent alternative to fossil energy, mainly due to its green, renewable, and biodegradable advantages. The stable, efficient and reusable catalysts are undoubtedly the most critical in the preparation of biodiesel. Among them, nanoporous carbon-based acidic materials are very important biodiesel catalysts.

Objective: The latest advances of acidic nanoporous carbon catalysts in biodiesel production was reviewed.

Methods: Biodiesel is mainly synthesized by esterification and transesterification. Due to the important role of nanoporous carbon-based acidic materials in the catalytic preparation of biodiesel, we focused on the synthesis, physical and chemical properties, catalytic performance and reusability.

Results: Acidic catalytic materials have a good catalytic performance for high acid value feedstocks. However, the preparation of biodiesel with acid catalyst requires relatively strict reaction conditions. The application of nanoporous acidic carbon-based materials, due to the support of carbon-based framework, makes the catalyst exhibit good stability and unique pore structure, accelerates the reaction mass transfer speed, which in turn accelerated the reaction.

Conclusion: Nanoporous carbon-based acidic catalysts have the advantages such as, suitable pore structure, high active sites, and high stability. In order to make these catalytic processes more efficient, environmentally friendly and low cost, developing new catalytic materials with high specific surface area, suitable pore size, high acid density, and excellent performance would be an important research direction for the future biodiesel catalysts.

Keywords: Biodiesel, acidic carbon catalysts, nanoporous materials, esterification, transesterification, high acid value oil.

Graphical Abstract

[1]
Li, H.; Riisager, A.; Saravanamurugan, S.; Pandey, A.; Sangwan, R.S.; Yang, S.; Luque, R. Carbon-increasing catalytic strategies for upgrading biomass into energy-intensive fuels and chemicals. ACS Catal., 2017, 8, 148-187.
[http://dx.doi.org/10.1021/acscatal.7b02577]
[2]
Tang, Z.E.; Lim, S.; Pang, Y.L.; Ong, H.C.; Lee, K.T. Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: state of the art and fundamental review. Renew. Sustain. Energy Rev., 2018, 92, 235-253.
[http://dx.doi.org/10.1016/j.rser.2018.04.056]
[3]
Avhad, M.R.; Marchetti, J.M. Innovation in solid heterogeneous catalysis for the generation of economically viable and ecofriendly biodiesel: a review. Catal. Rev., 2016, 58, 157-208.
[http://dx.doi.org/10.1080/01614940.2015.1103594]
[4]
Zhang, H.; Li, H.; Pan, H.; Wang, A.; Souzanchi, S.; Xu, C.C.; Yang, S. Magnetically recyclable acidic polymeric ionic liquids decorated with hydrophobic regulators as highly efficient and stable catalysts for biodiesel production. Appl. Energy, 2018, 223, 416-429.
[http://dx.doi.org/10.1016/j.apenergy.2018.04.061]
[5]
Mardhiah, H.H.; Ong, H.C.; Masjuki, H.H.; Lim, S.; Lee, H.V. A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renew. Sustain. Energy Rev., 2017, 67, 1225-1236.
[http://dx.doi.org/10.1016/j.rser.2016.09.036]
[6]
Lokman, I.M.; Rashid, U.; Yunus, R.; Taufiq-Yap, Y.H. Carbohydrate-derived solid acid catalysts for biodiesel production from low-cost feedstocks: a review. Catal. Rev., 2014, 56, 187-219.
[http://dx.doi.org/10.1080/01614940.2014.891842]
[7]
Kirubakaran, M.; Selvan, V.A.M. A comprehensive review of low cost biodiesel production from waste chicken fat. Renew. Sustain. Energy Rev., 2018, 82, 390-401.
[http://dx.doi.org/10.1016/j.rser.2017.09.039]
[8]
Katre, G.; Raskar, S.; Zinjarde, S.; Kumar, V.R.; Kulkarni, B.D. RaviKumar, A. Optimization of the in situ transesterification step for biodiesel production using biomass of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil. Energy, 2018, 142, 944-952.
[http://dx.doi.org/10.1016/j.energy.2017.10.082]
[9]
Wang, A.; Li, H.; Pan, H.; Zhang, H.; Xu, F.; Yu, Z.; Yang, S. Efficient and green production of biodiesel catalyzed by recyclable biomass-derived magnetic acids. Fuel Process. Technol., 2018, 181, 259-267.
[http://dx.doi.org/10.1016/j.fuproc.2018.10.003]
[10]
Wang, A.; Li, H.; Zhang, H.; Pan, H.; Yang, S. Efficient catalytic production of biodiesel with acid-base bifunctional rod-like Ca-B oxides by the sol-gel approach. Materials (Basel), 2018, 12(1), 83.
[http://dx.doi.org/10.3390/ma12010083] [PMID: 30591625]
[11]
Enferadi-Kerenkan, A.; Do, T.O.; Kaliaguine, S. Heterogeneous catalysis by tungsten-based heteropoly compounds. Catal. Sci. Technol., 2018, 8, 2257-2284.
[http://dx.doi.org/10.1039/C8CY00281A]
[12]
Lee, A.F.; Bennett, J.A.; Manayil, J.C.; Wilson, K. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem. Soc. Rev., 2014, 43(22), 7887-7916.
[http://dx.doi.org/10.1039/C4CS00189C] [PMID: 24957179]
[13]
Islam, A.; Taufiq-Yap, Y.H.; Chu, C.M.; Chan, E.S.; Ravindra, P. Studies on design of heterogeneous catalysts for biodiesel production. Process Saf. Environ., 2013, 91, 131-144.
[http://dx.doi.org/10.1016/j.psep.2012.01.002]
[14]
Chen, J.; Yan, S.; Zhang, X.; Tyagi, R.D.; Surampalli, R.Y.; Valéro, J.R. Chemical and biological conversion of crude glycerol derived from waste cooking oil to biodiesel. Waste Manag., 2018, 71, 164-175.
[http://dx.doi.org/10.1016/j.wasman.2017.10.044] [PMID: 29097125]
[15]
Gardy, J.; Hassanpour, A.; Lai, X.; Ahmed, M.H.; Rehan, M. Biodiesel production from used cooking oil using a novel surface functionalised TiO2 nano-catalyst. Appl. Catal. B, 2017, 207, 297-310.
[http://dx.doi.org/10.1016/j.apcatb.2017.01.080]
[16]
Huang, M.; Luo, J.; Fang, Z.; Li, H. Biodiesel production catalyzed by highly acidic carbonaceous catalysts synthesized via carbonizing lignin in sub-and super-critical ethanol. Appl. Catal. B, 2016, 190, 103-114.
[http://dx.doi.org/10.1016/j.apcatb.2016.02.069]
[17]
Pinto, B.F.; Garcia, M.A.S.; Costa, J.C.S.; de Moura, C.V.R.; de Abreu, W.C.; de Moura, E.M. Effect of calcination temperature on the application of molybdenum trioxide acid catalyst: Screening of substrates for biodiesel production. Fuel, 2019, 239, 290-296.
[http://dx.doi.org/10.1016/j.fuel.2018.11.025]
[18]
Cheng, J.; Zhang, Z.; Zhang, X.; Liu, J.; Zhou, J.; Cen, K. Sulfonated mesoporous Y zeolite with nickel to catalyze hydrocracking of microalgae biodiesel into jet fuel range hydrocarbons. Int. J. Hydrogen Energy, 2019, 44, 1650-1658.
[http://dx.doi.org/10.1016/j.ijhydene.2018.11.110]
[19]
Pan, H.; Li, H.; Zhang, H.; Wang, A.; Yang, S. Acidic ionic liquid-functionalized mesoporous melamine-formaldehyde polymer as heterogeneous catalyst for biodiesel production. Fuel, 2019, 239, 886-895.
[http://dx.doi.org/10.1016/j.fuel.2018.11.093]
[20]
Pan, H.; Li, H.; Zhang, H.; Wang, A.; Jin, D.; Yang, S. Effective production of biodiesel from non-edible oil using facile synthesis of imidazolium salts-based Brønsted-Lewis solid acid and co-solvent. Energy Convers. Manage., 2018, 166, 534-544.
[http://dx.doi.org/10.1016/j.enconman.2018.04.061]
[21]
Zhang, H.; Li, H.; Pan, H.; Liu, X.; Yang, K.; Huang, S.; Yang, S. Efficient production of biodiesel with promising fuel properties from Koelreuteria integrifoliola oil using a magnetically recyclable acidic ionic liquid. Energy Convers. Manage., 2017, 138, 45-53.
[http://dx.doi.org/10.1016/j.enconman.2017.01.060]
[22]
Hu, X.; Nango, K.; Bao, L.; Li, T.; Hasan, M.M.; Li, C.Z. High yields of solid carbonaceous materials from biomass. Green Chem., 2019, 21, 1128-1140.
[http://dx.doi.org/10.1039/C8GC03153C]
[23]
Yang, Y.T.; Yang, X.X.; Wang, Y.T.; Luo, J.; Zhang, F.; Yang, W.J.; Chen, J.H. Alcohothermal carbonization of biomass to prepare novel solid catalysts for oleic acid esterification. Fuel, 2018, 219, 166-175.
[http://dx.doi.org/10.1016/j.fuel.2018.01.072]
[24]
Tang, J.; Zhang, Q.; Hu, K.; Cao, S.; Zhang, S.; Wang, J. Novel organic base-immobilized magneto-polymeric nanospheres as efficient Pickering interfacial catalyst for transesterification. J. Catal., 2018, 368, 190-196.
[http://dx.doi.org/10.1016/j.jcat.2018.10.003]
[25]
Tan, G.; Li, Z. Highly active, stable, and recyclable magnetic nano-size solid acid catalysts: efficient esterification of free fatty acid in grease to produce biodiesel. Green Chem., 2012, 14, 3077-3086.
[http://dx.doi.org/10.1039/c2gc35779h]
[26]
Li, S.; Zhai, S.R.; Zhang, J.M.; Xiao, Z.Y.; An, Q.D.; Li, M.H.; Song, X.W. Magnetic and stable H3PW12O40‐based core@ shell nanomaterial towards the esterification of oleic acid with methanol. Eur. J. Inorg. Chem., 2013, 31, 5428-5435.
[http://dx.doi.org/10.1002/ejic.201300813]
[27]
Granados, M.L.; Poves, M.Z.; Alonso, D.M.; Mariscal, R.; Galisteo, F.C.; Moreno-Tost, R.; Santamaría, J.; Fierro, J.L.G. Biodiesel from sunflower oil by using activated calcium oxide. Appl. Catal. B, 2007, 73, 317-326.
[http://dx.doi.org/10.1016/j.apcatb.2006.12.017]
[28]
Li, H.; Liu, F.; Ma, X.; Wu, Z.; Li, Y.; Zhang, L.; Zhou, S.; Helian, Y. Catalytic performance of strontium oxide supported by MIL–100 (Fe) derivate as transesterification catalyst for biodiesel production. Energy Convers. Manage., 2019, 180, 401-410.
[http://dx.doi.org/10.1016/j.enconman.2018.11.012]
[29]
Masakuza, T.; Atsushi, T.; Kondo, J.N.; Okamura, M.; Hayashi, S.; Hara, M. Biodisel made with sugar catalyst. Nature, 2005, 438, 177-178.
[30]
Zong, M.H.; Duan, Z.Q.; Lou, W.Y.; Smith, T.J.; Wu, H. Preparation of a sugar catalyst and its use for highly efficient production of biodiesel. Green Chem., 2007, 9, 434-437.
[http://dx.doi.org/10.1039/b615447f]
[31]
Nakajima, K.; Hara, M. Amorphous carbon with SO3H groups as a solid Brønsted acid catalyst. ACS Catal., 2012, 2, 1296-1304.
[http://dx.doi.org/10.1021/cs300103k]
[32]
Suganuma, S.; Nakajima, K.; Kitano, M.; Yamaguchi, D.; Kato, H.; Hayashi, S.; Hara, M. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J. Am. Chem. Soc., 2008, 130(38), 12787-12793.
[http://dx.doi.org/10.1021/ja803983h] [PMID: 18759399]
[33]
Taguchi, A.; Schüth, F. Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater., 2005, 77, 1-45.
[http://dx.doi.org/10.1016/j.micromeso.2004.06.030]
[34]
Soltani, S.; Rashid, U.; Al-Resayes, S.I.; Nehdi, I.A. Recent progress in synthesis and surface functionalization of mesoporous acidic heterogeneous catalysts for esterification of free fatty acid feedstocks: A review. Energy Convers. Manage., 2017, 141, 183-205.
[http://dx.doi.org/10.1016/j.enconman.2016.07.042]
[35]
Hara, M.; Nakajima, K.; Kamata, K. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals. Sci. Technol. Adv. Mater., 2015, 16(3)034903
[http://dx.doi.org/10.1088/1468-6996/16/3/034903] [PMID: 27877800]
[36]
Li, H.; Fang, Z.; Smith, R.L., Jr; Yang, S. Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Pror. Energy Combust. Sci., 2016, 55, 98-194.
[http://dx.doi.org/10.1016/j.pecs.2016.04.004]
[37]
Zhou, Y.; Niu, S.; Li, J. Activity of the carbon-based heterogeneous acid catalyst derived from bamboo in esterification of oleic acid with ethanol. Energy Convers. Manage., 2016, 114, 188-196.
[http://dx.doi.org/10.1016/j.enconman.2016.02.027]
[38]
Ning, Y.; Niu, S. Preparation and catalytic performance in esterification of a bamboo-based heterogeneous acid catalyst with microwave assistance. Energy Convers. Manage., 2017, 153, 446-454.
[http://dx.doi.org/10.1016/j.enconman.2017.10.025]
[39]
Niu, S.; Ning, Y.; Lu, C.; Han, K.; Yu, H.; Zhou, Y. Esterification of oleic acid to produce biodiesel catalyzed by sulfonated activated carbon from bamboo. Energy Convers. Manage., 2018, 163, 59-65.
[http://dx.doi.org/10.1016/j.enconman.2018.02.055]
[40]
Tang, X.; Niu, S. Preparation of carbon-based solid acid with large surface area to catalyze esterification for biodiesel production. J. Ind. Eng. Chem., 2019, 69, 187-195.
[http://dx.doi.org/10.1016/j.jiec.2018.09.016]
[41]
Lokman, I.M.; Rashid, U.; Taufiq-Yap, Y.H. Production of biodiesel from palm fatty acid distillate using sulfonated-glucose solid acid catalyst: Characterization and optimization. Chin. J. Chem. Eng., 2015, 23, 1857-1864.
[http://dx.doi.org/10.1016/j.cjche.2015.07.028]
[42]
Akinfalabi, S.I.; Rashid, U.; Yunus, R.; Taufiq-Yap, Y.H. Synthesis of biodiesel from palm fatty acid distillate using sulfonated palm seed cake catalyst. Renew. Energy, 2017, 111, 611-619.
[http://dx.doi.org/10.1016/j.renene.2017.04.056]
[43]
Ibrahim, N.A.; Rashid, U.; Taufiq-Yap, Y.H.; Yaw, T.C.S.; Ismail, I. Synthesis of carbonaceous solid acid magnetic catalyst from empty fruit bunch for esterification of palm fatty acid distillate (PFAD). Energy Convers. Manage., 2019, 195, 480-491.
[http://dx.doi.org/10.1016/j.enconman.2019.05.022]
[44]
Farabi, M.A.; Ibrahim, M.L.; Rashid, U.; Taufiq-Yap, Y.H. Esterification of palm fatty acid distillate using sulfonated carbon-based catalyst derived from palm kernel shell and bamboo. Energy Convers. Manage., 2019, 181, 562-570.
[http://dx.doi.org/10.1016/j.enconman.2018.12.033]
[45]
Mardhiah, H.H.; Ong, H.C.; Masjuki, H.H.; Lim, S.; Pang, Y.L. Investigation of carbon-based solid acid catalyst from Jatropha curcas biomass in biodiesel production. Energy Convers. Manage., 2017, 144, 10-17.
[http://dx.doi.org/10.1016/j.enconman.2017.04.038]
[46]
Li, M.; Zheng, Y.; Chen, Y.; Zhu, X. Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk. Bioresour. Technol., 2014, 154, 345-348.
[http://dx.doi.org/10.1016/j.biortech.2013.12.070] [PMID: 24405650]
[47]
Malins, K.; Brinks, J.; Kampars, V.; Malina, I. Esterification of rapeseed oil fatty acids using a carbon-based heterogeneous acid catalyst derived from cellulose. Appl. Catal. A Gen., 2016, 519, 99-106.
[http://dx.doi.org/10.1016/j.apcata.2016.03.020]
[48]
Liu, T.; Li, Z.; Li, W.; Shi, C.; Wang, Y. Preparation and characterization of biomass carbon-based solid acid catalyst for the esterification of oleic acid with methanol. Bioresour. Technol., 2013, 133, 618-621.
[http://dx.doi.org/10.1016/j.biortech.2013.01.163] [PMID: 23453798]
[49]
Konwar, L.J.; Das, R.; Thakur, A.J.; Salminen, E.; Mäki-Arvela, P.; Kumar, N.; Mikkola, J.; Deka, D. Biodiesel production from acid oils using sulfonated carbon catalyst derived from oil-cake waste. J. Mol. Catal. Chem., 2014, 388, 167-176.
[http://dx.doi.org/10.1016/j.molcata.2013.09.031]
[50]
Chang, B.; Fu, J.; Tian, Y.; Dong, X. Multifunctionalized ordered mesoporous carbon as an efficient and stable solid acid catalyst for biodiesel preparation. J. Phys. Chem. C, 2013, 117, 6252-6258.
[http://dx.doi.org/10.1021/jp312820g]
[51]
Konwar, L.J.; Mäki-Arvela, P.; Salminen, E.; Kumar, N.; Thakur, A.J.; Mikkola, J.P.; Deka, D. Towards carbon efficient biorefining: multifunctional mesoporous solid acids obtained from biodiesel production wastes for biomass conversion. Appl. Catal. B, 2015, 176, 20-35.
[http://dx.doi.org/10.1016/j.apcatb.2015.03.005]
[52]
Fu, X.; Li, D.; Chen, J.; Zhang, Y.; Huang, W.; Zhu, Y.; Yang, J.; Zhang, C. A microalgae residue based carbon solid acid catalyst for biodiesel production. Bioresour. Technol., 2013, 146, 767-770.
[http://dx.doi.org/10.1016/j.biortech.2013.07.117] [PMID: 23953130]
[53]
Gaikwad, N.D.; Gogate, P.R. Synthesis and application of carbon based heterogeneous catalysts for ultrasound assisted biodiesel production. Green Process. Synth., 2015, 4, 17-30.
[http://dx.doi.org/10.1515/gps-2014-0079]
[54]
Zainol, M.M.; Amin, N.A.S.; Asmadi, M. Synthesis and characterization of carbon cryogel microspheres from lignin-furfural mixtures for biodiesel production. Bioresour. Technol., 2015, 190, 44-50.
[http://dx.doi.org/10.1016/j.biortech.2015.04.067] [PMID: 25919936]
[55]
Nata, I.F.; Putra, M.D.; Irawan, C.; Lee, C.K. Catalytic performance of sulfonated carbon-based solid acid catalyst on esterification of waste cooking oil for biodiesel production. J. Environ. Chem. Eng., 2017, 5, 2171-2175.
[http://dx.doi.org/10.1016/j.jece.2017.04.029]
[56]
Wang, L.; Dong, X.; Jiang, H.; Li, G.; Zhang, M. Preparation of a novel carbon-based solid acid from cassava stillage residue and its use for the esterification of free fatty acids in waste cooking oil. Bioresour. Technol., 2014, 158, 392-395.
[http://dx.doi.org/10.1016/j.biortech.2014.02.132] [PMID: 24661813]
[57]
Zhang, F.; Tian, X.F.; Fang, Z.; Shah, M.; Wang, Y.T.; Jiang, W.; Yao, M. Catalytic production of Jatropha biodiesel and hydrogen with magnetic carbonaceous acid and base synthesized from Jatropha hulls. Energy Convers. Manage., 2017, 142, 107-116.
[http://dx.doi.org/10.1016/j.enconman.2017.03.026]
[58]
Zhang, M.; Sun, A.; Meng, Y.; Wang, L.; Jiang, H.; Li, G. Catalytic performance of biomass carbon-based solid acid catalyst for esterification of free fatty acids in waste cooking oil. Catal. Surv. Asia, 2015, 19, 61-67.
[http://dx.doi.org/10.1007/s10563-014-9182-y]
[59]
Zhang, M.; Sun, A.; Meng, Y.; Wang, L.; Jiang, H.; Li, G. High activity ordered mesoporous carbon-based solid acid catalyst for the esterification of free fatty acids. Microporous Mesoporous Mater., 2015, 204, 210-217.
[http://dx.doi.org/10.1016/j.micromeso.2014.11.027]
[60]
Alcañiz-Monge, J.; Trautwein, G.; Marco-Lozar, J.P. Biodiesel production by acid catalysis with heteropolyacids supported on activated carbon fibers. Appl. Catal. A Gen., 2013, 468, 432-441.
[http://dx.doi.org/10.1016/j.apcata.2013.09.006]
[61]
Hosseini, S.; Janaun, J.; Choong, T.S. Feasibility of honeycomb monolith supported sugar catalyst to produce biodiesel from palm fatty acid distillate (PFAD). Process Saf. Environ., 2015, 98, 285-295.
[http://dx.doi.org/10.1016/j.psep.2015.08.011]
[62]
Hajamini, Z.; Sobati, M.A.; Shahhosseini, S.; Ghobadian, B. Waste fish oil (WFO) esterification catalyzed by sulfonated activated carbon under ultrasound irradiation. Appl. Therm. Eng., 2016, 94, 141-150.
[http://dx.doi.org/10.1016/j.applthermaleng.2015.10.101]
[63]
Wang, L.; Dong, X.; Jiang, H.; Li, G.; Zhang, M. Ordered mesoporous carbon supported ferric sulfate: a novel catalyst for the esterification of free fatty acids in waste cooking oil. Fuel Process. Technol., 2014, 128, 10-16.
[http://dx.doi.org/10.1016/j.fuproc.2014.06.023]
[64]
Wang, C.; Gui, X.; Yun, Z. Esterification of lauric and oleic acids with methanol over oxidized and sulfonated activated carbon catalyst. React. Kinet. Mech. Catal., 2014, 113, 211-223.
[http://dx.doi.org/10.1007/s11144-014-0720-4]
[65]
Poonjarernsilp, C.; Sano, N.; Tamon, H. Hydrothermally sulfonated single-walled carbon nanohorns for use as solid catalysts in biodiesel production by esterification of palmitic acid. Appl. Catal. B, 2014, 147, 726-732.
[http://dx.doi.org/10.1016/j.apcatb.2013.10.006]
[66]
Shu, Q.; Tang, G.; Liu, F.; Zou, W.; He, J.; Zhang, C.; Zou, L. Study on the preparation, characterization of a novel solid Lewis acid Al3+-SO42−/MWCNTs catalyst and its catalytic performance for the synthesis of biodiesel via esterification reaction of oleic acid and methanol. Fuel, 2017, 209, 290-298.
[http://dx.doi.org/10.1016/j.fuel.2017.07.113]
[67]
Liu, H.; Chen, J.; Chen, L.; Xu, Y.; Guo, X.; Fang, D. Carbon nanotube-based solid sulfonic acids as catalysts for production of fatty acid methyl ester via transesterification and esterification. ACS Sustain. Chem.& Eng., 2016, 4, 3140-3150.
[http://dx.doi.org/10.1021/acssuschemeng.6b00156]
[68]
Shuit, S.H.; Tan, S.H. Feasibility study of various sulphonation methods for transforming carbon nanotubes into catalysts for the esterification of palm fatty acid distillate. Energy Convers. Manage., 2014, 88, 1283-1289.
[http://dx.doi.org/10.1016/j.enconman.2014.01.035]
[69]
Shuit, S.H.; Tan, S.H. Biodiesel production via esterification of palm fatty acid distillate using sulphonated multi-walled carbon nanotubes as a solid acid catalyst: process study, catalyst reusability and kinetic study. BioEnergy Res., 2015, 8, 605-617.
[http://dx.doi.org/10.1007/s12155-014-9545-2]
[70]
Shuit, S.H.; Ng, E.P.; Tan, S.H. A facile and acid-free approach towards the preparation of sulphonated multi-walled carbon nanotubes as a strong protonic acid catalyst for biodiesel production. J. Taiwan Inst. Chem. Eng., 2015, 52, 100-108.
[http://dx.doi.org/10.1016/j.jtice.2015.02.018]
[71]
Rocha, R.P.; Pereira, M.F.; Figueiredo, J.L. Carbon as a catalyst: esterification of acetic acid with ethanol. Catal. Today, 2013, 218, 51-56.
[http://dx.doi.org/10.1016/j.cattod.2013.09.049]
[72]
Fadhil, A.B.; Aziz, A.M.; Al-Tamer, M.H. Biodiesel production from Silybum marianum L. seed oil with high FFA content using sulfonated carbon catalyst for esterification and base catalyst for transesterification. Energy Convers. Manage., 2016, 108, 255-265.
[http://dx.doi.org/10.1016/j.enconman.2015.11.013]
[73]
Chang, B.; Fu, J.; Tian, Y.; Dong, X. Soft-template synthesis of sulfonated mesoporous carbon with high catalytic activity for biodiesel production. RSC Advances, 2013, 3, 1987-1994.
[http://dx.doi.org/10.1039/C2RA21982D]
[74]
Wang, L.; Dong, X.; Jiang, H.; Li, G.; Zhang, M. Phosphorylated ordered mesoporous carbon as a novel solid acid catalyst for the esterification of oleic acid. Catal. Commun., 2014, 56, 164-167.
[http://dx.doi.org/10.1016/j.catcom.2014.07.008]
[75]
Tamborini, L.H.; Casco, M.E.; Militello, M.P.; Silvestre-Albero, J.; Barbero, C.A.; Acevedo, D.F. Sulfonated porous carbon catalysts for biodiesel production: Clear effect of the carbon particle size on the catalyst synthesis and properties. Fuel Process. Technol., 2016, 149, 209-217.
[http://dx.doi.org/10.1016/j.fuproc.2016.04.006]
[76]
Yu, H.; Niu, S.; Lu, C.; Li, J.; Yang, Y. Sulfonated coal-based solid acid catalyst synthesis and esterification intensification under ultrasound irradiation. Fuel, 2017, 208, 101-110.
[http://dx.doi.org/10.1016/j.fuel.2017.06.122]
[77]
Wu, M.; Wang, Y.; Wang, D.; Tan, M.; Li, P.; Wu, W.; Tsubaki, N. SO3H-modified petroleum coke derived porous carbon as an efficient solid acid catalyst for esterification of oleic acid. J. Porous Mater., 2016, 23, 263-271.
[http://dx.doi.org/10.1007/s10934-015-0078-7]
[78]
Zhou, Z.; Zhang, X.; Yang, F.; Zhang, S. Polymeric carbon material from waste sulfuric acid of alkylation and its application in biodiesel production. J. Clean. Prod., 2019, 215, 13-21.
[http://dx.doi.org/10.1016/j.jclepro.2018.12.279]
[79]
Wang, Y.; Wang, D.; Tan, M.; Jiang, B.; Zheng, J.; Tsubaki, N.; Wu, M. Monodispersed hollow SO3H-functionalized carbon/silica as efficient solid acid catalyst for esterification of oleic acid. ACS Appl. Mater. Interfaces, 2015, 7(48), 26767-26775.
[http://dx.doi.org/10.1021/acsami.5b08797] [PMID: 26588826]
[80]
Chang, B.; Tian, Y.; Shi, W.; Liu, J.; Xi, F.; Dong, X. SO3H-functionalized mesoporous carbon/silica composite with a spherical morphology and its excellent catalytic performance for biodiesel production. J. Porous Mater., 2013, 20, 1423-1431.
[http://dx.doi.org/10.1007/s10934-013-9728-9]
[81]
Wang, Y.T.; Fang, Z.; Zhang, F. Esterification of oleic acid to biodiesel catalyzed by a highly acidic carbonaceous catalyst. Catal. Today, 2019, 319, 172-181.
[http://dx.doi.org/10.1016/j.cattod.2018.06.041]
[82]
Björk, E.M.; Militello, M.P.; Tamborini, L.H.; Rodriguez, R.C.; Planes, G.A.; Acevedo, D.F.; Moreno, M.S.; Odén, M.; Barbero, C.A. Mesoporous silica and carbon based catalysts for esterification and biodiesel fabrication-The effect of matrix surface composition and porosity. Appl. Catal. A Gen., 2017, 533, 49-58.
[http://dx.doi.org/10.1016/j.apcata.2017.01.007]
[83]
Gao, Z.; Tang, S.; Cui, X.; Tian, S.; Zhang, M. Efficient mesoporous carbon-based solid catalyst for the esterification of oleic acid. Fuel, 2015, 140, 669-676.
[http://dx.doi.org/10.1016/j.fuel.2014.10.012]
[84]
Chang, B.; Tian, Y.; Shi, W.; Liu, J.; Xi, F.; Dong, X. Magnetically separable porous carbon nanospheres as solid acid catalysts. RSC Advances, 2013, 3, 20999-21006.
[http://dx.doi.org/10.1039/c3ra43208d]
[85]
Guan, Q.; Li, Y.; Chen, Y.; Shi, Y.; Gu, J.; Li, B.; Miao, R.; Chen, Q.; Ning, P. Sulfonated multi-walled carbon nanotubes for biodiesel production through triglycerides transesterification. RSC Advances, 2017, 7, 7250-7258.
[http://dx.doi.org/10.1039/C6RA28067F]
[86]
Chen, S.Y.; Mochizuki, T.; Abe, Y.; Toba, M.; Yoshimura, Y.; Somwongsa, P.; Lao-ubol, S. Carbonaceous Ti-incorporated SBA-15 with enhanced activity and durability for high-quality biodiesel production: Synthesis and utilization of the P123 template as carbon source. Appl. Catal. B, 2016, 181, 800-809.
[http://dx.doi.org/10.1016/j.apcatb.2015.08.053]
[87]
Tran, T.T.V.; Kaiprommarat, S.; Kongparakul, S.; Reubroycharoen, P.; Guan, G.; Nguyen, M.H.; Samart, C. Green biodiesel production from waste cooking oil using an environmentally benign acid catalyst. Waste Manag., 2016, 52, 367-374.
[http://dx.doi.org/10.1016/j.wasman.2016.03.053] [PMID: 27053375]
[88]
Maneechakr, P.; Samerjit, J.; Karnjanakom, S. Ultrasonic-assisted biodiesel production from waste cooking oil over novel sulfonic functionalized carbon spheres derived from cyclodextrin via one-step: a way to produce biodiesel at short reaction time. RSC Advances, 2015, 5, 55252-55261.
[http://dx.doi.org/10.1039/C5RA09499B]
[89]
Maneechakr, P.; Samerjit, J.; Uppakarnrod, S.; Karnjanakom, S. Experimental design and kinetic study of ultrasonic assisted transesterification of waste cooking oil over sulfonated carbon catalyst derived from cyclodextrin. J. Ind. Eng. Chem., 2015, 32, 128-136.
[http://dx.doi.org/10.1016/j.jiec.2015.08.008]
[90]
Badday, A.S.; Abdullah, A.Z.; Lee, K.T. Transesterification of crude Jatropha oil by activated carbon-supported heteropolyacid catalyst in an ultrasound-assisted reactor system. Renew. Energy, 2014, 62, 10-17.
[http://dx.doi.org/10.1016/j.renene.2013.06.037]
[91]
Stellwagen, D.R.; van der Klis, F.; van Es, D.S.; de Jong, K.P.; Bitter, J.H. Functionalized carbon nanofibers as solid-acid catalysts for transesterification. ChemSusChem, 2013, 6(9), 1668-1672.
[http://dx.doi.org/10.1002/cssc.201300372] [PMID: 23908100]
[92]
Dawodu, F.A.; Ayodele, O.; Xin, J.; Zhang, S.; Yan, D. Effective conversion of non-edible oil with high free fatty acid into biodiesel by sulphonated carbon catalyst. Appl. Energy, 2014, 114, 819-826.
[http://dx.doi.org/10.1016/j.apenergy.2013.10.004]
[93]
Dehkhoda, A.M.; Ellis, N. Biochar-based catalyst for simultaneous reactions of esterification and transesterification. Catal. Today, 2013, 207, 86-92.
[http://dx.doi.org/10.1016/j.cattod.2012.05.034]
[94]
Zhang, F.; Fang, Z.; Wang, Y.T. Biodiesel production direct from high acid value oil with a novel magnetic carbonaceous acid. Appl. Energy, 2015, 155, 637-647.
[http://dx.doi.org/10.1016/j.apenergy.2015.06.044]
[95]
Wang, Y.T.; Fang, Z.; Yang, X.X. Biodiesel production from high acid value oils with a highly active and stable bifunctional magnetic acid. Appl. Energy, 2017, 204, 702-714.
[http://dx.doi.org/10.1016/j.apenergy.2017.07.060]
[96]
Wang, Y.T.; Fang, Z.; Yang, X.X.; Yang, Y.T.; Luo, J.; Xu, K.; Bao, G.R. One-step production of biodiesel from Jatropha oils with high acid value at low temperature by magnetic acid-base amphoteric nanoparticles. Chem. Eng. J., 2018, 348, 929-939.
[http://dx.doi.org/10.1016/j.cej.2018.05.039]
[97]
Fu, X.B.; Chen, J.; Song, X.L.; Zhang, Y.M.; Zhu, Y.; Yang, J.; Zhang, C.W. Biodiesel production using a carbon solid acid catalyst derived from β-cyclodextrin. J. Am. Oil Chem. Soc., 2015, 92, 495-502.
[http://dx.doi.org/10.1007/s11746-015-2621-8]
[98]
Konwar, L.J.; Wärna, J.; Mäki-Arvela, P.; Kumar, N.; Mikkola, J.P. Reaction kinetics with catalyst deactivation in simultaneous esterification and transesterification of acid oils to biodiesel (FAME) over a mesoporous sulphonated carbon catalyst. Fuel, 2016, 166, 1-11.
[http://dx.doi.org/10.1016/j.fuel.2015.10.102]
[99]
Prabhavathi Devi, B.L.; Vijai Kumar Reddy, T.; Vijaya Lakshmi, K.; Prasad, R.B.N. A green recyclable SO(3)H-carbon catalyst derived from glycerol for the production of biodiesel from FFA-containing karanja (Pongamia glabra) oil in a single step. Bioresour. Technol., 2014, 153, 370-373.
[http://dx.doi.org/10.1016/j.biortech.2013.12.002] [PMID: 24373712]
[100]
Thushari, I.; Babel, S. Sustainable utilization of waste palm oil and sulfonated carbon catalyst derived from coconut meal residue for biodiesel production. Bioresour. Technol, 2018, 248(Pt A), 193-203.
[http://dx.doi.org/10.1016/j.biortech.2017.06.106] [PMID: 28676209]
[101]
Poonjarernsilp, C.; Sano, N.; Tamon, H. Simultaneous esterification and transesterification for biodiesel synthesis by a catalyst consisting of sulfonated single-walled carbon nanohorn dispersed with Fe/Fe2O3 nanoparticles. Appl. Catal. A Gen., 2015, 497, 145-152.
[http://dx.doi.org/10.1016/j.apcata.2015.03.013]
[102]
Badday, A.S.; Abdullah, A.Z.; Lee, K.T. Optimization of biodiesel production process from Jatropha oil using supported heteropolyacid catalyst and assisted by ultrasonic energy. Renew. Energy, 2013, 50, 427-432.
[http://dx.doi.org/10.1016/j.renene.2012.07.013]
[103]
Ezebor, F.; Khairuddean, M.; Abdullah, A.Z.; Boey, P.L. Oil palm trunk and sugarcane bagasse derived solid acid catalysts for rapid esterification of fatty acids and moisture-assisted transesterification of oils under pseudo-infinite methanol. Bioresour. Technol., 2014, 157, 254-262.
[http://dx.doi.org/10.1016/j.biortech.2014.01.110] [PMID: 24561631]
[104]
Ghazali, W.N.M.W.; Mamat, R.; Masjuki, H.H.; Najafi, G. Effects of biodiesel from different feedstocks on engine performance and emissions: A review. Renew. Sustain. Energy Rev., 2015, 51, 585-602.
[http://dx.doi.org/10.1016/j.rser.2015.06.031]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy