Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Mini-Review Article

Nanoparticles in Combating Cancer: Opportunities and Limitations: A Brief Review

Author(s): Elzbieta Pedziwiatr-Werbicka*, Katarzyna Horodecka, Dzmitry Shcharbin* and Maria Bryszewska

Volume 28, Issue 2, 2021

Published on: 30 January, 2020

Page: [346 - 359] Pages: 14

DOI: 10.2174/0929867327666200130101605

Price: $65

Abstract

Nanomedicine is a good alternative to traditional methods of cancer treatment but does not solve all the limitations of oncology. Nanoparticles used in anticancer therapy can work as carriers of drugs, nucleic acids, imaging agents or they can sensitize cells to radiation. The present review focuses on the application of nanoparticles to treating cancer, as well as on its problems and limitations. Using nanoparticles as drug carriers, significant improvement in the efficiency of transport of compounds and their targeting directly to the tumour has been achieved; it also reduces the side effects of chemotherapeutic drugs on the body. However, nanoparticles do not significantly improve the effectiveness of the chemotherapeutic agent itself. Most nanodrugs can reduce the toxicity of chemotherapy, but do not significantly affect the effectiveness of treatment. Nanodrugs should be developed that can be effective as an anti-metastatic treatment, e.g. by enhancing the ability of nanoparticles to transport chemotherapeutic loads to sentinel lymph nodes using the immune system and developing chemotherapy in specific metastatic areas. Gene therapy, however, is the most modern method of treating cancer, the cause of cancer being tackled by altering genetic material. Other applications of nanoparticles for radiotherapy and diagnostics are discussed.

Keywords: Nanoparticles, dendrimers, liposomes, micelles, carbon nanotubes, quantum dots, cancer, nanomedicine.

[1]
Siegel, R.L.; Miller, K.D. Jemal, A. Cáncer statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[2]
Roy Chowdhury, M.; Schumann, C.; Bhakta-Guha, D.; Guha, G. Cancer nanotheranostics: strategies, promises and impediments. Biomed. Pharmacother., 2016, 84, 291-304.
[http://dx.doi.org/10.1016/j.biopha.2016.09.035] [PMID: 27665475]
[3]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[4]
Moss, D.M.; Siccardi, M. Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling. Br. J. Pharmacol., 2014, 171(17), 3963-3979.
[http://dx.doi.org/10.1111/bph.12604] [PMID: 24467481]
[5]
Ranganathan, R.; Madanmohan, S.; Kesavan, A.; Baskar, G.; Krishnamoorthy, Y.R.; Santosham, R.; Ponraju, D.; Rayala, S.K.; Venkatraman, G. Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications. Int. J. Nanomedicine, 2012, 7, 1043-1060.
[http://dx.doi.org/10.2147/IJN.S25182] [PMID: 22403487]
[6]
Navya, P.N.; Kaphle, A.; Srinivas, S.P.; Bhargava, S.K.; Rotello, V.M.; Daima, H.K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg., 2019, 6(1), 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]
[7]
Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A new class of polymers: starburst-dendritic macromolecules. Polym. J., 1985, 17, 117-132.
[http://dx.doi.org/10.1295/polymj.17.117]
[8]
Tomalia, D.A. In quest of a systematic framework for unifying and defining nanoscience. J. Nanopart. Res., 2009, 11(6), 1251-1310.
[http://dx.doi.org/10.1007/s11051-009-9632-z] [PMID: 21170133]
[9]
Shcharbin, D.; Janaszewska, A.; Klajnert-Maculewicz, B.; Ziemba, B.; Dzmitruk, V.; Halets, I.; Loznikova, S.; Shcharbina, N.; Milowska, K.; Ionov, M.; Shakhbazau, A.; Bryszewska, M. How to study dendrimers and dendriplexes III. Biodistribution, pharmacokinetics and toxicity in vivo. J. Control. Release, 2014, 181, 40-52.
[http://dx.doi.org/10.1016/j.jconrel.2014.02.021] [PMID: 24607663]
[10]
Dzmitruk, V.; Apartsin, E.; Ihnatsyeu-Kachan, A.; Abashkin, V.; Shcharbin, D.; Bryszewska, M. Dendrimers show promise for siRNA and microrna therapeutics. Pharmaceutics, 2018, 10(3), 126.
[http://dx.doi.org/10.3390/pharmaceutics10030126] [PMID: 30096839]
[11]
Shcharbina, N.; Shcharbin, D.; Bryszewska, M. Nanomaterials in stroke treatment: perspectives. Stroke, 2013, 44(8), 2351-2355.
[http://dx.doi.org/10.1161/STROKEAHA.113.001298] [PMID: 23715957]
[12]
Shcharbin, D.; Shcharbina, N.; Dzmitruk, V.; Pedziwiatr-Werbicka, E.; Ionov, M.; Mignani, S.; de la Mata, F.J.; Gómez, R.; Muñoz-Fernández, M.A.; Majoral, J.P.; Bryszewska, M. Dendrimer-protein interactions versus dendrimer-based nanomedicine. Colloids Surf. B Biointerfaces, 2017, 152, 414-422.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.041] [PMID: 28167455]
[13]
Shcharbin, D.; Pedziwiatr, E.; Nowacka, O.; Kumar, M.; Zaborski, M.; Ortega, P.; de la Mata, F.J.; Gómez, R.; Muñoz-Fernandez, M.A.; Bryszewska, M. Carbosilane dendrimers NN8 and NN16 form a stable complex with siGAG1. Colloids Surf. B Biointerfaces, 2011, 83(2), 388-391.
[http://dx.doi.org/10.1016/j.colsurfb.2010.11.009] [PMID: 21145713]
[14]
Pedziwiatr, E.; Shcharbin, D.; Chonco, L.; Ortega, P.; de la Mata, F.J.; Gómez, R.; Klajnert, B.; Bryszewska, M.; Muñoz-Fernandez, M.A. Binding properties of water-soluble carbosilane dendrimers. J. Fluoresc., 2009, 19(2), 267-275.
[http://dx.doi.org/10.1007/s10895-008-0412-4] [PMID: 18758926]
[15]
Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev., 2012, 54(5), 631-651.
[http://dx.doi.org/10.1016/j.addr.2012.09.006] [PMID: 12204596]
[16]
Cho, K.; Wang, X.; Nie, S.; Chen, Z.G.; Shin, D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res., 2008, 14(5), 1310-1316.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1441] [PMID: 18316549]
[17]
Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res., 2010, 62(2), 90-99.
[http://dx.doi.org/10.1016/j.phrs.2010.03.005] [PMID: 20380880]
[18]
Chen, K.T.J.; Gilabert-Oriol, R.; Bally, M.B.; Leung, A.W.Y. Recent treatment advances and the role of nanotechnology, combination products, and immunotherapy in changing the therapeutic landscape of acute myeloid leukemia. Pharm. Res., 2019, 36(9), 125.
[http://dx.doi.org/10.1007/s11095-019-2654-z] [PMID: 31236772]
[19]
Lee, J.J.; Saiful Yazan, L.; Che Abdullah, C.A. A review on current nanomaterials and their drug conjugate for targeted breast cancer treatment. Int. J. Nanomedicine, 2017, 12, 2373-2384.
[http://dx.doi.org/10.2147/IJN.S127329] [PMID: 28392694]
[20]
Rippe, M.; Cosenza, V.; Auzély-Velty, R. Design of soft nanocarriers combining hyaluronic acid with another functional polymer for cancer therapy and other biomedical applications. Pharmaceutics, 2019, 11(7), 338.
[http://dx.doi.org/10.3390/pharmaceutics11070338] [PMID: 31311150]
[21]
Kim, J.H.; Moon, M.J.; Kim, D.Y.; Heo, S.H.; Jeong, Y.Y. Hyaluronic acid-based nanomaterials for cancer therapy. Polymers (Basel), 2018, 10(10), 1133.
[http://dx.doi.org/10.3390/polym10101133] [PMID: 30961058]
[22]
Wan, X.; Beaudoin, J.J.; Vinod, N.; Min, Y.; Makita, N.; Bludau, H.; Jordan, R.; Wang, A.; Sokolsky, M.; Kabanov, A.V. Co-delivery of paclitaxel and cisplatin in poly(2-oxazoline) polymeric micelles: Implications for drug loading, release, pharmacokinetics and outcome of ovarian and breast cancer treatments. Biomaterials, 2019, 192, 1-14.
[http://dx.doi.org/10.1016/j.biomaterials.2018.10.032] [PMID: 30415101]
[23]
Iijima, S. Helical microtubules of graphitic carbon. Nature, 1991, 354, 56-58.
[http://dx.doi.org/10.1038/354056a0]
[24]
Elhissi, A.; Ahmed, W.; Dhanak, V.R.; Subramani, K. Carbon Nanotubes in Cancer Therapy and Drug Delivery.In: Emerging Nanotechnologies in Dentistry, 2012.
[http://dx.doi.org/10.1016/B978-1-4557-7862-1.00020-1]
[25]
Markman, J.L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J.Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1866-1879.
[http://dx.doi.org/10.1016/j.addr.2013.09.019] [PMID: 24120656]
[26]
Son, K.H.; Hong, J.H.; Lee, J.W. Carbon nanotubes as cancer therapeutic carriers and mediators. Int. J. Nanomedicine, 2016, 11, 5163-5185.
[http://dx.doi.org/10.2147/IJN.S112660] [PMID: 27785021]
[27]
Xue, Y. Carbon Nanotubes for Biomedical Applications; Industrial Applications of Carbon Nanotubes, 2017, pp. 323-346.
[http://dx.doi.org/10.1016/B978-0-323-41481-4.00011-3]
[28]
Hassan, H.A.F.M.; Diebold, S.S.; Smyth, L.A.; Walters, A.A.; Lombardi, G.; Al-Jamal, K.T. Application of carbon nanotubes in cancer vaccines: achievements, challenges and chances. J. Control. Release, 2019, 297, 79-90.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.017] [PMID: 30659906]
[29]
Hossen, S.; Hossain, M.K.; Basher, M.K.; Mia, M.N.H.; Rahman, M.T.; Uddin, M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res., 2018, 15, 1-18.
[http://dx.doi.org/10.1016/j.jare.2018.06.005] [PMID: 30581608]
[30]
Pericleous, P.; Gazouli, M.; Lyberopoulou, A.; Rizos, S.; Nikiteas, N.; Efstathopoulos, E.P. Quantum dots hold promise for early cancer imaging and detection. Int. J. Cancer, 2012, 131(3), 519-528.
[http://dx.doi.org/10.1002/ijc.27528] [PMID: 22411309]
[31]
Nazir, S.; Hussain, T.; Ayub, A.; Rashid, U.; MacRobert, A.J. Nanomaterials in combating cancer: therapeutic applications and developments. Nanomedicine (Lond.), 2014, 10(1), 19-34.
[http://dx.doi.org/10.1016/j.nano.2013.07.001] [PMID: 23871761]
[32]
Juzenas, P.; Chen, W.; Sun, Y.P.; Coelho, M.A.; Generalov, R.; Generalova, N.; Christensen, I.L. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Deliv. Rev., 2008, 60(15), 1600-1614.
[http://dx.doi.org/10.1016/j.addr.2008.08.004] [PMID: 18840487]
[33]
Yang, D.; Yao, X.; Dong, J.; Wang, N.; Du, Y.; Sun, S.; Gao, L.; Zhong, Y.; Qian, C.; Hong, H. Design and Investigation of Core/Shell GQDs/hMSN Nanoparticles as an Enhanced Drug Delivery Platform in Triple-Negative Breast Cancer. Bioconjug. Chem., 2018, 29(8), 2776-2785.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00399] [PMID: 30011184]
[34]
Devi, P.; Saini, S.; Kim, K-H. The advanced role of carbon quantum dots in nanomedical applications. Biosens. Bioelectron., 2019.141111158
[http://dx.doi.org/10.1016/j.bios.2019.02.059] [PMID: 31323605]
[35]
Teleanu, D.M.; Chircov, C.; Grumezescu, A.M.; Teleanu, R.I. Neurotoxicity of nanomaterials: An up-to-date overview. Nanomaterials (Basel), 2019, 9(1), 96.
[http://dx.doi.org/10.3390/nano9010096] [PMID: 30642104]
[36]
Kiessling, F.; Mertens, M.E.; Grimm, J.; Lammers, T. Nanoparticles for imaging: top or flop? Radiology, 2014, 273(1), 10-28.
[http://dx.doi.org/10.1148/radiol.14131520] [PMID: 25247562]
[37]
Baetke, S.C.; Lammers, T.; Kiessling, F. Applications of nanoparticles for diagnosis and therapy of cancer. Br. J. Radiol., 2015, 88(1054)20150207
[http://dx.doi.org/10.1259/bjr.20150207] [PMID: 25969868]
[38]
Mi, Y.; Shao, Z.; Vang, J.; Kaidar-Person, O.; Wang, A.Z. Application of nanotechnology to cancer radiotherapy. Cancer Nanotechnol., 2016, 7(1), 11.
[http://dx.doi.org/10.1186/s12645-016-0024-7] [PMID: 28066513]
[39]
Zhou, M.; Zhao, J.; Tian, M.; Song, S.; Zhang, R.; Gupta, S.; Tan, D.; Shen, H.; Ferrari, M.; Li, C. Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model. Nanoscale, 2015, 7(46), 19438-19447.
[http://dx.doi.org/10.1039/C5NR04587H] [PMID: 26376843]
[40]
Karve, S.; Werner, M.E.; Sukumar, R.; Cummings, N.D.; Copp, J.A.; Wang, E.C.; Li, C.; Sethi, M.; Chen, R.C.; Pacold, M.E.; Wang, A.Z. Revival of the abandoned therapeutic wortmannin by nanoparticle drug delivery. Proc. Natl. Acad. Sci. USA, 2012, 109(21), 8230-8235.
[http://dx.doi.org/10.1073/pnas.1120508109] [PMID: 22547809]
[41]
Kunz-Schughart, L.A.; Dubrovska, A.; Peitzsch, C.; Ewe, A.; Aigner, A.; Schellenburg, S.; Muders, M.H.; Hampel, S.; Cirillo, G.; Iemma, F.; Tietze, R.; Alexiou, C.; Stephan, H.; Zarschler, K.; Vittorio, O.; Kavallaris, M.; Parak, W.J.; Mädler, L.; Pokhrel, S. Nanoparticles for radiooncology: mission, vision, challenges. Biomaterials, 2017, 120, 155-184.
[http://dx.doi.org/10.1016/j.biomaterials.2016.12.010] [PMID: 28063356]
[42]
Au, K.M.; Min, Y.; Tian, X.; Zhang, L.; Perello, V.; Caster, J.M.; Wang, A.Z. Improving cancer chemoradiotherapy treatment by dual controlled release of wortmannin and docetaxel in polymeric nanoparticles. ACS Nano, 2015, 9(9), 8976-8996.
[http://dx.doi.org/10.1021/acsnano.5b02913] [PMID: 26267360]
[43]
Funkhouser, J. Reinventing pharma: The theranostic revolution; Curr. Drug Discov, 2002, pp. 17-19.
[44]
Lammers, T.; Kiessling, F.; Hennink, W.E.; Storm, G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J. Control. Release, 2012, 161(2), 175-187.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.063] [PMID: 21945285]
[45]
Bendale, Y.; Bendale, V.; Paul, S. Evaluation of cytotoxic activity of platinum nanoparticles against normal and cancer cells and its anticancer potential through induction of apoptosis. Integr. Med. Res., 2017, 6(2), 141-148.
[http://dx.doi.org/10.1016/j.imr.2017.01.006] [PMID: 28664137]
[46]
Rehana, D.; Mahendiran, D.; Kumar, R.S.; Rahiman, A.K. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed. Pharmacother., 2017, 89, 1067-1077.
[http://dx.doi.org/10.1016/j.biopha.2017.02.101] [PMID: 28292015]
[47]
Kummara, S.; Patil, M.B.; Uriah, T. Synthesis, characterization, biocompatible and anticancer activity of green and chemically synthesized silver nanoparticles - A comparative study. Biomed. Pharmacother., 2016, 84, 10-21.
[http://dx.doi.org/10.1016/j.biopha.2016.09.003] [PMID: 27621034]
[48]
Venkatesan, J.; Lee, J.Y.; Kang, D.S.; Anil, S.; Kim, S.K.; Shim, M.S.; Kim, D.G. Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles. Int. J. Biol. Macromol., 2017, 98, 515-525.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.120] [PMID: 28147234]
[49]
Nagajyothi, P.C.; Muthuraman, P.; Sreekanth, T.V.M.; Kim, D.H.; Shim, J. Green synthesis: in-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arab. J. Chem., 2017, 10(2), 215-225.
[http://dx.doi.org/10.1016/j.arabjc.2016.01.011]
[50]
Franiak-Pietryga, I.; Ziółkowska, E.; Ziemba, B.; Appelhans, D.; Voit, B.; Szewczyk, M.; Góra-Tybor, J.; Robak, T.; Klajnert, B.; Bryszewska, M. The influence of maltotriose-modified poly(propylene imine) dendrimers on the chronic lymphocytic leukemia cells in vitro: dense shell G4 PPI. Mol. Pharm., 2013, 10(6), 2490-2501.
[http://dx.doi.org/10.1021/mp400142p] [PMID: 23641871]
[51]
Ziemba, B.; Franiak-Pietryga, I.; Pion, M.; Appelhans, D.; Muñoz-Fernández, M.Á.; Voit, B.; Bryszewska, M.; Klajnert-Maculewicz, B. Toxicity and proapoptotic activity of poly(propylene imine) glycodendrimers in vitro: considering their contrary potential as biocompatible entity and drug molecule in cancer. Int. J. Pharm., 2014, 461(1-2), 391-402.
[http://dx.doi.org/10.1016/j.ijpharm.2013.12.011] [PMID: 24361266]
[52]
Peña-González, C.E.; Pedziwiatr-Werbicka, E.; Martín-Pérez, T.; Szewczyk, E.M.; Copa-Patiño, J.L.; Soliveri, J.; Pérez-Serrano, J.; Gómez, R.; Bryszewska, M.; Sánchez-Nieves, J.; de la Mata, F.J. Antibacterial and antifungal properties of dendronized silver and gold nanoparticles with cationic carbosilane dendrons. Int. J. Pharm., 2017, 528(1-2), 55-61.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.067] [PMID: 28577968]
[53]
Pedziwiatr-Werbicka, E.; Milowska, K.; Dzmitruk, V.; Ionov, M.; Shcharbin, D.; Bryszewska, M. Dendrimers and hyperbranched structures for biomedical applications. Eur. Polym. J., 2019, 119, 61-73.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.07.013]
[54]
Shcharbin, D.; Pedziwiatr-Werbicka, E.; Vcherashniaya, A.; Janaszewska, A.; Marcinkowska, M.; Goska, P.; Klajnert-Maculewicz, B.; Ionov, M.; Abashkin, V.; Ihnatsyeu-Kachan, A.; de la Mata, F.J.; Ortega, P.; Gomez-Ramirez, R.; Majoral, J.P.; Bryszewska, M. Binding of poly(amidoamine), carbosilane, phosphorus and hybrid dendrimers to thrombin-Constants and mechanisms. Colloids Surf. B Biointerfaces, 2017, 155, 11-16.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.053] [PMID: 28388470]
[55]
Shcharbin, D.; Dzmitruk, V.; Shakhbazau, A.; Goncharova, N.; Seviaryn, I.; Kosmacheva, S.; Potapnev, M.; Pedziwiatr-Werbicka, E.; Bryszewska, M.; Talabaev, M.; Chernov, A.; Kulchitsky, V.; Caminade, A.M.; Majoral, J.P. Fourth generation phosphorus-containing dendrimers: prospective drug and gene delivery carrier. Pharmaceutics, 2011, 3(3), 458-473.
[http://dx.doi.org/10.3390/pharmaceutics3030458] [PMID: 24310590]
[56]
Gorzkiewicz, M.; Klajnert-Maculewicz, B. Dendrimers as nanocarriers for nucleoside analogues. Eur. J. Pharm. Biopharm., 2017, 114, 43-56.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.030] [PMID: 28089915]
[57]
Cho, H.; Lai, T.C.; Tomoda, K.; Kwon, G.S. Polymeric micelles for multi-drug delivery in cancer. AAPS PharmSciTech, 2015, 16(1), 10-20.
[http://dx.doi.org/10.1208/s12249-014-0251-3] [PMID: 25501872]
[58]
Kapse-Mistry, S.; Govender, T.; Srivastava, R.; Yergeri, M. Nanodrug delivery in reversing multidrug resistance in cancer cells. Front. Pharmacol., 2014, 5, 159.
[http://dx.doi.org/10.3389/fphar.2014.00159] [PMID: 25071577]
[59]
Ghalandarlaki, N.; Alizadeh, A.M.; Ashkani-Esfahani, S. Nanotechnology-applied curcumin for different diseases therapy. BioMed Res. Int., 2014, •••2014394264
[http://dx.doi.org/10.1155/2014/394264] [PMID: 24995293]
[60]
Prabhu, R.H.; Patravale, V.B.; Joshi, M.D. Polymeric nanoparticles for targeted treatment in oncology: current insights. Int. J. Nanomedicine, 2015, 10, 1001-1018.
[http://dx.doi.org/10.2147/IJN.S56932] [PMID: 25678788]
[61]
Ji, S.R.; Liu, C.; Zhang, B.; Yang, F.; Xu, J.; Long, J.; Jin, C.; Fu, D.L.; Ni, Q.X.; Yu, X.J. Carbon nanotubes in cancer diagnosis and therapy. Biochim. Biophys. Acta, 2010, 1806(1), 29-35.
[PMID: 20193746]
[62]
Reddy, S.T.; Rehor, A.; Schmoekel, H.G.; Hubbell, J.A.; Swartz, M.A. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J. Control. Release, 2006, 112(1), 26-34.
[http://dx.doi.org/10.1016/j.jconrel.2006.01.006] [PMID: 16529839]
[63]
Yang, F.; Fu, L.; Long, J.; Ni, Q.X. Magnetic lymphatic targeting drug delivery system using carbon nanotubes. Med. Hypotheses, 2008, 70(4), 765-767.
[http://dx.doi.org/10.1016/j.mehy.2007.07.045] [PMID: 17910909]
[64]
Yang, F.; Jin, C.; Yang, D.; Jiang, Y.; Li, J.; Di, Y.; Hu, J.; Wang, C.; Ni, Q.; Fu, D. Magnetic functionalised carbon nanotubes as drug vehicles for cancer lymph node metastasis treatment. Eur. J. Cancer, 2011, 47(12), 1873-1882.
[http://dx.doi.org/10.1016/j.ejca.2011.03.018] [PMID: 21493061]
[65]
Chen, J.; Chen, S.; Zhao, X.; Kuznetsova, L.V.; Wong, S.S.; Ojima, I. Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J. Am. Chem. Soc., 2008, 130(49), 16778-16785.
[http://dx.doi.org/10.1021/ja805570f] [PMID: 19554734]
[66]
Zhang, X.; Meng, L.; Lu, Q.; Fei, Z.; Dyson, P.J. Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials, 2009, 30(30), 6041-6047.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.025] [PMID: 19643474]
[67]
Shi, X.; Wang, S.H.; Shen, M.; Antwerp, M.E.; Chen, X.; Li, C.; Petersen, E.J.; Huang, Q.; Weber, W.J., Jr; Baker, J.R. Multifunctional dendrimer-modified multiwalled carbon nanotubes: synthesis, characterization, and in vitro cancer cell targeting and imaging. Biomacromolecules, 2009, 10(7), 1744-1750.
[http://dx.doi.org/10.1021/bm9001624] [PMID: 19459647]
[68]
Li, R.; Wu, R.; Zhao, L.; Hu, Z.; Guo, S.; Pan, X.; Zou, H. Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells. Carbon, 2011, 49(5), 1797-1805.
[http://dx.doi.org/10.1016/j.carbon.2011.01.003]
[69]
Shi Kam, N.W.; Jessop, T.C.; Wender, P.A.; Dai, H. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc., 2004, 126(22), 6850-6851.
[http://dx.doi.org/10.1021/ja0486059] [PMID: 15174838]
[70]
Jain, R.K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol., 2010, 7(11), 653-664.
[http://dx.doi.org/10.1038/nrclinonc.2010.139] [PMID: 20838415]
[71]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[72]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[73]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Release, 2011, 153(3), 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[74]
Sztandera, K.; Gorzkiewicz, M.; Klajnert-Maculewicz, B. Gold Nanoparticles in Cancer Treatment. Mol. Pharm., 2019, 16(1), 1-23.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00810] [PMID: 30452861]
[75]
Kim, J.; Mirando, A.C.; Popel, A.S.; Green, J.J. Gene delivery nanoparticles to modulate angiogenesis. Adv. Drug Deliv. Rev., 2017, 119, 20-43.
[http://dx.doi.org/10.1016/j.addr.2016.11.003] [PMID: 27913120]
[76]
Wang, K.; Kievit, F.M.; Zhang, M. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies. Pharmacol. Res., 2016, 114, 56-66.
[http://dx.doi.org/10.1016/j.phrs.2016.10.016] [PMID: 27771464]
[77]
Slavcev, R.A.; Wettig, S.; Kaur, T. Nanomedicine based approaches to cancer diagonsis and therapy; Non-Viral Gene Therapy, 2011, pp. 515-546.
[http://dx.doi.org/10.5772/18304]
[78]
Singh, R.; Pantarotto, D.; McCarthy, D.; Chaloin, O.; Hoebeke, J.; Partidos, C.D.; Briand, J.P.; Prato, M.; Bianco, A.; Kostarelos, K. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc., 2005, 127(12), 4388-4396.
[http://dx.doi.org/10.1021/ja0441561] [PMID: 15783221]
[79]
Bae, Y.; Rhim, H.S.; Lee, S.; Ko, K.S.; Han, J.; Choi, J.S. Apoptin gene delivery by the functionalized polyamidoamine dendrimer derivatives induces cell death of U87-MG glioblastoma cells. J. Pharm. Sci., 2017, 106(6), 1618-1633.
[http://dx.doi.org/10.1016/j.xphs.2017.01.034] [PMID: 28188727]
[80]
He, Z.Y.; Deng, F.; Wei, X.W.; Ma, C.C.; Luo, M.; Zhang, P.; Sang, Y.X.; Liang, X.; Liu, L.; Qin, H.X.; Shen, Y.L.; Liu, T.; Liu, Y.T.; Wang, W.; Wen, Y.J.; Zhao, X.; Zhang, X.N.; Qian, Z.Y.; Wei, Y.Q. Ovarian cancer treatment with a tumor-targeting and gene expression-controllable lipoplex. Sci. Rep., 2016, 6, 23764.
[http://dx.doi.org/10.1038/srep23764] [PMID: 27026065]
[81]
Schultheis, B.; Strumberg, D.; Santel, A.; Vank, C.; Gebhardt, F.; Keil, O.; Lange, C.; Giese, K.; Kaufmann, J.; Khan, M.; Drevs, J. First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. J. Clin. Oncol., 2014, 32(36), 4141-4148.
[http://dx.doi.org/10.1200/JCO.2013.55.0376] [PMID: 25403217]
[82]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy