Review Article

用于乳腺癌检测的SPECT和PET成像的放射性标记肽:临床前和临床观点

卷 27, 期 41, 2020

页: [6987 - 7002] 页: 16

弟呕挨: 10.2174/0929867327666200128110827

价格: $65

摘要

乳腺癌是全世界女性中最常见的癌症。 由于乳腺癌的异质性,对于每个患者的最佳治疗和预期反应可能不一定是普遍的。 分子成像技术可能在乳腺癌的早期发现和靶向治疗评估中起重要作用。 这篇综述着重于用SPECT和PET放射性核素标记的肽在乳腺癌成像中的开发。 我们总结了乳腺癌中不同受体的放射性标记肽的现状。 还简要讨论了放射性核素的特性和肽标记的主要技术。

关键词: 乳腺癌,放射性标记的肽,SPECT成像,PET成像,异质性癌症,单光子发射断层扫描(SPECT)。

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Waks, A.G.; Winer, E.P. Breast cancer treatment: a review. JAMA, 2019, 321(3), 288-300.
[http://dx.doi.org/10.1001/jama.2018.19323] [PMID: 30667505]
[3]
Buist, D.S.; Porter, P.L.; Lehman, C.; Taplin, S.H.; White, E. Factors contributing to mammography failure in women aged 40-49 years. J. Natl. Cancer Inst., 2004, 96(19), 1432-1440.
[http://dx.doi.org/10.1093/jnci/djh269] [PMID: 15467032]
[4]
Faguy, K. Breast sonography and mammography: complementarity and correlation. Radiol. Technol., 2017, 89(1), 45M-64M.
[PMID: 28904171]
[5]
Sun, X.; Li, Y.; Liu, T.; Li, Z.; Zhang, X.; Chen, X. Peptide-based imaging agents for cancer detection. Adv. Drug Deliv. Rev., 2017, 110-111, 38-51.
[http://dx.doi.org/10.1016/j.addr.2016.06.007] [PMID: 27327937]
[6]
Schottelius, M.; Wester, H.J. Molecular imaging targeting peptide receptors. Methods, 2009, 48(2), 161-177.
[http://dx.doi.org/10.1016/j.ymeth.2009.03.012] [PMID: 19324088]
[7]
Pillai, M.R.; Dash, A.; Knapp, F.F. Jr. Sustained availability of 99mTc: possible paths forward. J. Nucl. Med., 2013, 54(2), 313-323.
[http://dx.doi.org/10.2967/jnumed.112.110338] [PMID: 23255729]
[8]
Vāvere, A.L.; Rossin, R. Molecular imaging of cancer with radiolabeled peptides and PET. Anticancer. Agents Med. Chem., 2012, 12(5), 462-475.
[http://dx.doi.org/10.2174/187152012800617812] [PMID: 22292762]
[9]
Nymann Petersen, I.; Madsen, J.; Bernard Matthijs Poulie, C.; Kjær, A.; Manfred Herth, M. One-step synthesis of N-Succinimidyl-4-[18F]Fluorobenzoate ([18F]SFB). Molecules, 2019, 24(19)E3436
[http://dx.doi.org/10.3390/molecules24193436] [PMID: 31546683]
[10]
Wester, H.J.; Hamacher, K.; Stöcklin, G. A comparative study of N.C.A. fluorine-18 labeling of proteins via acylation and photochemical conjugation. Nucl. Med. Biol., 1996, 23(3), 365-372.
[http://dx.doi.org/10.1016/0969-8051(96)00017-0] [PMID: 8782249]
[11]
Koslowsky, I.; Shahhosseini, S.; Wilson, J.; Mercer, J. Automated radiosynthesis of N-(4-[18F]fluorobenzyl)-2-bromoacetamide: an F-18-labeled reagent for the prosthetic radiolabeling of oligonucleotides. J. Labelled Comp. Radiopharm., 2008, 51(10), 352-356.
[http://dx.doi.org/10.1002/jlcr.1535]
[12]
de Bruin, B.; Kuhnast, B.; Hinnen, F.; Yaouancq, L.; Amessou, M.; Johannes, L.; Samson, A.; Boisgard, R.; Tavitian, B.; Dollé, F. 1-[3-(2-[18F]fluoropyridin-3-yloxy)propyl]-pyrrole-2,5-dione: design, synthesis, and radiosynthesis of a new [18F]fluoropyridine-based maleimide reagent for the labeling of peptides and proteins. Bioconjug. Chem., 2005, 16(2), 406-420.
[http://dx.doi.org/10.1021/bc0497463] [PMID: 15769096]
[13]
Cai, W.; Zhang, X.; Wu, Y.; Chen, X. A thiol-reactive 18F-labeling agent, N-[2-(4-18F-fluorobenzamido)ethyl]-maleimide, and syn-thesis of RGD peptide-based tracer for PET imaging of alpha v beta 3 integrin expression. J. Nucl. Med., 2006, 47(7), 1172-1180.
[PMID: 16818952]
[14]
McBride, W.J.; Sharkey, R.M.; Karacay, H.; D’Souza, C.A.; Rossi, E.A.; Laverman, P.; Chang, C.H.; Boerman, O.C.; Goldenberg, D.M. A novel method of 18F radiolabeling for PET. J. Nucl. Med., 2009, 50(6), 991-998.
[http://dx.doi.org/10.2967/jnumed.108.060418] [PMID: 19443594]
[15]
McBride, W.J.; Sharkey, R.M.; Goldenberg, D.M. Radiofluorination using aluminum-fluoride (Al18F). EJNMMI Res., 2013, 3(1), 36.
[http://dx.doi.org/10.1186/2191-219X-3-36] [PMID: 23651690]
[16]
Velikyan, I. Prospective of 68Ga-radiopharmaceutical development. Theranostics, 2013, 4(1), 47-80.
[http://dx.doi.org/10.7150/thno.7447] [PMID: 24396515]
[17]
Rice, S.L.; Roney, C.A.; Daumar, P.; Lewis, J.S. The next generation of positron emission tomography radiopharmaceuticals in oncol-ogy. Semin. Nucl. Med., 2011, 41(4), 265-282.
[http://dx.doi.org/10.1053/j.semnuclmed.2011.02.002] [PMID: 21624561]
[18]
Anderson, C.J.; Ferdani, R. Copper-64 radiopharmaceuticals for PET imaging of cancer: advances in preclinical and clinical research. Cancer Biother. Radiopharm., 2009, 24(4), 379-393.
[http://dx.doi.org/10.1089/cbr.2009.0674] [PMID: 19694573]
[19]
Lucente, E.; Liu, H.; Liu, Y.; Hu, X.; Lacivita, E.; Leopoldo, M.; Cheng, Z. Novel 64Cu labeled RGD2-BBN heterotrimers for PET imaging of prostate cancer. Bioconjug. Chem., 2018, 29(5), 1595-1604.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00113] [PMID: 29587479]
[20]
Wadas, T.J.; Anderson, C.J. Radiolabeling of TETA- and CB-TE2A-conjugated peptides with copper-64. Nat. Protoc., 2006, 1(6), 3062-3068.
[http://dx.doi.org/10.1038/nprot.2006.431] [PMID: 17406569]
[21]
Rezazadeh, F.; Sadeghzadeh, N. Tumor targeting with 99mTc radiolabeled peptides: clinical application and recent development. Chem. Biol. Drug Des., 2019, 93(3), 205-221.
[http://dx.doi.org/10.1111/cbdd.13413] [PMID: 30299570]
[22]
Banerjee, S.R.; Maresca, K.P.; Francesconi, L.; Valliant, J.; Babich, J.W.; Zubieta, J. New directions in the coordination chemistry of 99mTc: a reflection on technetium core structures and a strategy for new chelate design. Nucl. Med. Biol., 2005, 32(1), 1-20.
[http://dx.doi.org/10.1016/j.nucmedbio.2004.09.001] [PMID: 15691657]
[23]
Hennrich, U.; Kopka, K. Lutathera®: the first FDA- and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals (Basel), 2019, 12(3)E114
[http://dx.doi.org/10.3390/ph12030114] [PMID: 31362406]
[24]
Dash, A.; Pillai, M.R.; Knapp, F.F. Jr. Production of 177Lu for targeted radionuclide therapy: available options. Nucl. Med. Mol. Imaging, 2015, 49(2), 85-107.
[http://dx.doi.org/10.1007/s13139-014-0315-z] [PMID: 26085854]
[25]
Use, C.f.M.P.f.H. Endolucinbeta international nonproprietary name: lutetium (177 Lu) chloride 2016.
[26]
Adant, S.; Shah, G.M.; Beauregard, J.M. Combination treatments to enhance peptide receptor radionuclide therapy of neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging, 2019, 47(4), 907-921.
[http://dx.doi.org/10.1007/s00259-019-04499-x] [PMID: 31492995]
[27]
Gotthardt, M.; Dijkgraaf, I.; Boerman, O.C.; Oyen, W.J. Nuclear medicine imaging and therapy of neuroendocrine tumours. Cancer Imaging, 2006, 6, S178-S184.
[http://dx.doi.org/10.1102/1470-7330.2006.9038] [PMID: 17114073]
[28]
Ahmadpour, S.; Hosseinimehr, S.J. Recent developments in peptide-based SPECT radiopharmaceuticals for breast tumor targeting. Life Sci., 2019, 239116870
[http://dx.doi.org/10.1016/j.lfs.2019.116870] [PMID: 31525426]
[29]
Breeman, W.A.; de Jong, M.; Kwekkeboom, D.J.; Valkema, R.; Bakker, W.H.; Kooij, P.P.; Visser, T.J.; Krenning, E.P. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives. Eur. J. Nucl. Med., 2001, 28(9), 1421-1429.
[http://dx.doi.org/10.1007/s002590100502] [PMID: 11585303]
[30]
Reubi, J.C. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr. Rev., 2003, 24(4), 389-427.
[http://dx.doi.org/10.1210/er.2002-0007] [PMID: 12920149]
[31]
Chereau, E.; Durand, L.; Frati, A.; Prignon, A.; Talbot, J.N.; Rouzier, R. Correlation of immunohistopathological expression of soma-tostatin receptor-2 in breast cancer and tumor detection with 68Ga-DOTATOC and 18F-FDG PET imaging in an animal model. Anticancer Res., 2013, 33(8), 3015-3019.
[PMID: 23898054]
[32]
Dalm, S.U.; Melis, M.; Emmering, J.; Kwekkeboom, D.J.; de Jong, M. Breast cancer imaging using radiolabelled somatostatin ana-logues. Nucl. Med. Biol., 2016, 43(9), 559-565.
[http://dx.doi.org/10.1016/j.nucmedbio.2016.05.012] [PMID: 27409729]
[33]
Dalm, S.U.; Verzijlbergen, J.F.; De Jong, M. Review: receptor targeted nuclear imaging of breast cancer. Int. J. Mol. Sci., 2017, 18(2)E260
[http://dx.doi.org/10.3390/ijms18020260] [PMID: 28134770]
[34]
Kumar, U.; Grigorakis, S.I.; Watt, H.L.; Sasi, R.; Snell, L.; Watson, P.; Chaudhari, S. Somatostatin receptors in primary human breast cancer: quantitative analysis of mRNA for subtypes 1--5 and correlation with receptor protein expression and tumor pathology. Breast Cancer Res. Treat., 2005, 92(2), 175-186.
[http://dx.doi.org/10.1007/s10549-005-2414-0] [PMID: 15986128]
[35]
Limouris, G.S.; Poulantzas, V.; Trompoukis, N.; Karfis, I.; Chondrogiannis, S.; Triantafyllou, N.; Gennimata, V.; Moulopoulou, L.E.; Patsouris, E.; Nikou, G.; Michalaki, V.; Fragulidis, G.; Paphiti, M.; McCready, R.V.; Colletti, P.M.; Cook, G.J.; Rubello, D. Compari-son of 111In-[DTPA0]Octreotide versus Non Carrier added 177Lu- [DOTA0,Tyr3]-Octreotate efficacy in patients with GEP-NET treated intra-arterially for liver metastases. Clin. Nucl. Med., 2016, 41(3), 194-200.
[http://dx.doi.org/10.1097/RLU.0000000000001096] [PMID: 26673241]
[36]
Cescato, R.; Waser, B.; Fani, M.; Reubi, J.C. Evaluation of 177Lu-DOTA-sst2 antagonist versus 177Lu-DOTA-sst2 agonist binding in human cancers in vitro. J. Nucl. Med., 2011, 52(12), 1886-1890.
[http://dx.doi.org/10.2967/jnumed.111.095778] [PMID: 22068898]
[37]
Citri, A.; Yarden, Y. EGF-ERBB signalling: towards the systems level. Nat. Rev. Mol. Cell Biol., 2006, 7(7), 505-516.
[http://dx.doi.org/10.1038/nrm1962] [PMID: 16829981]
[38]
Tagliabue, E.; Balsari, A.; Campiglio, M.; Pupa, S.M. HER2 as a target for breast cancer therapy. Expert Opin. Biol. Ther., 2010, 10(5), 711-724.
[http://dx.doi.org/10.1517/14712591003689972] [PMID: 20214497]
[39]
Burstein, H.J. The distinctive nature of HER2-positive breast cancers. N. Engl. J. Med., 2005, 353(16), 1652-1654.
[http://dx.doi.org/10.1056/NEJMp058197] [PMID: 16236735]
[40]
Calce, E.; Sandomenico, A.; Saviano, M.; Ruvo, M.; De Luca, S. Cysteine co-oxidation process driven by native peptide folding: an example on HER2 receptor model system. Amino Acids, 2014, 46(5), 1197-1206.
[http://dx.doi.org/10.1007/s00726-014-1681-7] [PMID: 24493095]
[41]
Tang, Y.; Wang, J.; Scollard, D.A.; Mondal, H.; Holloway, C.; Kahn, H.J.; Reilly, R.M. Imaging of HER2/neu-positive BT-474 human breast cancer xenografts in athymic mice using 111In-trastuzumab (Herceptin) Fab fragments. Nucl. Med. Biol., 2005, 32(1), 51-58.
[http://dx.doi.org/10.1016/j.nucmedbio.2004.08.003] [PMID: 15691661]
[42]
Tran, T.A.; Rosik, D.; Abrahmsén, L.; Sandström, M.; Sjöberg, A.; Wållberg, H.; Ahlgren, S.; Orlova, A.; Tolmachev, V. Design, synthesis and biological evaluation of a multifunctional HER2-specific Affibody molecule for molecular imaging. Eur. J. Nucl. Med. Mol. Imaging, 2009, 36(11), 1864-1873.
[http://dx.doi.org/10.1007/s00259-009-1176-z] [PMID: 19504093]
[43]
Honarvar, H.; Calce, E.; Doti, N.; Langella, E.; Orlova, A.; Buijs, J.; D’Amato, V.; Bianco, R.; Saviano, M.; Tolmachev, V.; De Luca, S. Evaluation of HER2-specific peptide ligand for its employment as radiolabeled imaging probe. Sci. Rep., 2018, 8(1), 2998.
[http://dx.doi.org/10.1038/s41598-018-21283-3] [PMID: 29445216]
[44]
Larimer, B.M.; Thomas, W.D.; Smith, G.P.; Deutscher, S.L. Affinity maturation of an ERBB2-targeted SPECT imaging peptide by in vivo phage display. Mol. Imaging Biol., 2014, 16(4), 449-458.
[http://dx.doi.org/10.1007/s11307-014-0724-5] [PMID: 24550054]
[45]
Li, L.; Wu, Y.; Wang, Z.; Jia, B.; Hu, Z.; Dong, C.; Wang, F. SPECT/CT Imaging of the Novel HER2-Targeted Peptide Probe 99mTc-HYNIC-H6F in Breast Cancer Mouse Models. J. Nucl. Med., 2017, 58(5), 821-826.
[http://dx.doi.org/10.2967/jnumed.116.183863] [PMID: 28104744]
[46]
Mittendorf, E.A.; Wu, Y.; Scaltriti, M.; Meric-Bernstam, F.; Hunt, K.K.; Dawood, S.; Esteva, F.J.; Buzdar, A.U.; Chen, H.; Eksambi, S.; Hortobagyi, G.N.; Baselga, J.; Gonzalez-Angulo, A.M. Loss of HER2 amplification following trastuzumab-based neoadjuvant systemic therapy and survival outcomes. Clin. Cancer Res., 2009, 15(23), 7381-7388.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1735] [PMID: 19920100]
[47]
Bussolati, G.; Montemurro, F.; Righi, L.; Donadio, M.; Aglietta, M.; Sapino, A. A modified Trastuzumab antibody for the immuno-histochemical detection of HER-2 overexpression in breast cancer. Br. J. Cancer, 2005, 92(7), 1261-1267.
[http://dx.doi.org/10.1038/sj.bjc.6602507] [PMID: 15812476]
[48]
Cho, H.S.; Mason, K.; Ramyar, K.X.; Stanley, A.M.; Gabelli, S.B.; Denney, D.W. Jr.; Leahy, D.J. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature, 2003, 421(6924), 756-760.
[http://dx.doi.org/10.1038/nature01392] [PMID: 12610629]
[49]
Prasad, V.V.; Gopalan, R.O. Continued use of MDA-MB-435, a melanoma cell line, as a model for human breast cancer, even in year, 2014. NPJ Breast Cancer, 2015, 1, 15002.
[http://dx.doi.org/10.1038/npjbcancer.2015.2] [PMID: 28721362]
[50]
Miyazaki, M.; Lamharzi, N.; Schally, A.V.; Halmos, G.; Szepeshazi, K.; Groot, K.; Cai, R.Z. Inhibition of growth of MDA-MB-231 human breast cancer xenografts in nude mice by bombesin/gastrin-releasing peptide (GRP) antagonists RC-3940-II and RC-3095. Eur. J. Cancer, 1998, 34(5), 710-717.
[http://dx.doi.org/10.1016/S0959-8049(97)10123-X] [PMID: 9713279]
[51]
Gugger, M.; Reubi, J.C.; Gugger, M.; Reubi, J. GRP receptors in non-neoplastic and neoplastic human breast. Am. J. Pathol., 2000, 155, 2067-2076.
[http://dx.doi.org/10.1016/S0002-9440(10)65525-3] [PMID: 10595936]
[52]
Dalm, S.U.; Martens, J.W.; Sieuwerts, A.M.; van Deurzen, C.H.; Koelewijn, S.J.; de Blois, E.; Maina, T.; Nock, B.A.; Brunel, L.; Fehrentz, J.A.; Martinez, J.; de Jong, M.; Melis, M. In vitro and in vivo application of radiolabeled gastrin-releasing peptide receptor ligands in breast cancer. J. Nucl. Med., 2015, 56(5), 752-757.
[http://dx.doi.org/10.2967/jnumed.114.153023] [PMID: 25791989]
[53]
Dalm, S.U.; Sieuwerts, A.M.; Look, M.P.; Melis, M.; van Deurzen, C.H.; Foekens, J.A.; de Jong, M.; Martens, J.W. Clinical relevance of targeting the gastrin-releasing peptide receptor, somatostatin receptor 2, or chemokine C-X-C motif receptor 4 in breast cancer for imaging and therapy. J. Nucl. Med., 2015, 56(10), 1487-1493.
[http://dx.doi.org/10.2967/jnumed.115.160739] [PMID: 26251419]
[54]
Prignon, A.; Nataf, V.; Provost, C.; Cagnolini, A.; Montravers, F.; Gruaz-Guyon, A.; Lantry, L.E.; Talbot, J.N.; Nunn, A.D. 68Ga-AMBA and 18F-FDG for preclinical PET imaging of breast cancer: effect of tamoxifen treatment on tracer uptake by tumor. Nucl. Med. Biol., 2015, 42(2), 92-98.
[http://dx.doi.org/10.1016/j.nucmedbio.2014.10.003] [PMID: 25459112]
[55]
Parry, J.J.; Andrews, R.; Rogers, B.E. MicroPET imaging of breast cancer using radiolabeled bombesin analogs targeting the gastrin-releasing peptide receptor. Breast Cancer Res. Treat., 2007, 101(2), 175-183.
[http://dx.doi.org/10.1007/s10549-006-9287-8] [PMID: 16838112]
[56]
Droog, M.; Beelen, K.; Linn, S.; Zwart, W. Tamoxifen resistance: from bench to bedside. Eur. J. Pharmacol., 2013, 717(1-3), 47-57.
[http://dx.doi.org/10.1016/j.ejphar.2012.11.071] [PMID: 23545365]
[57]
Hamidi, H.; Ivaska, J. Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer, 2018, 18(9), 533-548.
[http://dx.doi.org/10.1038/s41568-018-0038-z] [PMID: 30002479]
[58]
Chen, X.; Park, R.; Tohme, M.; Shahinian, A.H.; Bading, J.R.; Conti, P.S. MicroPET and autoradiographic imaging of breast cancer alpha v-integrin expression using 18F- and 64Cu-labeled RGD peptide. Bioconjug. Chem., 2004, 15(1), 41-49.
[http://dx.doi.org/10.1021/bc0300403] [PMID: 14733582]
[59]
Chen, X.; Liu, S.; Hou, Y.; Tohme, M.; Park, R.; Bading, J.R.; Conti, P.S. MicroPET imaging of breast cancer alphav-integrin expres-sion with 64Cu-labeled dimeric RGD peptides. Mol. Imaging Biol., 2004, 6(5), 350-359.
[http://dx.doi.org/10.1016/j.mibio.2004.06.004] [PMID: 15380745]
[60]
Mühlhausen, U.; Komljenovic, D.; Bretschi, M.; Leotta, K.; Eisenhut, M.; Semmler, W.; Bäuerle, T. A novel PET tracer for the imaging of αvβ3 and αvβ5 integrins in experimental breast cancer bone metastases. Contrast Media Mol. Imaging, 2011, 6(6), 413-420.
[http://dx.doi.org/10.1002/cmmi.435] [PMID: 22162137]
[61]
Liu, S.; Hsieh, W.Y.; Jiang, Y.; Kim, Y.S.; Sreerama, S.G.; Chen, X.; Jia, B.; Wang, F. Evaluation of a 99mTc-labeled cyclic RGD tetramer for noninvasive imaging integrin alpha(v)beta3-positive breast cancer. Bioconjug. Chem., 2007, 18(2), 438-446.
[http://dx.doi.org/10.1021/bc0603081] [PMID: 17341108]
[62]
Byzova, T.V.; Goldman, C.K.; Pampori, N.; Thomas, K.A.; Bett, A.; Shattil, S.J.; Plow, E.F. A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol. Cell, 2000, 6(4), 851-860.
[http://dx.doi.org/10.1016/S1097-2765(00)00083-6] [PMID: 11090623]
[63]
Rylova, S.N.; Barnucz, E.; Fani, M.; Braun, F.; Werner, M.; Lassmann, S.; Maecke, H.R.; Weber, W.A. Does imaging αvβ3 integrin expression with PET detect changes in angiogenesis during bevacizumab therapy? J. Nucl. Med., 2014, 55(11), 1878-1884.
[http://dx.doi.org/10.2967/jnumed.114.137570] [PMID: 25278514]
[64]
Kazmierczak, P.M.; Todica, A.; Gildehaus, F.J.; Hirner-Eppeneder, H.; Brendel, M.; Eschbach, R.S.; Hellmann, M.; Nikolaou, K.; Reiser, M.F.; Wester, H.J.; Kropf, S.; Rominger, A.; Cyran, C.C. 68Ga-TRAP-(RGD)3 hybrid imaging for the in vivo monitoring of αvß3-integrin expression as biomarker of anti-angiogenic therapy effects in experimental breast cancer. PLoS One, 2016, 11(12)e0168248
[http://dx.doi.org/10.1371/journal.pone.0168248] [PMID: 27992512]
[65]
Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer, 2009, 9(5), 361-371.
[http://dx.doi.org/10.1038/nrc2628] [PMID: 19343034]
[66]
Fu, H.; Wu, H.; Zhang, X.; Huang, J.; He, X.; Chen, L.; Guo, W.; Guo, X.; Hao, B.; Li, Y. Pre-clinical study of a TNFR1-targeted 18F probe for PET imaging of breast cancer. Amino Acids, 2018, 50(3-4), 409-419.
[http://dx.doi.org/10.1007/s00726-017-2526-y] [PMID: 29243062]
[67]
Pedrazzini, T.; Pralong, F.; Grouzmann, E. Neuropeptide Y: the universal soldier. Cell. Mol. Life Sci., 2003, 60(2), 350-377.
[http://dx.doi.org/10.1007/s000180300029] [PMID: 12678499]
[68]
Doods, H.; Gaida, W.; Wieland, H.A.; Dollinger, H.; Schnorrenberg, G.; Esser, F.; Engel, W.; Eberlein, W.; Rudolf, K. BIIE0246: a selective and high affinity neuropeptide Y Y2 receptor antagonist. Eur. J. Pharmacol., 1999, 384(2-3), R3-R5.
[http://dx.doi.org/10.1016/S0014-2999(99)00650-0] [PMID: 10611450]
[69]
Reubi, J.C.; Gugger, M.; Waser, B.; Schaer, J.C.Y. Y1-mediated effect of neuropeptide Y in cancer: breast carcinomas as targets. Cancer Res., 2001, 61(11), 4636-4641.
[PMID: 11389101]
[70]
Khan, I.U.; Zwanziger, D.; Böhme, I.; Javed, M.; Naseer, H.; Hyder, S.W.; Beck-Sickinger, A.G. Breast-cancer diagnosis by neuro-peptide Y analogues: from synthesis to clinical application. Angew. Chem. Int. Ed. Engl., 2010, 49(6), 1155-1158.
[http://dx.doi.org/10.1002/anie.200905008] [PMID: 20104470]
[71]
Yoshimura, T.; Oppenheim, J.J. Chemokine-like receptor 1 (CMKLR1) and chemokine (C-C motif) receptor-like 2 (CCRL2); two multifunctional receptors with unusual properties. Exp. Cell Res., 2011, 317(5), 674-684.
[http://dx.doi.org/10.1016/j.yexcr.2010.10.023] [PMID: 21056554]
[72]
Erdmann, S.; Niederstadt, L.; Koziolek, E.J.; Gómez, J.D.C.; Prasad, S.; Wagener, A.; von Hacht, J.L.; Reinicke, S.; Exner, S.; Bandholtz, S.; Beindorff, N.; Brenner, W.; Grötzinger, C. CMKLR1-targeting peptide tracers for PET/MR imaging of breast cancer. Theranostics, 2019, 9(22), 6719-6733.
[http://dx.doi.org/10.7150/thno.34857] [PMID: 31588246]
[73]
Kumar, J.D.; Kandola, S.; Tiszlavicz, L.; Reisz, Z.; Dockray, G.J.; Varro, A. The role of chemerin and ChemR23 in stimulating the invasion of squamous oesophageal cancer cells. Br. J. Cancer, 2016, 114(10), 1152-1159.
[http://dx.doi.org/10.1038/bjc.2016.93] [PMID: 27092781]
[74]
Zia, H.; Hida, T.; Jakowlew, S.; Birrer, M.; Gozes, Y.; Reubi, J.C.; Fridkin, M.; Gozes, I.; Moody, T.W. Breast cancer growth is inhib-ited by vasoactive intestinal peptide (VIP) hybrid, a synthetic VIP receptor antagonist. Cancer Res., 1996, 56(15), 3486-3489.
[PMID: 8758916]
[75]
Lister-James, J.; Moyer, B.R.; Dean, T. Loss of HER2 amplification following trastuzumab-based neoadjuvant systemic therapy and survival outcomes. Clin. Cancer Res., 1996, 15(23), 7381-7388.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1735] [PMID: 19920100]
[76]
Thakur, M.L.; Aruva, M.R.; Gariepy, J.; Acton, P.; Rattan, S.; Prasad, S.; Wickstrom, E.; Alavi, A. PET imaging of oncogene overex-pression using 64Cu-vasoactive intestinal peptide (VIP) analog: comparison with 99mTc-VIP analog. J. Nucl. Med., 2004, 45(8), 1381-1389.
[PMID: 15299065]
[77]
Ullrich, A.; Schlessinger, J. Signal transduction by receptors with tyrosine kinase activity. Cell, 1990, 61(2), 203-212.
[http://dx.doi.org/10.1016/0092-8674(90)90801-K] [PMID: 2158859]
[78]
Nunes, R.A.; Harris, L.N. The HER2 extracellular domain as a prognostic and predictive factor in breast cancer. Clin. Breast Cancer, 2002, 3(2), 125-135.
[http://dx.doi.org/10.3816/CBC.2002.n.017] [PMID: 12123536]
[79]
Kumar, S.R.; Gallazzi, F.A.; Ferdani, R.; Anderson, C.J.; Quinn, T.P.; Deutscher, S.L. In vitro and in vivo evaluation of 64Cu-radiolabeled KCCYSL peptides for targeting epidermal growth factor receptor-2 in breast carcinomas. Cancer Biother. Radiopharm., 2010, 25(6), 693-703.
[http://dx.doi.org/10.1089/cbr.2010.0820] [PMID: 21204764]
[80]
He, J.; Hu, Y.; Hu, M.; Li, B. Development of PD-1/PD-L1 Pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci. Rep., 2015, 5, 13110.
[http://dx.doi.org/10.1038/srep13110] [PMID: 26279307]
[81]
Chatterjee, S.; Lesniak, W.G.; Miller, M.S.; Lisok, A.; Sikorska, E.; Wharram, B.; Kumar, D.; Gabrielson, M.; Pomper, M.G.; Gabelli, S.B.; Nimmagadda, S. Rapid PD-L1 detection in tumors with PET using a highly specific peptide. Biochem. Biophys. Res. Commun., 2017, 483(1), 258-263.
[http://dx.doi.org/10.1016/j.bbrc.2016.12.156] [PMID: 28025143]
[82]
De Silva, R.A.; Kumar, D.; Lisok, A.; Chatterjee, S.; Wharram, B.; Venkateswara Rao, K.; Mease, R.; Dannals, R.F.; Pomper, M.G.; Nimmagadda, S. Peptide-based 68Ga-PET radiotracer for imaging PD-L1 expression in cancer. Mol. Pharm., 2018, 15(9), 3946-3952.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00399] [PMID: 30037229]
[83]
Bajc, M.; Ingvar, C.; Palmer, J. Dynamic indium-111-pentetreotide scintigraphy in breast cancer. J. Nucl. Med., 1996, 37(4), 622-626.
[PMID: 8691252]
[84]
Mezi, S.; Primi, F.; Orsi, E.; Capoccetti, F.; Scopinaro, F.; Schillaci, O. Somatostatin receptor scintigraphy in metastatic breast cancer patients. Oncol. Rep., 2005, 13(1), 31-35.
[http://dx.doi.org/10.3892/or.13.1.31] [PMID: 15583798]
[85]
Chiti, A.; Agresti, R.; Maffioli, L.S.; Tomasic, G.; Savelli, G.; Crippa, F.; Pilotti, S.; Greco, M.; Bombardieri, E. Breast cancer staging using technetium-99m sestamibi and indium-111 pentetreotide single-photon emission tomography. Eur. J. Nucl. Med., 1997, 24(2), 192-196.
[http://dx.doi.org/10.1007/BF02439552] [PMID: 9021117]
[86]
Van Den Bossche, B.; D’haeninck, E.; Bacher, K.; Thierens, H.; Van Belle, S.; Dierckx, R.A.; Van de Wiele, C. Biodistribution and dosimetry of 99mTc-depreotide (P829) in patients suffering from breast carcinoma. Cancer Biother. Radiopharm., 2004, 19(6), 776-783.
[http://dx.doi.org/10.1089/cbr.2004.19.776] [PMID: 15665627]
[87]
Montilla-Soler, J.L.; Bridwell, R.S. Tc-99m depreotide scintigraphy of breast carcinoma. Clin. Nucl. Med., 2002, 27(3), 202-204.
[http://dx.doi.org/10.1097/00003072-200203000-00011] [PMID: 11852309]
[88]
Van Den Bossche, B.; Van Belle, S.; De Winter, F.; Signore, A.; Van de Wiele, C. Early prediction of endocrine therapy effect in ad-vanced breast cancer patients using 99mTc-depreotide scintigraphy. J. Nucl. Med., 2006, 47(1), 6-13.
[PMID: 16391181]
[89]
Bach-Gansmo, T.; Danielsson, R.; Saracco, A.; Wilczek, B.; Bogsrud, T.V.; Fangberget, A.; Tangerud, A.; Tobin, D. Integrin receptor imaging of breast cancer: a proof-of-concept study to evaluate 99mTc-NC100692. J. Nucl. Med., 2006, 47(9), 1434-1439.
[PMID: 16954550]
[90]
Beer, A.J.; Haubner, R.; Wolf, I.; Goebel, M.; Luderschmidt, S.; Niemeyer, M.; Grosu, A.L.; Martinez, M.J.; Wester, H.J.; Weber, W.A.; Schwaiger, M. PET-based human dosimetry of 18F-galacto-RGD, a new radiotracer for imaging alpha v beta3 expression. J. Nucl. Med., 2006, 47(5), 763-769.
[PMID: 16644745]
[91]
Beer, A.J.; Niemeyer, M.; Carlsen, J.; Sarbia, M.; Nährig, J.; Watzlowik, P.; Wester, H.J.; Harbeck, N.; Schwaiger, M. Patterns of alphavbeta3 expression in primary and metastatic human breast cancer as shown by 18F-Galacto-RGD PET. J. Nucl. Med., 2008, 49(2), 255-259.
[http://dx.doi.org/10.2967/jnumed.107.045526] [PMID: 18199623]
[92]
Beer, A.J.; Haubner, R.; Sarbia, M.; Goebel, M.; Luderschmidt, S.; Grosu, A.L.; Schnell, O.; Niemeyer, M.; Kessler, H.; Wester, H.J.; Weber, W.A.; Schwaiger, M. Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin alphavbeta3 ex-pression in man. Clin. Cancer Res., 2006, 12(13), 3942-3949.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0266] [PMID: 16818691]
[93]
Ji, T.; Sun, Y.; Chen, B.; Ji, B.; Gao, S.; Ma, Q.; Cheng, G.; Zhang, H. The diagnostic role of 99mTc-dual receptor targeted probe and targeted peptide bombesin (RGD-BBN) SPET/CT in the detection of malignant and benign breast tumors and axillary lymph nodes compared to ultrasound. Hell. J. Nucl. Med., 2015, 18(2), 108-113.
[http://dx.doi.org/10.1967/s002449910204] [PMID: 26187209]
[94]
Ji, B.; Chen, B.; Wang, T.; Song, Y.; Chen, M.; Ji, T.; Wang, X.; Gao, S.; Ma, Q. 99mTc-3PRGD2 SPECT to monitor early response to neoadjuvant chemotherapy in stage II and III breast cancer. Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(9), 1362-1370.
[http://dx.doi.org/10.1007/s00259-015-3062-1] [PMID: 25947573]
[95]
Chen, G.; Ouyang, Z.; Wang, F.; Wu, H.; Jia, B.; Chordia, M.D. Evaluation of Tc-99m-3PRGD2 Integrin Receptor Imaging in the differential diagnosis of breast lesions and comparison with mammography. Cancer Invest., 2017, 35(2), 108-115.
[http://dx.doi.org/10.1080/07357907.2016.1270957] [PMID: 28135863]
[96]
Ortiz-Arzate, Z.; Santos-Cuevas, C.L.; Ocampo-García, B.E.; Ferro-Flores, G.; García-Becerra, R.; Estrada, G.; Gómez-Argumosa, E.; Izquierdo-Sánchez, V. Kit preparation and biokinetics in women of 99mTc-EDDA/HYNIC-E-[c(RGDfK)]2 for breast cancer imaging. Nucl. Med. Commun., 2014, 35(4), 423-432.
[http://dx.doi.org/10.1097/MNM.0000000000000065] [PMID: 24335877]
[97]
Kenny, L.M.; Coombes, R.C.; Oulie, I.; Contractor, K.B.; Miller, M.; Spinks, T.J.; McParland, B.; Cohen, P.S.; Hui, A.M.; Palmieri, C.; Osman, S.; Glaser, M.; Turton, D.; Al-Nahhas, A.; Aboagye, E.O. Phase I trial of the positron-emitting Arg-Gly-Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. J. Nucl. Med., 2008, 49(6), 879-886.
[http://dx.doi.org/10.2967/jnumed.107.049452] [PMID: 18483090]
[98]
Mittra, E.S.; Goris, M.L.; Iagaru, A.H.; Kardan, A.; Burton, L.; Berganos, R.; Chang, E.; Liu, S.; Shen, B.; Chin, F.T.; Chen, X.; Gambhir, S.S. Pilot pharmacokinetic and dosimetric studies of 18F-FPPRGD2: a PET radiopharmaceutical agent for imaging αvβ3 integrin levels. Radiology, 2011, 260(1), 182-191.
[http://dx.doi.org/10.1148/radiol.11101139] [PMID: 21502381]
[99]
Iagaru, A.; Mosci, C.; Shen, B.; Chin, F.T.; Mittra, E.; Telli, M.L.; Gambhir, S.S. 18F-FPPRGD2 PET/CT: pilot phase evaluation of breast cancer patients. Radiology, 2014, 273(2), 549-559.
[http://dx.doi.org/10.1148/radiol.14140028] [PMID: 25033190]
[100]
Hausner, S.H.; Bold, R.J.; Cheuy, L.Y.; Chew, H.K.; Daly, M.E.; Davis, R.A.; Foster, C.C.; Kim, E.J.; Sutcliffe, J.L. Preclinical de-velopment and first-in-human imaging of the integrin αvβ6 with [18F] αvβ6-binding peptide in metastatic carcinoma. Clin. Cancer Res., 2019, 25(4), 1206-1215.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2665] [PMID: 30401687]
[101]
Wu, J.; Wang, S.; Zhang, X.; Teng, Z.; Wang, J.; Yung, B.C.; Niu, G.; Zhu, H.; Lu, G.; Chen, X. 18F-Alfatide II PET/CT for identifi-cation of breast cancer: a preliminary clinical study. J. Nucl. Med., 2018, 59(12), 1809-1816.
[http://dx.doi.org/10.2967/jnumed.118.208637] [PMID: 29700127]
[102]
Yoon, H.J.; Kang, K.W.; Chun, I.K.; Cho, N.; Im, S.A.; Jeong, S.; Lee, S.; Jung, K.C.; Lee, Y.S.; Jeong, J.M.; Lee, D.S.; Chung, J.K.; Moon, W.K. Correlation of breast cancer subtypes, based on estrogen receptor, progesterone receptor, and HER2, with functional im-aging parameters from 68Ga-RGD PET/CT and 18F-FDG PET/CT. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41(8), 1534-1543.
[http://dx.doi.org/10.1007/s00259-014-2744-4] [PMID: 24652232]
[103]
Kim, Y.I.; Yoon, H.J.; Paeng, J.C.; Cheon, G.J.; Lee, D.S.; Chung, J.K.; Kim, E.E.; Moon, W.K.; Kang, K.W. Prognostic Value of 68Ga-NOTA-RGD PET/CT for predicting disease-free survival for patients with breast cancer undergoing neoadjuvant chemotherapy and surgery: a comparison study with dynamic contrast enhanced MRI. Clin. Nucl. Med., 2016, 41(8), 614-620.
[http://dx.doi.org/10.1097/RLU.0000000000001274] [PMID: 27276207]
[104]
Chakraborty, S.; Chakravarty, R.; Vatsa, R.; Bhusari, P.; Sarma, H.D.; Shukla, J.; Mittal, B.R.; Dash, A. Toward realization of ‘mix-and-use’ approach in 68Ga radiopharmacy: preparation, evaluation and preliminary clinical utilization of 68Ga-labeled NODAGA-coupled RGD peptide derivative. Nucl. Med. Biol., 2016, 43(1), 116-123.
[http://dx.doi.org/10.1016/j.nucmedbio.2015.09.010] [PMID: 26527030]
[105]
Shariati, F.; Aryana, K.; Fattahi, A.; Forghani, M.N.; Azarian, A.; Zakavi, S.R.; Sadeghi, R.; Ayati, N.; Sadri, K. Diagnostic value of 99mTc-bombesin scintigraphy for differentiation of malignant from benign breast lesions. Nucl. Med. Commun., 2014, 35(6), 620-625.
[http://dx.doi.org/10.1097/MNM.0000000000000112] [PMID: 24686248]
[106]
Maina, T.; Bergsma, H.; Kulkarni, H.R.; Mueller, D.; Charalambidis, D.; Krenning, E.P.; Nock, B.A.; de Jong, M.; Baum, R.P. Pre-clinical and first clinical experience with the gastrin-releasing peptide receptor-antagonist [68Ga]SB3 and PET/CT. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(5), 964-973.
[http://dx.doi.org/10.1007/s00259-015-3232-1] [PMID: 26631238]
[107]
Stoykow, C.; Erbes, T.; Maecke, H.R.; Bulla, S.; Bartholomä, M.; Mayer, S.; Drendel, V.; Bronsert, P.; Werner, M.; Gitsch, G.; Weber, W.A.; Stickeler, E.; Meyer, P.T. gastrin-releasing peptide receptor imaging in breast cancer using the receptor antagonist (68)Ga-RM2 and PET. Theranostics, 2016, 6(10), 1641-1650.
[http://dx.doi.org/10.7150/thno.14958] [PMID: 27446498]
[108]
Zang, J.; Mao, F.; Wang, H.; Zhang, J.; Liu, Q.; Peng, L.; Li, F.; Lang, L.; Chen, X.; Zhu, Z. 68Ga-NOTA-RM26 PET/CT in the eval-uation of breast cancer: a pilot prospective study. Clin. Nucl. Med., 2018, 43(9), 663-669.
[http://dx.doi.org/10.1097/RLU.0000000000002209] [PMID: 30036253]
[109]
Chen, Q.; Ma, Q.; Chen, M.; Chen, B.; Wen, Q.; Jia, B.; Wang, F.; Sun, B.; Gao, S. An exploratory study on 99mTc-RGD-BBN peptide scintimammography in the assessment of breast malignant lesions compared to 99mTc-3P4-RGD2. PLoS One, 2015, 10(4)e0123401
[http://dx.doi.org/10.1371/journal.pone.0123401] [PMID: 25849333]
[110]
Ji, T.; Gao, S.; Liu, Z.; Xing, H.; Zhao, G.; Ma, Q. 99mTc-Glu-c(RGDyK)-bombesin SPECT can reduce unnecessary biopsy of masses that are BI-RADS category 4 on ultrasonography. J. Nucl. Med., 2016, 57(8), 1196-1200.
[http://dx.doi.org/10.2967/jnumed.115.168773] [PMID: 27013698]
[111]
Zhang, J.; Mao, F.; Niu, G.; Peng, L.; Lang, L.; Li, F.; Ying, H.; Wu, H.; Pan, B.; Zhu, Z.; Chen, X. 68Ga-BBN-RGD PET/CT for GRPR and integrin αvβ3 imaging in patients with breast cancer. Theranostics, 2018, 8(4), 1121-1130.
[http://dx.doi.org/10.7150/thno.22601] [PMID: 29464003]
[112]
Persson, M.; Skovgaard, D.; Brandt-Larsen, M.; Christensen, C.; Madsen, J.; Nielsen, C.H.; Thurison, T.; Klausen, T.L.; Holm, S.; Loft, A.; Berthelsen, A.K.; Ploug, M.; Pappot, H.; Brasso, K.; Kroman, N.; Højgaard, L.; Kjaer, A. First-in-human uPAR PET. Imaging of cancer aggressiveness. Theranostics, 2015, 5(12), 1303-1316.
[http://dx.doi.org/10.7150/thno.12956] [PMID: 26516369]
[113]
Skovgaard, D.; Persson, M.; Brandt-Larsen, M.; Christensen, C.; Madsen, J.; Klausen, T.L.; Holm, S.; Andersen, F.L.; Loft, A.; Berthelsen, A.K.; Pappot, H.; Brasso, K.; Kroman, N.; Højgaard, L.; Kjaer, A. Safety, dosimetry, and tumor detection ability of 68Ga-NOTA-AE105: first-in-human study of a novel radioligand for uPAR PET imaging. J. Nucl. Med., 2017, 58(3), 379-386.
[http://dx.doi.org/10.2967/jnumed.116.178970] [PMID: 27609788]
[114]
Vag, T.; Gerngross, C.; Herhaus, P.; Eiber, M.; Philipp-Abbrederis, K.; Graner, F.P.; Ettl, J.; Keller, U.; Wester, H.J.; Schwaiger, M. First experience with chemokine receptor CXCR4-targeted pet imaging of patients with solid cancers. J. Nucl. Med., 2016, 57(5), 741-746.
[http://dx.doi.org/10.2967/jnumed.115.161034 ] [PMID: 26769866]
[115]
Sathekge, M.; Lengana, T.; Modiselle, M.; Vorster, M.; Zeevaart, J.; Maes, A.; Ebenhan, T.; Van de Wiele, C. 68Ga-PSMA-HBED-CC PET imaging in breast carcinoma patients. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(4), 689-694.
[http://dx.doi.org/10.1007/s00259-016-3563-6] [PMID: 27822700]
[116]
Kumar, R.; Mittal, B.R.; Bhattacharya, A.; Singh, H.; Singh, S.K. Synchronous detection of male breast cancer and prostatic cancer in a patient with suspected prostatic carcinoma on 68ga-psma PET/CT imaging. Clin. Nucl. Med., 2018, 43(6), 431-432.
[http://dx.doi.org/10.1097/RLU.0000000000002063] [PMID: 29538032]
[117]
Parihar, A.S.; Mittal, B.R.; Sood, A.; Basher, R.K.; Singh, G. 68Ga-prostate-specific membrane antigen PET/CT and 18F-FDG PET/CT of primary signet ring cell breast adenocarcinoma. Clin. Nucl. Med., 2018, 43(11), e414-e416.
[http://dx.doi.org/10.1097/RLU.0000000000002265] [PMID: 30247208]
[118]
Passah, A.; Arora, S.; Damle, N.A.; Tripathi, M.; Bal, C.; Subudhi, T.K.; Arora, G. 68Ga-prostate-specific membrane antigen PET/CT in triple-negative breast cancer. Clin. Nucl. Med., 2018, 43(6), 460-461.
[http://dx.doi.org/10.1097/RLU.0000000000002071] [PMID: 29578872]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy