Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

Targeting Glycosylation Aberrations to Improve the Efficiency of Cancer Phototherapy

Author(s): Guillaume Poiroux, Annick Barre, Pierre Rougé and Hervé Benoist*

Volume 19, Issue 5, 2019

Page: [349 - 359] Pages: 11

DOI: 10.2174/1568009618666180628101059

Price: $65

Abstract

The use of photodynamic therapy in cancer still remains limited, partly because of the lack of photosensitizer (PS) specificity for the cancerous tissues. Various molecular tools are available to increase PS efficiency by targeting the cancer cell molecular alterations. Most strategies use the protein-protein interactions, e.g. monoclonal antibodies directed toward tumor antigens, such as HER2 or EGFR. An alternative could be the targeting of the tumor glycosylation aberrations, e.g. T/Tn antigens that are truncated O-glycans over-expressed in numerous tumors. Thus, to achieve an effective targeting, PS can be conjugated to molecules that specifically recognize the Oglycosylation aberrations at the cancer cell surface.

Keywords: PhotoSensitizer (PS), PhotoDynamic Therapy (PDT), lectins, monoclonal Antibodies (moAbs), aptamers, O-glycosylation, T/Tn antigens, cancer cells, metastasis.

Next »
Graphical Abstract

[1]
Raab, O. On the effect of fluorescent substances on infusoria. Z. Biol., 1900, 39, 524-526.
[2]
Ackroyd, R.; Kelty, C.; Brown, N.; Reed, M. The history of photodetection and photodynamic therapy. Photochem. Photobiol., 2001, 74(5), 656-669.
[3]
Lipson, R.L.; Baldes, E.J.; Olsen, A.M. Hematoporphyrin derivative: A new aid for endoscopic detection of malignant disease. J. Thorac. Cardiovasc. Surg., 1961, 42, 623-629.
[4]
Dougherty, T.J. Photodynamic therapy (PDT) of malignant tumors. Crit. Rev. Oncol. Hematol., 1984, 2(2), 83-116.
[5]
Ormond, A.B.; Freeman, H.S. Dye sensitizers for photodynamic therapy. Materials, 2013, 6, 817-840.
[6]
Moghissi, K.; Dixon, K.; Stringer, M.; Thorpe, J.A. Photofrin PDT for early stage oesophageal cancer: Long term results in 40 patients and literature review. Photodiagn. Photodyn. Ther., 2009, 6(3-4), 159-166.
[7]
Corti, L.; Toniolo, L.; Boso, C.; Colaut, F.; Fiore, D.; Muzzio, P.C.; Koukourakis, M.I.; Mazzarotto, R.; Pignataro, M.; Loreggian, L.; Sotti, G. Long-term survival of patients treated with photodynamic therapy for carcinoma in situ and early non-small-cell lung carcinoma. Lasers Surg. Med., 2007, 39(5), 394-402.
[8]
Park, Y.K.; Park, C.H. Clinical efficacy of photodynamic therapy. Obstet. Gynecol. Sci., 2016, 59(6), 479-488.
[9]
Tan, I.B.; Dolivet, G.; Ceruse, P.; Vander Poorten, V.; Roest, G.; Rauschning, W. Temoporfin-mediated photodynamic therapy in patients with advanced, incurable head and neck cancer: A multicenter study. Head Neck, 2010, 32(12), 1597-1604.
[10]
Tarstedt, M.; Gillstedt, M.; Wennberg Larkö, A.M.; Paoli, J. Aminolevulinic acid and methyl aminolevulinate equally effective in topical photodynamic therapy for non-melanoma skin cancers. J. Eur. Acad. Dermatol. Venereol., 2016, 30(3), 420-423.
[11]
Azzouzi, A.R.; Barret, E.; Bennet, J.; Moore, C.; Taneja, S.; Muir, G.; Villers, A.; Coleman, J.; Allen, C.; Scherz, A.; Emberton, M. TOOKAD® Soluble focal therapy: Pooled analysis of three phase II studies assessing the minimally invasive ablation of localized prostate cancer. World J. Urol., 2015, 33(7), 945-953.
[12]
Baron, E.D.; Malbasa, C.L.; Santo-Domingo, D.; Fu, P.; Miller, J.D.; Hanneman, K.K.; Hsia, A.H.; Oleinick, N.L.; Colussi, V.C.; Cooper, K.D. Silicon phthalocyanine (Pc 4) photodynamic therapy is a safe modality for cutaneous neoplasms: results of a phase 1 clinical trial. Lasers Surg. Med., 2010, 42(10), 728-735.
[13]
Kato, H.; Furukawa, K.; Sato, M.; Okunaka, T.; Kusunoki, Y.; Kawahara, M.; Fukuoka, M.; Miyazawa, T.; Yana, T.; Matsui, K.; Shiraishi, T.; Horinouchi, H. Phase II clinical study of photodynamic therapy using mono-L-aspartyl chlorin e6 and diode laser for early superficial squamous cell carcinoma of the lung. Lung Cancer, 2003, 42(1), 103-111.
[14]
Lee, L.S.; Thong, P.S.; Olivo, M.; Chin, W.W.; Ramaswamy, B.; Kho, K.W.; Lim, P.L.; Lau, W.K. Chlorin e6-polyvinylpyrrolidone mediated photodynamic therapy-A potential bladder sparing option for high risk non-muscle invasive bladder cancer. Photodiagn. Photodyn. Ther., 2010, 7(4), 213-220.
[15]
Sheleg, S.V.; Zhavrid, E.A.; Khodina, T.V.; Kochubeev, G.A.; Istomin, Y.P.; Chalov, V.N.; Zhuravkin, I.N. Photodynamic therapy with chlorin e(6) for skin metastases of melanoma. Photodermatol. Photoimmunol. Photomed., 2004, 20(1), 21-26.
[16]
Busch, T.; Cengel, K.A.; Finlay, J. Pheophorbide A as a photosensitizer in photodynamic therapy: In vivo considerations. Cancer Biol. Ther., 2009, 8(6), 540-542.
[17]
Saw, C.L.; Heng, P.W.; Olivo, M. Potentiation of the photodynamic action of hypericin. J. Environ. Pathol. Toxicol. Oncol., 2008, 27(1), 23-33.
[18]
Mroz, P.; Szokalska, A.; Wu, M.X.; Hamblin, M.R. Photodynamic therapy of tumors can lead to development of systemic antigen-specific immune response. PLoS One, 2010, 5(12), e15194.
[19]
Stamati, I.; Kuimova, M.K.; Lion, M.; Yahioglu, G.; Phillips, D.; Deonarain, M.P. Novel photosensitisers derived from pyropheophorbide-a: Uptake by cells and photodynamic efficiency in vitro. Photochem. Photobiol. Sci., 2010, 9(7), 1033-1041.
[20]
Evangelio, E.; Poiroux, G.; Culerrier, R.; Pratviel, G.; Van Damme, E.J.; Peumans, W.J.; Barre, A.; Rougé, P.; Benoist, H.; Pitié, M. Comparative study of the phototoxicity of long-wavelength photosensitizers targeted by the MornigaG lectin. Bioconjug. Chem., 2011, 22(7), 1337-1344.
[21]
Kessel, D.; Reiners, J.J., Jr Apoptosis and autophagy after mitochondrial or endoplasmic reticulum photodamage. Photochem. Photobiol., 2007, 83(5), 1024-1028.
[22]
Huang, Q.; Ou, Y.S.; Tao, Y.; Yin, H.; Tu, P.H. Apoptosis and autophagy induced by pyropheophorbide-α methyl ester-mediated photodynamic therapy in human osteosarcoma MG-63 cells. Apoptosis, 2016, 21(6), 749-760.
[23]
Kim, J.; Santos, O.A.; Park, J.H. Selective photosensitizer delivery into plasma membrane for effective photodynamic therapy. J. Control. Release, 2014, 191, 98-104.
[24]
Buytaert, E.; Dewaele, M.; Agostinis, P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim. Biophys. Acta, 2007, 1776(1), 86-107.
[25]
Cunderlíková, B.; Vasovič, V.; Randeberg, L.L.; Christensen, E.; Warloe, T.; Nesland, J.M.; Peng, Q. Modification of extracorporeal photopheresis technology with porphyrin precursors. Comparison between 8-methoxypsoralen and hexaminolevulinate in killing human T-cell lymphoma cell lines in vitro. Biochim. Biophys. Acta, 2014, 1840(9), 2702-2708.
[26]
Garg, A.D.; Maes, H.; Romano, E.; Agostinis, P. Autophagy, a major adaptation pathway shaping cancer cell death and anticancer immunity responses following photodynamic therapy. Photochem. Photobiol. Sci., 2015, 14(8), 1410-1424.
[27]
Dolmans, D.E.; Kadambi, A.; Hill, J.S.; Waters, C.A.; Robinson, B.C.; Walker, J.P.; Fukumura, D.; Jain, R.K. Vascular accumulation of a novel photosensitizer, MV6401, causes selective thrombosis in tumor vessels after photodynamic therapy. Cancer Res., 2002, 62(7), 2151-2156.
[28]
Castano, A.P.; Mroz, P.; Hamblin, M.R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer, 2006, 6(7), 535-545.
[29]
Galluzzi, L.; Kepp, O.; Kroemer, G. Enlightening the impact of immunogenic cell death in photodynamic cancer therapy. Embo J., 2012, 31(5), 1055-1057.
[30]
Thong, P.S.; Ong, K.W.; Goh, N.S.; Kho, K.W.; Manivasager, V.; Bhuvaneswari, R.; Olivo, M.; Soo, K.C. Photodynamic-therapy-activated immune response against distant untreated tumours in recurrent angiosarcoma. Lancet Oncol., 2007, 8(10), 950-952.
[31]
Kabingu, E.; Oseroff, A.R.; Wilding, G.E.; Gollnick, S.O. Enhanced systemic immune reactivity to a Basal cell carcinoma associated antigen following photodynamic therapy. Clin. Cancer Res., 2009, 15(13), 4460-4466.
[32]
Taniguchi, N.; Kizuka, Y. Glycans and cancer: Role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics. Adv. Cancer Res., 2015, 126, 11-51.
[33]
Glavey, S.V.; Huynh, D.; Reagan, M.R.; Manier, S.; Moschetta, M.; Kawano, Y.; Roccaro, A.M.; Ghobrial, I.M.; Joshi, L.; O’Dwyer, M.E. The cancer glycome: Carbohydrates as mediators of metastasis. Blood Rev., 2015, 29(4), 269-279.
[34]
Tan, Z.; Lu, W.; Li, X.; Yang, G.; Guo, J.; Yu, H.; Li, Z.; Guan, F. Altered N-Glycan expression profile in epithelial-to-mesenchymal transition of NMuMG cells revealed by an integrated strategy using mass spectrometry and glycogene and lectin microarray analysis. J. Proteome Res., 2014, 13(6), 2783-2795.
[35]
Bubka, M.; Link-Lenczowski, P.; Janik, M.; Pochec, E.; Litynska, A. Overexpression of N-acetylglucosaminyltransferases III and V in human melanoma cells. Implications for MCAM N-glycosylation. Biochimie, 2014, 103, 37-49.
[36]
Matsumoto, Y.; Zhang, Q.; Akita, K.; Nakada, H.; Hamamura, K.; Tsuchida, A.; Okajima, T.; Furukawa, K.; Urano, T. Trimeric Tn antigen on syndecan 1 produced by ppGalNAc-T13 enhances cancer metastasis via a complex formation with integrin alpha5beta1 and matrix metalloproteinase 9. J. Biol. Chem., 2013, 288(33), 24264-24276.
[37]
Bull, C.; Stoel, M.A.; den Brok, M.H.; Adema, G.J. Sialic acids sweeten a tumor’s life. Cancer Res., 2014, 74(12), 3199-3204.
[38]
Bull, C.; Boltje, T.J.; Wassink, M.; de Graaf, A.M.; van Delft, F.L.; den Brok, M.H.; Adema, G.J. Targeting aberrant sialylation in cancer cells using a fluorinated sialic acid analog impairs adhesion, migration, and in vivo tumor growth. Mol. Cancer Ther., 2013, 12(10), 1935-1946.
[39]
Ren, D.; Jia, L.; Li, Y.; Gong, Y.; Liu, C.; Zhang, X.; Wang, N.; Zhao, Y. ST6GalNAcII mediates the invasive properties of breast carcinoma through PI3K/Akt/NF-kappaB signaling pathway. IUBMB Life, 2014, 66(4), 300-308.
[40]
Hamilton, W.B.; Helling, F.; Lloyd, K.O.; Livingston, P.O. Ganglioside expression on human malignant melanoma assessed by quantitative immune thin-layer chromatography. Int. J. Cancer, 1993, 53(4), 566-573.
[41]
Madsen, C.B.; Petersen, C.; Lavrsen, K.; Harndahl, M.; Buus, S.; Clausen, H.; Pedersen, A.E.; Wandall, H.H. Cancer associated aberrant protein O-glycosylation can modify antigen processing and immune response. PLoS One, 2012, 7(11), e50139.
[42]
Wandall, H.H.; Blixt, O.; Tarp, M.A.; Pedersen, J.W.; Bennett, E.P.; Mandel, U.; Ragupathi, G.; Livingston, P.O.; Hollingsworth, M.A.; Taylor-Papadimitriou, J.; Burchell, J.; Clausen, H. Cancer biomarkers defined by autoantibody signatures to aberrant O-glycopeptide epitopes. Cancer Res., 2010, 70(4), 1306-1313.
[43]
Itzkowitz, S.H.; Yuan, M.; Montgomery, C.K.; Kjeldsen, T.; Takahashi, H.K.; Bigbee, W.L.; Kim, Y.S. Expression of Tn, sialosyl-Tn, and T antigens in human colon cancer. Cancer Res., 1989, 49(1), 197-204.
[44]
Huang, M.C.; Chen, H.Y.; Huang, H.C.; Huang, J.; Liang, J.T.; Shen, T.L.; Lin, N.Y.; Ho, C.C.; Cho, I.M.; Hsu, S.M. C2GnT-M is downregulated in colorectal cancer and its re-expression causes growth inhibition of colon cancer cells. Oncogene, 2006, 25(23), 3267-3276.
[45]
Sutoh Yoneyama, M.; Tobisawa, Y.; Hatakeyama, S.; Sato, M.; Tone, K.; Tatara, Y.; Kakizaki, I.; Funyu, T.; Fukuda, M.; Hoshi, S.; Ohyama, C.; Tsuboi, S. A mechanism for evasion of CTL immunity by altered O-glycosylation of HLA class I. J. Biochem., 2017, 161(6), 479-492.
[46]
Gao, N.; Bergstrom, K.; Fu, J.; Xie, B.; Chen, W.; Xia, L. Loss of intestinal O-glycans promotes spontaneous duodenal tumors. Am. J. Physiol. Gastrointest. Liver Physiol., 2016, 311(1), G74-G83.
[47]
An, G.; Wei, B.; Xia, B.; McDaniel, J.M.; Ju, T.; Cummings, R.D.; Braun, J.; Xia, L. Increased susceptibility to colitis and colorectal tumors in mice lacking core 3-derived O-glycans. J. Exp. Med., 2007, 204(6), 1417-1429.
[48]
Gill, D.J.; Tham, K.M.; Chia, J.; Wang, S.C.; Steentoft, C.; Clausen, H.; Bard-Chapeau, E.A.; Bard, F.A. Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness. Proc. Natl. Acad. Sci. USA, 2013, 110(34), E3152-E3161.
[49]
Ju, T.; Lanneau, G.S.; Gautam, T.; Wang, Y.; Xia, B.; Stowell, S.R.; Willard, M.T.; Wang, W.; Xia, J.Y.; Zuna, R.E.; Laszik, Z.; Benbrook, D.M.; Hanigan, M.H.; Cummings, R.D. Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res., 2008, 68(6), 1636-1646.
[50]
Silva, Z.S.; Bussadori, S.K.; Fernandes, K.P.; Huang, Y.Y.; Hamblin, M.R. Animal models for photodynamic therapy (PDT). Biosci. Rep., 2015, 35(6), e00265.
[51]
Narsireddy, A.; Vijayashree, K.; Adimoolam, M.G.; Manorama, S.V.; Rao, N.M. Photosensitizer and peptide-conjugated PAMAM dendrimer for targeted in vivo photodynamic therapy. Int. J. Nanomedicine, 2015, 10, 6865-6878.
[52]
Yuan, A.; Yang, B.; Wu, J.; Hu, Y.; Ming, X. Dendritic nanoconjugates of photosensitizer for targeted photodynamic therapy. Acta Biomater., 2015, 21, 63-73.
[53]
Kamarulzaman, E.E.; Gazzali, A.M.; Acherar, S.; Frochot, C.; Barberi-Heyob, M.; Boura, C.; Chaimbault, P.; Sibille, E.; Wahab, H.A.; Vanderesse, R. New peptide-conjugated chlorin-type photosensitizer targeting neuropilin-1 for anti-vascular targeted photodynamic therapy. Int. J. Mol. Sci., 2015, 16(10), 24059-24080.
[54]
Zhang, H.; Hou, L.; Jiao, X.; Ji, Y.; Zhu, X.; Zhang, Z. Transferrin-mediated fullerenes nanoparticles as Fe2+-dependent drug vehicles for synergistic anti-tumor efficacy. Biomaterials, 2015, 37, 353-366.
[55]
Chen, Z.; Xu, P.; Chen, J.; Chen, H.; Hu, P.; Chen, X.; Lin, L.; Huang, Y.; Zheng, K.; Zhou, S.; Li, R.; Chen, S.; Liu, J.; Xue, J.; Huang, M. Zinc phthalocyanine conjugated with the amino-terminal fragment of urokinase for tumor-targeting photodynamic therapy. Acta Biomater., 2014, 10(10), 4257-4268.
[56]
Tanaka, M.; Kataoka, H.; Yano, S.; Ohi, H.; Moriwaki, K.; Akashi, H.; Taguchi, T.; Hayashi, N.; Hamano, S.; Mori, Y.; Kubota, E.; Tanida, S.; Joh, T. Antitumor effects in gastrointestinal stromal tumors using photodynamic therapy with a novel glucose-conjugated chlorin. Mol. Cancer Ther., 2014, 13(4), 767-775.
[57]
Tanaka, M.; Kataoka, H.; Mabuchi, M.; Sakuma, S.; Takahashi, S.; Tujii, R.; Akashi, H.; Ohi, H.; Yano, S.; Morita, A.; Joh, T. Anticancer effects of novel photodynamic therapy with glycoconjugated chlorin for gastric and colon cancer. Anticancer Res., 2011, 31(3), 763-769.
[58]
Vaillant, O.; El Cheikh, K.; Warther, D.; Brevet, D.; Maynadier, M.; Bouffard, E.; Salgues, F.; Jeanjean, A.; Puche, P.; Mazerolles, C.; Maillard, P.; Mongin, O.; Blanchard-Desce, M.; Raehm, L.; Rébillard, X.; Durand, J.O.; Gary-Bobo, M.; Morère, A.; Garcia, M. Mannose-6-phosphate receptor: A target for theranostics of prostate cancer. Angew. Chem. Int. Ed. Engl., 2015, 54(20), 5952-5956.
[59]
Hayashi, N.; Kataoka, H.; Yano, S.; Tanaka, M.; Moriwaki, K.; Akashi, H.; Suzuki, S.; Mori, Y.; Kubota, E.; Tanida, S.; Takahashi, S.; Joh, T. A novel photodynamic therapy targeting cancer cells and tumor-associated macrophages. Mol. Cancer Ther., 2015, 14(2), 452-460.
[60]
Zheng, X.; Morgan, J.; Pandey, S.K.; Chen, Y.; Tracy, E.; Baumann, H.; Missert, J.R.; Batt, C.; Jackson, J.; Bellnier, D.A.; Henderson, B.W.; Pandey, R.K. Conjugation of 2-(1′-hexyloxyethyl)-2-devinylpyropheophorbide-a (HPPH) to carbohydrates changes its subcellular distribution and enhances photodynamic activity in vivo. J. Med. Chem., 2009, 52(14), 4306-4318.
[61]
Rhee, J.K.; Baksh, M.; Nycholat, C.; Paulson, J.C.; Kitagishi, H.; Finn, M.G. Glycan-targeted virus-like nanoparticles for photodynamic therapy. Biomacromolecules, 2012, 13(8), 2333-2338.
[62]
Nagaya, T.; Sato, K.; Harada, T.; Nakamura, Y.; Choyke, P.L.; Kobayashi, H. Near infrared photoimmunotherapy targeting EGFR positive triple negative breast cancer: Optimizing the conjugate-light regimen. PLoS One, 2015, 10(8), e0136829.
[63]
Sato, K.; Nagaya, T.; Mitsunaga, M.; Choyke, P.L.; Kobayashi, H. Near infrared photoimmunotherapy for lung metastases. Cancer Lett., 2015, 365(1), 112-121.
[64]
Spring, B.Q.; Abu-Yousif, A.O.; Palanisami, A.; Rizvi, I.; Zheng, X.; Mai, Z.; Anbil, S.; Sears, R.B.; Mensah, L.B.; Goldschmidt, R.; Erdem, S.S.; Oliva, E.; Hasan, T. Selective treatment and monitoring of disseminated cancer micrometastases in vivo using dual-function, activatable immunoconjugates. Proc. Natl. Acad. Sci. USA, 2014, 111(10), E933-E942.
[65]
Mitsunaga, M.; Ogawa, M.; Kosaka, N.; Rosenblum, L.T.; Choyke, P.L.; Kobayashi, H. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med., 2011, 17(12), 1685-1691.
[66]
Bhatti, M.; Yahioglu, G.; Milgrom, L.R.; Garcia-Maya, M.; Chester, K.A.; Deonarain, M.P. Targeted photodynamic therapy with multiply-loaded recombinant antibody fragments. Int. J. Cancer, 2008, 122(5), 1155-1163.
[67]
Maawy, A.A.; Hiroshima, Y.; Zhang, Y.; Heim, R.; Makings, L.; Garcia-Guzman, M.; Luiken, G.A.; Kobayashi, H.; Hoffman, R.M.; Bouvet, M. Near infra-red photoimmunotherapy with anti-CEA-IR700 results in extensive tumor lysis and a significant decrease in tumor burden in orthotopic mouse models of pancreatic cancer. PLoS One, 2015, 10(3), e0121989.
[68]
Shirasu, N.; Yamada, H.; Shibaguchi, H.; Kuroki, M. Potent and specific antitumor effect of CEA-targeted photoimmunotherapy. Int. J. Cancer, 2014, 135(11), 2697-2710.
[69]
Abdelghany, S.M.; Schmid, D.; Deacon, J.; Jaworski, J.; Fay, F.; McLaughlin, K.M.; Gormley, J.A.; Burrows, J.F.; Longley, D.B.; Donnelly, R.F.; Scott, C.J. Enhanced antitumor activity of the photosensitizer meso-Tetra(N-methyl-4-pyridyl) porphine tetra tosylate through encapsulation in antibody-targeted chitosan/alginate nanoparticles. Biomacromolecules, 2013, 14(2), 302-310.
[70]
Ferreira, C.S.; Cheung, M.C.; Missailidis, S.; Bisland, S.; Gariepy, J. Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic Acids Res., 2009, 37(3), 866-876.
[71]
Ding, T.S.; Huang, X.C.; Luo, Y.L.; Hsu, H.Y. In vitro investigation of methylene blue-bearing, electrostatically assembled aptamer-silica nanocomposites as potential photodynamic therapeutics. Colloids Surf. B Biointerfaces, 2015, 135, 217-224.
[72]
Kruspe, S.; Meyer, C.; Hahn, U. Chlorin e6 conjugated interleukin-6 Receptor aptamers selectively kill target cells upon irradiation. Mol. Ther. Nucleic Acids, 2014, 3, e143.
[73]
Obaid, G.; Chambrier, I.; Cook, M.J.; Russell, D.A. Cancer targeting with biomolecules: a comparative study of photodynamic therapy efficacy using antibody or lectin conjugated phthalocyanine-PEG gold nanoparticles. Photochem. Photobiol. Sci., 2015, 14(4), 737-747.
[74]
Poiroux, G.; Pitie, M.; Culerrier, R.; Segui, B.; Van Damme, E.J.M.; Peumans, W.J.; Bernadou, J.; Levade, T.; Rouge, P.; Barre, A.; Benoist, H.; Morniga, G. A plant lectin as an endocytic ligand for photosensitizer molecule targeting toward tumor-associated T/Tn antigens. Photochem. Photobiol., 2011, 87(2), 370-377.
[75]
Poiroux, G.; Pitie, M.; Culerrier, R.; Lafont, E.; Segui, B.; Van Damme, E.J.M.; Peumans, W.J.; Bernadou, J.; Levade, T.; Rouge, P.; Barre, A.; Benoist, H. Targeting of T/Tn antigens with a plant lectin to kill human leukemia cells by photochemotherapy. PLoS One, 2011, 6(8), e23315.
[76]
Giuntini, F.; Alonso, C.M.; Boyle, R.W. Synthetic approaches for the conjugation of porphyrins and related macrocycles to peptides and proteins. Photochem. Photobiol. Sci., 2011, 10(5), 759-791.
[77]
Bullous, A.J.; Alonso, C.M.; Boyle, R.W. Photosensitiser-antibody conjugates for photodynamic therapy. Photochem. Photobiol. Sci., 2011, 10(5), 721-750.
[78]
Zhou, J.; Rossi, J. Aptamer as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discov., 2016, 16(3), 181-202.
[79]
Almagro, J.C.; Daniels-Wells, T.R.; Perez-Tapia, S.M.; Penichet, M.L. Progress and challenges in the design and clinical development of antibodies for cancer therapy. Front. Immunol., 2017, 8, 1751.
[80]
Soliman, C.; Yuriev, E.; Ramsland, P.A. Antibody recognition of aberrant glycosylation on the surface of cancer cells. Curr. Opin. Struct. Biol., 2017, 44, 1-8.
[81]
Cummings, R.D.; Etzler, M.E. Antibodies and Lectins in Glycan Analysis. 2nd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press. 2009. Chapter 45. ed.; 2009.
[82]
Dang, L.; Van Damme, E.J. Toxic proteins in plants. Phytochemistry, 2015, 117, 51-64.
[83]
Gong, T.; Wang, X.; Yang, Y.; Yan, Y.; Yu, C.; Zhou, R.; Jiang, W. Plant lectins activate the NLRP3 inflammasome to promote inflammatory disorders. J. Immunol., 2017, 198(5), 2082-2092.
[84]
Barton, C.; Kouokam, J.C.; Hurst, H.; Palmer, K.E. Pharmacokinetics of the antiviral lectin griffithsin administered by different routes indicates multiple potential uses. Viruses, 2016, 8(12), 31.
[85]
Smart, J.D.; Nicholls, T.J.; Green, K.L.; Rogers, D.J.; Cook, J.D. Lectins in drug delivery: A study of the acute local irritancy of the lectins from Solanum tuberosum and Helix pomatia. Eur. J. Pharm. Sci., 1999, 9(1), 93-98.
[86]
Itzkowitz, S.H.; Yuan, M.; Ferrell, L.D.; Ratcliffe, R.M.; Chung, Y.S.; Satake, K.; Umeyama, K.; Jones, R.T.; Kim, Y.S. Cancer-associated alterations of blood group antigen expression in the human pancreas. J. Natl. Cancer Inst., 1987, 79(3), 425-434.
[87]
Bird-Lieberman, E.L.; Neves, A.A.; Lao-Sirieix, P.; O’Donovan, M.; Novelli, M.; Lovat, L.B.; Eng, W.S.; Mahal, L.K.; Brindle, K.M.; Fitzgerald, R.C. Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus. Nat. Med., 2012, 18(2), 315-321.
[88]
Van Damme, E.J.; Rouge, P.; Peumans, W.J. Plant lectins in comprehensive glycoscience, from chemistry to system biology. JP Karmeling Edition, Elsevier, 2007, 3(26), 563-599.
[89]
Singh, T.; Wu, J.H.; Peumans, W.J.; Rouge, P.; Van Damme, E.J.; Wu, A.M. Recognition profile of Morus nigra agglutinin (Morniga G) expressed by monomeric ligands, simple clusters and mammalian polyvalent glycotopes. Mol. Immunol., 2007, 44(4), 451-462.
[90]
Benoist, H.; Culerrier, R.L.; Poiroux, G.; Segui, B.; Jauneau, A.; Van Damme, E.J.M.; Peumans, W.J.; Barre, A.; Rouge, P. Two structurally identical mannose-specific jacalin-related lectins display different effects on human T lymphocyte activation and cell death. J. Leukoc. Biol., 2009, 86(1), 103-114.
[91]
Baeten, J.; Suresh, A.; Johnson, A.; Patel, K.; Kuriakose, M.; Flynn, A.; Kademani, D. Molecular imaging of oral premalignant and malignant lesions using fluorescently labeled lectins. Transl. Oncol., 2014, 7(2), 213-220.
[92]
Zupancic, D.; Kreft, M.E.; Romih, R. Selective binding of lectins to normal and neoplastic urothelium in rat and mouse bladder carcinogenesis models. Protoplasma, 2014, 251(1), 49-59.
[93]
Neutsch, L.; Eggenreich, B.; Herwig, E.; Marchetti-Deschmann, M.; Allmaier, G.; Gabor, F.; Wirth, M. Lectin bioconjugates trigger urothelial cytoinvasion--a glycotargeted approach for improved intravesical drug delivery. Eur. J. Pharm. Biopharm., 2012, 82(2), 367-375.
[94]
Neutsch, L.; Plattner, V.E.; Polster-Wildhofen, S.; Zidar, A.; Chott, A.; Borchard, G.; Zechner, O.; Gabor, F.; Wirth, M. Lectin mediated biorecognition as a novel strategy for targeted delivery to bladder cancer. J. Urol., 2011, 186(4), 1481-1488.
[95]
Ju, T.; Wang, Y.; Aryal, R.P.; Lehoux, S.D.; Ding, X.; Kudelka, M.R.; Cutler, C.; Zeng, J.; Wang, J.; Sun, X.; Heimburg-Molinaro, J.; Smith, D.F.; Cummings, R.D. Tn and sialyl-Tn antigens, aberrant O-glycomics as human disease markers. Proteomics Clin. Appl., 2013, 7(9-10), 618-631.
[96]
Welinder, C.; Baldetorp, B.; Borrebaeck, C.; Fredlund, B.M.; Jansson, B. A new murine IgG1 anti-Tn monoclonal antibody with in vivo anti-tumor activity. Glycobiology, 2011, 21(8), 1097-1107.
[97]
Yu, L.G.; Jansson, B.; Fernig, D.G.; Milton, J.D.; Smith, J.A.; Gerasimenko, O.V.; Jones, M.; Rhodes, J.M. Stimulation of proliferation in human colon cancer cells by human monoclonal antibodies against the TF antigen (galactose beta1-3 N-acetyl-galactosamine). Int. J. Cancer, 1997, 73(3), 424-431.
[98]
Brooks, C.L.; Schietinger, A.; Borisova, S.N.; Kufer, P.; Okon, M.; Hirama, T.; Mackenzie, C.R.; Wang, L.X.; Schreiber, H.; Evans, S.V. Antibody recognition of a unique tumor-specific glycopeptide antigen. Proc. Natl. Acad. Sci. USA, 2010, 107(22), 10056-10061.
[99]
Matsumoto-Takasaki, A.; Hanashima, S.; Aoki, A.; Yuasa, N.; Ogawa, H.; Sato, R.; Kawakami, H.; Mizuno, M.; Nakada, H.; Yamaguchi, Y.; Fujita-Yamaguchi, Y. Surface plasmon resonance and NMR analyses of anti Tn-antigen MLS128 monoclonal antibody binding to two or three consecutive Tn-antigen clusters. J. Biochem., 2012, 151(3), 273-282.
[100]
Cheung, N.K.; Cheung, I.Y.; Kramer, K.; Modak, S.; Kuk, D.; Pandit-Taskar, N.; Chamberlain, E.; Ostrovnaya, I.; Kushner, B.H. Key role for myeloid cells: phase II results of anti-G(D2) antibody 3F8 plus granulocyte-macrophage colony-stimulating factor for chemoresistant osteomedullary neuroblastoma. Int. J. Cancer, 2014, 135(9), 2199-2205.
[101]
Ahmed, M.; Hu, J.; Cheung, N.K. Structure based refinement of a humanized monoclonal antibody that targets tumor antigen disialoganglioside GD2. Front. Immunol., 2014, 5, 372.
[102]
Lahera, T.; Calvo, A.; Torres, G.; Rengifo, C.E.; Quintero, S.; Arango Mdel, C.; Danta, D.; Vazquez, J.M.; Escobar, X.; Carr, A. Prognostic role of 14F7 Mab immunoreactivity against N-Glycolyl GM3 ganglioside in colon cancer. J. Oncol., 2014, 2014, 482301.
[103]
Modak, S.; Gerald, W.; Cheung, N.K. Disialoganglioside GD2 and a novel tumor antigen: potential targets for immunotherapy of desmoplastic small round cell tumor. Med. Pediatr. Oncol., 2002, 39(6), 547-551.
[104]
Huber, R.; Eisenbraun, J.; Miletzki, B.; Adler, M.; Scheer, R.; Klein, R.; Gleiter, C.H. Pharmacokinetics of natural mistletoe lectins after subcutaneous injection. Eur. J. Clin. Pharmacol., 2010, 66(9), 889-897.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy